xref: /openbmc/linux/arch/powerpc/include/asm/io.h (revision 089a49b6)
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4 
5 #define ARCH_HAS_IOREMAP_WC
6 
7 /*
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/io.h>
29 
30 #include <linux/compiler.h>
31 #include <asm/page.h>
32 #include <asm/byteorder.h>
33 #include <asm/synch.h>
34 #include <asm/delay.h>
35 #include <asm/mmu.h>
36 
37 #include <asm-generic/iomap.h>
38 
39 #ifdef CONFIG_PPC64
40 #include <asm/paca.h>
41 #endif
42 
43 #define SIO_CONFIG_RA	0x398
44 #define SIO_CONFIG_RD	0x399
45 
46 #define SLOW_DOWN_IO
47 
48 /* 32 bits uses slightly different variables for the various IO
49  * bases. Most of this file only uses _IO_BASE though which we
50  * define properly based on the platform
51  */
52 #ifndef CONFIG_PCI
53 #define _IO_BASE	0
54 #define _ISA_MEM_BASE	0
55 #define PCI_DRAM_OFFSET 0
56 #elif defined(CONFIG_PPC32)
57 #define _IO_BASE	isa_io_base
58 #define _ISA_MEM_BASE	isa_mem_base
59 #define PCI_DRAM_OFFSET	pci_dram_offset
60 #else
61 #define _IO_BASE	pci_io_base
62 #define _ISA_MEM_BASE	isa_mem_base
63 #define PCI_DRAM_OFFSET	0
64 #endif
65 
66 extern unsigned long isa_io_base;
67 extern unsigned long pci_io_base;
68 extern unsigned long pci_dram_offset;
69 
70 extern resource_size_t isa_mem_base;
71 
72 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
73  * is not set or addresses cannot be translated to MMIO. This is typically
74  * set when the platform supports "special" PIO accesses via a non memory
75  * mapped mechanism, and allows things like the early udbg UART code to
76  * function.
77  */
78 extern bool isa_io_special;
79 
80 #ifdef CONFIG_PPC32
81 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
82 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
83 #endif
84 #endif
85 
86 /*
87  *
88  * Low level MMIO accessors
89  *
90  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
91  * specific and thus shouldn't be used in generic code. The accessors
92  * provided here are:
93  *
94  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
95  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
96  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
97  *
98  * Those operate directly on a kernel virtual address. Note that the prototype
99  * for the out_* accessors has the arguments in opposite order from the usual
100  * linux PCI accessors. Unlike those, they take the address first and the value
101  * next.
102  *
103  * Note: I might drop the _ns suffix on the stream operations soon as it is
104  * simply normal for stream operations to not swap in the first place.
105  *
106  */
107 
108 #ifdef CONFIG_PPC64
109 #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
110 #else
111 #define IO_SET_SYNC_FLAG()
112 #endif
113 
114 /* gcc 4.0 and older doesn't have 'Z' constraint */
115 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
116 #define DEF_MMIO_IN_LE(name, size, insn)				\
117 static inline u##size name(const volatile u##size __iomem *addr)	\
118 {									\
119 	u##size ret;							\
120 	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
121 		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
122 	return ret;							\
123 }
124 
125 #define DEF_MMIO_OUT_LE(name, size, insn) 				\
126 static inline void name(volatile u##size __iomem *addr, u##size val)	\
127 {									\
128 	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
129 		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
130 	IO_SET_SYNC_FLAG();						\
131 }
132 #else /* newer gcc */
133 #define DEF_MMIO_IN_LE(name, size, insn)				\
134 static inline u##size name(const volatile u##size __iomem *addr)	\
135 {									\
136 	u##size ret;							\
137 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
138 		: "=r" (ret) : "Z" (*addr) : "memory");			\
139 	return ret;							\
140 }
141 
142 #define DEF_MMIO_OUT_LE(name, size, insn) 				\
143 static inline void name(volatile u##size __iomem *addr, u##size val)	\
144 {									\
145 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
146 		: "=Z" (*addr) : "r" (val) : "memory");			\
147 	IO_SET_SYNC_FLAG();						\
148 }
149 #endif
150 
151 #define DEF_MMIO_IN_BE(name, size, insn)				\
152 static inline u##size name(const volatile u##size __iomem *addr)	\
153 {									\
154 	u##size ret;							\
155 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
156 		: "=r" (ret) : "m" (*addr) : "memory");			\
157 	return ret;							\
158 }
159 
160 #define DEF_MMIO_OUT_BE(name, size, insn)				\
161 static inline void name(volatile u##size __iomem *addr, u##size val)	\
162 {									\
163 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
164 		: "=m" (*addr) : "r" (val) : "memory");			\
165 	IO_SET_SYNC_FLAG();						\
166 }
167 
168 
169 DEF_MMIO_IN_BE(in_8,     8, lbz);
170 DEF_MMIO_IN_BE(in_be16, 16, lhz);
171 DEF_MMIO_IN_BE(in_be32, 32, lwz);
172 DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
173 DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
174 
175 DEF_MMIO_OUT_BE(out_8,     8, stb);
176 DEF_MMIO_OUT_BE(out_be16, 16, sth);
177 DEF_MMIO_OUT_BE(out_be32, 32, stw);
178 DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
179 DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
180 
181 #ifdef __powerpc64__
182 DEF_MMIO_OUT_BE(out_be64, 64, std);
183 DEF_MMIO_IN_BE(in_be64, 64, ld);
184 
185 /* There is no asm instructions for 64 bits reverse loads and stores */
186 static inline u64 in_le64(const volatile u64 __iomem *addr)
187 {
188 	return swab64(in_be64(addr));
189 }
190 
191 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
192 {
193 	out_be64(addr, swab64(val));
194 }
195 #endif /* __powerpc64__ */
196 
197 /*
198  * Low level IO stream instructions are defined out of line for now
199  */
200 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
201 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
202 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
203 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
204 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
205 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
206 
207 /* The _ns naming is historical and will be removed. For now, just #define
208  * the non _ns equivalent names
209  */
210 #define _insw	_insw_ns
211 #define _insl	_insl_ns
212 #define _outsw	_outsw_ns
213 #define _outsl	_outsl_ns
214 
215 
216 /*
217  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
218  */
219 
220 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
221 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
222 			   unsigned long n);
223 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
224 			 unsigned long n);
225 
226 /*
227  *
228  * PCI and standard ISA accessors
229  *
230  * Those are globally defined linux accessors for devices on PCI or ISA
231  * busses. They follow the Linux defined semantics. The current implementation
232  * for PowerPC is as close as possible to the x86 version of these, and thus
233  * provides fairly heavy weight barriers for the non-raw versions
234  *
235  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
236  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
237  * own implementation of some or all of the accessors.
