1 #ifndef _ASM_POWERPC_IO_H 2 #define _ASM_POWERPC_IO_H 3 #ifdef __KERNEL__ 4 5 #define ARCH_HAS_IOREMAP_WC 6 #ifdef CONFIG_PPC32 7 #define ARCH_HAS_IOREMAP_WT 8 #endif 9 10 /* 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 /* Check of existence of legacy devices */ 18 extern int check_legacy_ioport(unsigned long base_port); 19 #define I8042_DATA_REG 0x60 20 #define FDC_BASE 0x3f0 21 22 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI) 23 extern struct pci_dev *isa_bridge_pcidev; 24 /* 25 * has legacy ISA devices ? 26 */ 27 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special) 28 #endif 29 30 #include <linux/device.h> 31 #include <linux/compiler.h> 32 #include <linux/mm.h> 33 #include <asm/page.h> 34 #include <asm/byteorder.h> 35 #include <asm/synch.h> 36 #include <asm/delay.h> 37 #include <asm/mmu.h> 38 #include <asm/ppc_asm.h> 39 #include <asm/pgtable.h> 40 41 #ifdef CONFIG_PPC64 42 #include <asm/paca.h> 43 #endif 44 45 #define SIO_CONFIG_RA 0x398 46 #define SIO_CONFIG_RD 0x399 47 48 #define SLOW_DOWN_IO 49 50 /* 32 bits uses slightly different variables for the various IO 51 * bases. Most of this file only uses _IO_BASE though which we 52 * define properly based on the platform 53 */ 54 #ifndef CONFIG_PCI 55 #define _IO_BASE 0 56 #define _ISA_MEM_BASE 0 57 #define PCI_DRAM_OFFSET 0 58 #elif defined(CONFIG_PPC32) 59 #define _IO_BASE isa_io_base 60 #define _ISA_MEM_BASE isa_mem_base 61 #define PCI_DRAM_OFFSET pci_dram_offset 62 #else 63 #define _IO_BASE pci_io_base 64 #define _ISA_MEM_BASE isa_mem_base 65 #define PCI_DRAM_OFFSET 0 66 #endif 67 68 extern unsigned long isa_io_base; 69 extern unsigned long pci_io_base; 70 extern unsigned long pci_dram_offset; 71 72 extern resource_size_t isa_mem_base; 73 74 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE 75 * is not set or addresses cannot be translated to MMIO. This is typically 76 * set when the platform supports "special" PIO accesses via a non memory 77 * mapped mechanism, and allows things like the early udbg UART code to 78 * function. 79 */ 80 extern bool isa_io_special; 81 82 #ifdef CONFIG_PPC32 83 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 84 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits 85 #endif 86 #endif 87 88 /* 89 * 90 * Low level MMIO accessors 91 * 92 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 93 * specific and thus shouldn't be used in generic code. The accessors 94 * provided here are: 95 * 96 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 97 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 98 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns 99 * 100 * Those operate directly on a kernel virtual address. Note that the prototype 101 * for the out_* accessors has the arguments in opposite order from the usual 102 * linux PCI accessors. Unlike those, they take the address first and the value 103 * next. 104 * 105 * Note: I might drop the _ns suffix on the stream operations soon as it is 106 * simply normal for stream operations to not swap in the first place. 107 * 108 */ 109 110 #ifdef CONFIG_PPC64 111 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0) 112 #else 113 #define IO_SET_SYNC_FLAG() 114 #endif 115 116 #define DEF_MMIO_IN_X(name, size, insn) \ 117 static inline u##size name(const volatile u##size __iomem *addr) \ 118 { \ 119 u##size ret; \ 120 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ 121 : "=r" (ret) : "Z" (*addr) : "memory"); \ 122 return ret; \ 123 } 124 125 #define DEF_MMIO_OUT_X(name, size, insn) \ 126 static inline void name(volatile u##size __iomem *addr, u##size val) \ 127 { \ 128 __asm__ __volatile__("sync;"#insn" %1,%y0" \ 129 : "=Z" (*addr) : "r" (val) : "memory"); \ 130 IO_SET_SYNC_FLAG(); \ 131 } 132 133 #define DEF_MMIO_IN_D(name, size, insn) \ 134 static inline u##size name(const volatile u##size __iomem *addr) \ 135 { \ 136 u##size ret; \ 137 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ 138 : "=r" (ret) : "m" (*addr) : "memory"); \ 139 return ret; \ 140 } 141 142 #define DEF_MMIO_OUT_D(name, size, insn) \ 143 static inline void name(volatile u##size __iomem *addr, u##size val) \ 144 { \ 145 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ 146 : "=m" (*addr) : "r" (val) : "memory"); \ 147 IO_SET_SYNC_FLAG(); \ 148 } 149 150 DEF_MMIO_IN_D(in_8, 8, lbz); 151 DEF_MMIO_OUT_D(out_8, 8, stb); 152 153 #ifdef __BIG_ENDIAN__ 154 DEF_MMIO_IN_D(in_be16, 16, lhz); 155 DEF_MMIO_IN_D(in_be32, 32, lwz); 156 DEF_MMIO_IN_X(in_le16, 16, lhbrx); 157 DEF_MMIO_IN_X(in_le32, 32, lwbrx); 158 159 DEF_MMIO_OUT_D(out_be16, 16, sth); 160 DEF_MMIO_OUT_D(out_be32, 32, stw); 161 DEF_MMIO_OUT_X(out_le16, 16, sthbrx); 162 DEF_MMIO_OUT_X(out_le32, 32, stwbrx); 163 #else 164 DEF_MMIO_IN_X(in_be16, 16, lhbrx); 165 DEF_MMIO_IN_X(in_be32, 32, lwbrx); 166 DEF_MMIO_IN_D(in_le16, 16, lhz); 167 DEF_MMIO_IN_D(in_le32, 32, lwz); 168 169 DEF_MMIO_OUT_X(out_be16, 16, sthbrx); 170 DEF_MMIO_OUT_X(out_be32, 32, stwbrx); 171 DEF_MMIO_OUT_D(out_le16, 16, sth); 172 DEF_MMIO_OUT_D(out_le32, 32, stw); 173 174 #endif /* __BIG_ENDIAN */ 175 176 #ifdef __powerpc64__ 177 178 #ifdef __BIG_ENDIAN__ 179 DEF_MMIO_OUT_D(out_be64, 64, std); 180 DEF_MMIO_IN_D(in_be64, 64, ld); 181 182 /* There is no asm instructions for 64 bits reverse loads and stores */ 183 static inline u64 in_le64(const volatile u64 __iomem *addr) 184 { 185 return swab64(in_be64(addr)); 186 } 187 188 static inline void out_le64(volatile u64 __iomem *addr, u64 val) 189 { 190 out_be64(addr, swab64(val)); 191 } 192 #else 193 DEF_MMIO_OUT_D(out_le64, 64, std); 194 DEF_MMIO_IN_D(in_le64, 64, ld); 195 196 /* There is no asm instructions for 64 bits reverse loads and stores */ 197 static inline u64 in_be64(const volatile u64 __iomem *addr) 198 { 199 return swab64(in_le64(addr)); 200 } 201 202 static inline void out_be64(volatile u64 __iomem *addr, u64 val) 203 { 204 out_le64(addr, swab64(val)); 205 } 206 207 #endif 208 #endif /* __powerpc64__ */ 209 210 /* 211 * Low level IO stream instructions are defined out of line for now 212 */ 213 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 214 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 215 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); 216 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); 217 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); 218 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); 219 220 /* The _ns naming is historical and will be removed. For now, just #define 221 * the non _ns equivalent names 222 */ 223 #define _insw _insw_ns 224 #define _insl _insl_ns 225 #define _outsw _outsw_ns 226 #define _outsl _outsl_ns 227 228 229 /* 230 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 231 */ 232 233 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 234 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 235 unsigned long n); 236 extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 237 unsigned long n); 238 239 /* 240 * 241 * PCI and standard ISA accessors 242 * 243 * Those are globally defined linux accessors for devices on PCI or ISA 244 * busses. They follow the Linux defined semantics. The current implementation 245 * for PowerPC is as close as possible to the x86 version of these, and thus 246 * provides fairly heavy weight barriers for the non-raw versions 247 * 248 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO 249 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its 250 * own implementation of some or all of the accessors. 251 */ 252 253 /* 254 * Include the EEH definitions when EEH is enabled only so they don't get 255 * in the way when building for 32 bits 256 */ 257 #ifdef CONFIG_EEH 258 #include <asm/eeh.h> 259 #endif 260 261 /* Shortcut to the MMIO argument pointer */ 262 #define PCI_IO_ADDR volatile void __iomem * 263 264 /* Indirect IO address tokens: 265 * 266 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks 267 * on all MMIOs. (Note that this is all 64 bits only for now) 268 * 269 * To help platforms who may need to differentiate MMIO addresses in 270 * their hooks, a bitfield is reserved for use by the platform near the 271 * top of MMIO addresses (not PIO, those have to cope the hard way). 272 * 273 * The highest address in the kernel virtual space are: 274 * 275 * d0003fffffffffff # with Hash MMU 276 * c00fffffffffffff # with Radix MMU 277 * 278 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits 279 * that can be used for the field. 280 * 281 * The direct IO mapping operations will then mask off those bits 282 * before doing the actual access, though that only happen when 283 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that 284 * mechanism 285 * 286 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes 287 * all PIO functions call through a hook. 288 */ 289 290 #ifdef CONFIG_PPC_INDIRECT_MMIO 291 #define PCI_IO_IND_TOKEN_SHIFT 52 292 #define PCI_IO_IND_TOKEN_MASK (0xfful << PCI_IO_IND_TOKEN_SHIFT) 293 #define PCI_FIX_ADDR(addr) \ 294 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) 295 #define PCI_GET_ADDR_TOKEN(addr) \ 296 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ 297 PCI_IO_IND_TOKEN_SHIFT) 298 #define PCI_SET_ADDR_TOKEN(addr, token) \ 299 do { \ 300 unsigned long __a = (unsigned long)(addr); \ 301 __a &= ~PCI_IO_IND_TOKEN_MASK; \ 302 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ 303 (addr) = (void __iomem *)__a; \ 304 } while(0) 305 #else 306 #define PCI_FIX_ADDR(addr) (addr) 307 #endif 308 309 310 /* 311 * Non ordered and non-swapping "raw" accessors 312 */ 313 314 static inline unsigned char __raw_readb(const volatile void __iomem *addr) 315 { 316 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); 317 } 318 static inline unsigned short __raw_readw(const volatile void __iomem *addr) 319 { 320 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); 321 } 322 static inline unsigned int __raw_readl(const volatile void __iomem *addr) 323 { 324 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); 325 } 326 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) 327 { 328 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; 329 } 330 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) 331 { 332 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; 333 } 334 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) 335 { 336 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; 337 } 338 339 #ifdef __powerpc64__ 340 static inline unsigned long __raw_readq(const volatile void __iomem *addr) 341 { 342 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); 343 } 344 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) 345 { 346 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; 347 } 348 349 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr) 350 { 351 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr); 352 } 353 354 /* 355 * Real mode versions of the above. Those instructions are only supposed 356 * to be used in hypervisor real mode as per the architecture spec. 357 */ 358 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr) 359 { 360 __asm__ __volatile__("stbcix %0,0,%1" 361 : : "r" (val), "r" (paddr) : "memory"); 362 } 363 364 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr) 365 { 366 __asm__ __volatile__("sthcix %0,0,%1" 367 : : "r" (val), "r" (paddr) : "memory"); 368 } 369 370 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr) 371 { 372 __asm__ __volatile__("stwcix %0,0,%1" 373 : : "r" (val), "r" (paddr) : "memory"); 374 } 375 376 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) 377 { 378 __asm__ __volatile__("stdcix %0,0,%1" 379 : : "r" (val), "r" (paddr) : "memory"); 380 } 381 382 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr) 383 { 384 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr); 385 } 386 387 static inline u8 __raw_rm_readb(volatile void __iomem *paddr) 388 { 389 u8 ret; 390 __asm__ __volatile__("lbzcix %0,0, %1" 391 : "=r" (ret) : "r" (paddr) : "memory"); 392 return ret; 393 } 394 395 static inline u16 __raw_rm_readw(volatile void __iomem *paddr) 396 { 397 u16 ret; 398 __asm__ __volatile__("lhzcix %0,0, %1" 399 : "=r" (ret) : "r" (paddr) : "memory"); 400 return ret; 401 } 402 403 static inline u32 __raw_rm_readl(volatile void __iomem *paddr) 404 { 405 u32 ret; 406 __asm__ __volatile__("lwzcix %0,0, %1" 407 : "=r" (ret) : "r" (paddr) : "memory"); 408 return ret; 409 } 410 411 static inline u64 __raw_rm_readq(volatile void __iomem *paddr) 412 { 413 u64 ret; 414 __asm__ __volatile__("ldcix %0,0, %1" 415 : "=r" (ret) : "r" (paddr) : "memory"); 416 return ret; 417 } 418 #endif /* __powerpc64__ */ 419 420 /* 421 * 422 * PCI PIO and MMIO accessors. 423 * 424 * 425 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 426 * machine checks (which they occasionally do when probing non existing 427 * IO ports on some platforms, like PowerMac and 8xx). 428 * I always found it to be of dubious reliability and I am tempted to get 429 * rid of it one of these days. So if you think it's important to keep it, 430 * please voice up asap. We never had it for 64 bits and I do not intend 431 * to port it over 432 */ 433 434 #ifdef CONFIG_PPC32 435 436 #define __do_in_asm(name, op) \ 437 static inline unsigned int name(unsigned int port) \ 438 { \ 439 unsigned int x; \ 440 __asm__ __volatile__( \ 441 "sync\n" \ 442 "0:" op " %0,0,%1\n" \ 443 "1: twi 0,%0,0\n" \ 444 "2: isync\n" \ 445 "3: nop\n" \ 446 "4:\n" \ 447 ".section .fixup,\"ax\"\n" \ 448 "5: li %0,-1\n" \ 449 " b 4b\n" \ 450 ".previous\n" \ 451 EX_TABLE(0b, 5b) \ 452 EX_TABLE(1b, 5b) \ 453 EX_TABLE(2b, 5b) \ 454 EX_TABLE(3b, 5b) \ 455 : "=&r" (x) \ 456 : "r" (port + _IO_BASE) \ 457 : "memory"); \ 458 return x; \ 459 } 460 461 #define __do_out_asm(name, op) \ 462 static inline void name(unsigned int val, unsigned int port) \ 463 { \ 464 __asm__ __volatile__( \ 465 "sync\n" \ 466 "0:" op " %0,0,%1\n" \ 467 "1: sync\n" \ 468 "2:\n" \ 469 EX_TABLE(0b, 2b) \ 470 EX_TABLE(1b, 2b) \ 471 : : "r" (val), "r" (port + _IO_BASE) \ 472 : "memory"); \ 473 } 474 475 __do_in_asm(_rec_inb, "lbzx") 476 __do_in_asm(_rec_inw, "lhbrx") 477 __do_in_asm(_rec_inl, "lwbrx") 478 __do_out_asm(_rec_outb, "stbx") 479 __do_out_asm(_rec_outw, "sthbrx") 480 __do_out_asm(_rec_outl, "stwbrx") 481 482 #endif /* CONFIG_PPC32 */ 483 484 /* The "__do_*" operations below provide the actual "base" implementation 485 * for each of the defined accessors. Some of them use the out_* functions 486 * directly, some of them still use EEH, though we might change that in the 487 * future. Those macros below provide the necessary argument swapping and 488 * handling of the IO base for PIO. 489 * 490 * They are themselves used by the macros that define the actual accessors 491 * and can be used by the hooks if any. 492 * 493 * Note that PIO operations are always defined in terms of their corresonding 494 * MMIO operations. That allows platforms like iSeries who want to modify the 495 * behaviour of both to only hook on the MMIO version and get both. It's also 496 * possible to hook directly at the toplevel PIO operation if they have to 497 * be handled differently 498 */ 499 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) 500 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) 501 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) 502 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) 503 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) 504 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) 505 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) 506 507 #ifdef CONFIG_EEH 508 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) 509 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) 510 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) 511 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) 512 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) 513 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) 514 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) 515 #else /* CONFIG_EEH */ 516 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) 517 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) 518 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) 519 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) 520 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) 521 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) 522 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) 523 #endif /* !defined(CONFIG_EEH) */ 524 525 #ifdef CONFIG_PPC32 526 #define __do_outb(val, port) _rec_outb(val, port) 527 #define __do_outw(val, port) _rec_outw(val, port) 528 #define __do_outl(val, port) _rec_outl(val, port) 529 #define __do_inb(port) _rec_inb(port) 530 #define __do_inw(port) _rec_inw(port) 531 #define __do_inl(port) _rec_inl(port) 532 #else /* CONFIG_PPC32 */ 533 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); 534 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); 535 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); 536 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); 537 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); 538 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); 539 #endif /* !CONFIG_PPC32 */ 540 541 #ifdef CONFIG_EEH 542 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) 543 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) 544 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) 545 #else /* CONFIG_EEH */ 546 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) 547 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) 548 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) 549 #endif /* !CONFIG_EEH */ 550 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) 551 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) 552 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) 553 554 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 555 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 556 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 557 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 558 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 559 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 560 561 #define __do_memset_io(addr, c, n) \ 562 _memset_io(PCI_FIX_ADDR(addr), c, n) 563 #define __do_memcpy_toio(dst, src, n) \ 564 _memcpy_toio(PCI_FIX_ADDR(dst), src, n) 565 566 #ifdef CONFIG_EEH 567 #define __do_memcpy_fromio(dst, src, n) \ 568 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) 569 #else /* CONFIG_EEH */ 570 #define __do_memcpy_fromio(dst, src, n) \ 571 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) 572 #endif /* !CONFIG_EEH */ 573 574 #ifdef CONFIG_PPC_INDIRECT_PIO 575 #define DEF_PCI_HOOK_pio(x) x 576 #else 577 #define DEF_PCI_HOOK_pio(x) NULL 578 #endif 579 580 #ifdef CONFIG_PPC_INDIRECT_MMIO 581 #define DEF_PCI_HOOK_mem(x) x 582 #else 583 #define DEF_PCI_HOOK_mem(x) NULL 584 #endif 585 586 /* Structure containing all the hooks */ 587 extern struct ppc_pci_io { 588 589 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; 590 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; 591 592 #include <asm/io-defs.h> 593 594 #undef DEF_PCI_AC_RET 595 #undef DEF_PCI_AC_NORET 596 597 } ppc_pci_io; 598 599 /* The inline wrappers */ 600 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ 601 static inline ret name at \ 602 { \ 603 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 604 return ppc_pci_io.name al; \ 605 return __do_##name al; \ 606 } 607 608 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \ 609 static inline void name at \ 610 { \ 611 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 612 ppc_pci_io.name al; \ 613 else \ 614 __do_##name al; \ 615 } 616 617 #include <asm/io-defs.h> 618 619 #undef DEF_PCI_AC_RET 620 #undef DEF_PCI_AC_NORET 621 622 /* Some drivers check for the presence of readq & writeq with 623 * a #ifdef, so we make them happy here. 624 */ 625 #ifdef __powerpc64__ 626 #define readq readq 627 #define writeq writeq 628 #endif 629 630 /* 631 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 632 * access 633 */ 634 #define xlate_dev_mem_ptr(p) __va(p) 635 636 /* 637 * Convert a virtual cached pointer to an uncached pointer 638 */ 639 #define xlate_dev_kmem_ptr(p) p 640 641 /* 642 * We don't do relaxed operations yet, at least not with this semantic 643 */ 644 #define readb_relaxed(addr) readb(addr) 645 #define readw_relaxed(addr) readw(addr) 646 #define readl_relaxed(addr) readl(addr) 647 #define readq_relaxed(addr) readq(addr) 648 #define writeb_relaxed(v, addr) writeb(v, addr) 649 #define writew_relaxed(v, addr) writew(v, addr) 650 #define writel_relaxed(v, addr) writel(v, addr) 651 #define writeq_relaxed(v, addr) writeq(v, addr) 652 653 #include <asm-generic/iomap.h> 654 655 #ifdef CONFIG_PPC32 656 #define mmiowb() 657 #else 658 /* 659 * Enforce synchronisation of stores vs. spin_unlock 660 * (this does it explicitly, though our implementation of spin_unlock 661 * does it implicitely too) 662 */ 663 static inline void mmiowb(void) 664 { 665 unsigned long tmp; 666 667 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" 668 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) 669 : "memory"); 670 } 671 #endif /* !CONFIG_PPC32 */ 672 673 static inline void iosync(void) 674 { 675 __asm__ __volatile__ ("sync" : : : "memory"); 676 } 677 678 /* Enforce in-order execution of data I/O. 679 * No distinction between read/write on PPC; use eieio for all three. 680 * Those are fairly week though. They don't provide a barrier between 681 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 682 * they only provide barriers between 2 __raw MMIO operations and 683 * possibly break write combining. 684 */ 685 #define iobarrier_rw() eieio() 686 #define iobarrier_r() eieio() 687 #define iobarrier_w() eieio() 688 689 690 /* 691 * output pause versions need a delay at least for the 692 * w83c105 ide controller in a p610. 693 */ 694 #define inb_p(port) inb(port) 695 #define outb_p(val, port) (udelay(1), outb((val), (port))) 696 #define inw_p(port) inw(port) 697 #define outw_p(val, port) (udelay(1), outw((val), (port))) 698 #define inl_p(port) inl(port) 699 #define outl_p(val, port) (udelay(1), outl((val), (port))) 700 701 702 #define IO_SPACE_LIMIT ~(0UL) 703 704 705 /** 706 * ioremap - map bus memory into CPU space 707 * @address: bus address of the memory 708 * @size: size of the resource to map 709 * 710 * ioremap performs a platform specific sequence of operations to 711 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 712 * writew/writel functions and the other mmio helpers. The returned 713 * address is not guaranteed to be usable directly as a virtual 714 * address. 715 * 716 * We provide a few variations of it: 717 * 718 * * ioremap is the standard one and provides non-cacheable guarded mappings 719 * and can be hooked by the platform via ppc_md 720 * 721 * * ioremap_prot allows to specify the page flags as an argument and can 722 * also be hooked by the platform via ppc_md. 723 * 724 * * ioremap_nocache is identical to ioremap 725 * 726 * * ioremap_wc enables write combining 727 * 728 * * ioremap_wt enables write through 729 * 730 * * ioremap_coherent maps coherent cached memory 731 * 732 * * iounmap undoes such a mapping and can be hooked 733 * 734 * * __ioremap_at (and the pending __iounmap_at) are low level functions to 735 * create hand-made mappings for use only by the PCI code and cannot 736 * currently be hooked. Must be page aligned. 737 * 738 * * __ioremap is the low level implementation used by ioremap and 739 * ioremap_prot and cannot be hooked (but can be used by a hook on one 740 * of the previous ones) 741 * 742 * * __ioremap_caller is the same as above but takes an explicit caller 743 * reference rather than using __builtin_return_address(0) 744 * 745 * * __iounmap, is the low level implementation used by iounmap and cannot 746 * be hooked (but can be used by a hook on iounmap) 747 * 748 */ 749 extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 750 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size, 751 unsigned long flags); 752 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); 753 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size); 754 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size); 755 #define ioremap_nocache(addr, size) ioremap((addr), (size)) 756 #define ioremap_uc(addr, size) ioremap((addr), (size)) 757 #define ioremap_cache(addr, size) \ 758 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL)) 759 760 extern void iounmap(volatile void __iomem *addr); 761 762 extern void __iomem *__ioremap(phys_addr_t, unsigned long size, 763 unsigned long flags); 764 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, 765 pgprot_t prot, void *caller); 766 767 extern void __iounmap(volatile void __iomem *addr); 768 769 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, 770 unsigned long size, pgprot_t prot); 771 extern void __iounmap_at(void *ea, unsigned long size); 772 773 /* 774 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation 775 * which needs some additional definitions here. They basically allow PIO 776 * space overall to be 1GB. This will work as long as we never try to use 777 * iomap to map MMIO below 1GB which should be fine on ppc64 778 */ 779 #define HAVE_ARCH_PIO_SIZE 1 780 #define PIO_OFFSET 0x00000000UL 781 #define PIO_MASK (FULL_IO_SIZE - 1) 782 #define PIO_RESERVED (FULL_IO_SIZE) 783 784 #define mmio_read16be(addr) readw_be(addr) 785 #define mmio_read32be(addr) readl_be(addr) 786 #define mmio_write16be(val, addr) writew_be(val, addr) 787 #define mmio_write32be(val, addr) writel_be(val, addr) 788 #define mmio_insb(addr, dst, count) readsb(addr, dst, count) 789 #define mmio_insw(addr, dst, count) readsw(addr, dst, count) 790 #define mmio_insl(addr, dst, count) readsl(addr, dst, count) 791 #define mmio_outsb(addr, src, count) writesb(addr, src, count) 792 #define mmio_outsw(addr, src, count) writesw(addr, src, count) 793 #define mmio_outsl(addr, src, count) writesl(addr, src, count) 794 795 /** 796 * virt_to_phys - map virtual addresses to physical 797 * @address: address to remap 798 * 799 * The returned physical address is the physical (CPU) mapping for 800 * the memory address given. It is only valid to use this function on 801 * addresses directly mapped or allocated via kmalloc. 802 * 803 * This function does not give bus mappings for DMA transfers. In 804 * almost all conceivable cases a device driver should not be using 805 * this function 806 */ 807 static inline unsigned long virt_to_phys(volatile void * address) 808 { 809 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address)); 810 811 return __pa((unsigned long)address); 812 } 813 814 /** 815 * phys_to_virt - map physical address to virtual 816 * @address: address to remap 817 * 818 * The returned virtual address is a current CPU mapping for 819 * the memory address given. It is only valid to use this function on 820 * addresses that have a kernel mapping 821 * 822 * This function does not handle bus mappings for DMA transfers. In 823 * almost all conceivable cases a device driver should not be using 824 * this function 825 */ 826 static inline void * phys_to_virt(unsigned long address) 827 { 828 return (void *)__va(address); 829 } 830 831 /* 832 * Change "struct page" to physical address. 833 */ 834 static inline phys_addr_t page_to_phys(struct page *page) 835 { 836 unsigned long pfn = page_to_pfn(page); 837 838 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn)); 839 840 return PFN_PHYS(pfn); 841 } 842 843 /* 844 * 32 bits still uses virt_to_bus() for it's implementation of DMA 845 * mappings se we have to keep it defined here. We also have some old 846 * drivers (shame shame shame) that use bus_to_virt() and haven't been 847 * fixed yet so I need to define it here. 848 */ 849 #ifdef CONFIG_PPC32 850 851 static inline unsigned long virt_to_bus(volatile void * address) 852 { 853 if (address == NULL) 854 return 0; 855 return __pa(address) + PCI_DRAM_OFFSET; 856 } 857 858 static inline void * bus_to_virt(unsigned long address) 859 { 860 if (address == 0) 861 return NULL; 862 return __va(address - PCI_DRAM_OFFSET); 863 } 864 865 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) 866 867 #endif /* CONFIG_PPC32 */ 868 869 /* access ports */ 870 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 871 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 872 873 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 874 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 875 876 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 877 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 878 879 /* Clear and set bits in one shot. These macros can be used to clear and 880 * set multiple bits in a register using a single read-modify-write. These 881 * macros can also be used to set a multiple-bit bit pattern using a mask, 882 * by specifying the mask in the 'clear' parameter and the new bit pattern 883 * in the 'set' parameter. 884 */ 885 886 #define clrsetbits(type, addr, clear, set) \ 887 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 888 889 #ifdef __powerpc64__ 890 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 891 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 892 #endif 893 894 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 895 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 896 897 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 898 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 899 900 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 901 902 #endif /* __KERNEL__ */ 903 904 #endif /* _ASM_POWERPC_IO_H */ 905