238  */
239 
240 /*
241  * Include the EEH definitions when EEH is enabled only so they don't get
242  * in the way when building for 32 bits
243  */
244 #ifdef CONFIG_EEH
245 #include <asm/eeh.h>
246 #endif
247 
248 /* Shortcut to the MMIO argument pointer */
249 #define PCI_IO_ADDR	volatile void __iomem *
250 
251 /* Indirect IO address tokens:
252  *
253  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
254  * on all MMIOs. (Note that this is all 64 bits only for now)
255  *
256  * To help platforms who may need to differenciate MMIO addresses in
257  * their hooks, a bitfield is reserved for use by the platform near the
258  * top of MMIO addresses (not PIO, those have to cope the hard way).
259  *
260  * This bit field is 12 bits and is at the top of the IO virtual
261  * addresses PCI_IO_INDIRECT_TOKEN_MASK.
262  *
263  * The kernel virtual space is thus:
264  *
265  *  0xD000000000000000		: vmalloc
266  *  0xD000080000000000		: PCI PHB IO space
267  *  0xD000080080000000		: ioremap
268  *  0xD0000fffffffffff		: end of ioremap region
269  *
270  * Since the top 4 bits are reserved as the region ID, we use thus
271  * the next 12 bits and keep 4 bits available for the future if the
272  * virtual address space is ever to be extended.
273  *
274  * The direct IO mapping operations will then mask off those bits
275  * before doing the actual access, though that only happen when
276  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
277  * mechanism
278  *
279  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
280  * all PIO functions call through a hook.
281  */
282 
283 #ifdef CONFIG_PPC_INDIRECT_MMIO
284 #define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
285 #define PCI_IO_IND_TOKEN_SHIFT	48
286 #define PCI_FIX_ADDR(addr)						\
287 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
288 #define PCI_GET_ADDR_TOKEN(addr)					\
289 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
290 		PCI_IO_IND_TOKEN_SHIFT)
291 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
292 do {									\
293 	unsigned long __a = (unsigned long)(addr);			\
294 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
295 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
296 	(addr) = (void __iomem *)__a;					\
297 } while(0)
298 #else
299 #define PCI_FIX_ADDR(addr) (addr)
300 #endif
301 
302 
303 /*
304  * Non ordered and non-swapping "raw" accessors
305  */
306 
307 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
308 {
309 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
310 }
311 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
312 {
313 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
314 }
315 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
316 {
317 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
318 }
319 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
320 {
321 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
322 }
323 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
324 {
325 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
326 }
327 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
328 {
329 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
330 }
331 
332 #ifdef __powerpc64__
333 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
334 {
335 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
336 }
337 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
338 {
339 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
340 }
341 #endif /* __powerpc64__ */
342 
343 /*
344  *
345  * PCI PIO and MMIO accessors.
346  *
347  *
348  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
349  * machine checks (which they occasionally do when probing non existing
350  * IO ports on some platforms, like PowerMac and 8xx).
351  * I always found it to be of dubious reliability and I am tempted to get
352  * rid of it one of these days. So if you think it's important to keep it,
353  * please voice up asap. We never had it for 64 bits and I do not intend
354  * to port it over
355  */
356 
357 #ifdef CONFIG_PPC32
358 
359 #define __do_in_asm(name, op)				\
360 static inline unsigned int name(unsigned int port)	\
361 {							\
362 	unsigned int x;					\
363 	__asm__ __volatile__(				\
364 		"sync\n"				\
365 		"0:"	op "	%0,0,%1\n"		\
366 		"1:	twi	0,%0,0\n"		\
367 		"2:	isync\n"			\
368 		"3:	nop\n"				\
369 		"4:\n"					\
370 		".section .fixup,\"ax\"\n"		\
371 		"5:	li	%0,-1\n"		\
372 		"	b	4b\n"			\
373 		".previous\n"				\
374 		".section __ex_table,\"a\"\n"		\
375 		"	.align	2\n"			\
376 		"	.long	0b,5b\n"		\
377 		"	.long	1b,5b\n"		\
378 		"	.long	2b,5b\n"		\
379 		"	.long	3b,5b\n"		\
380 		".previous"				\
381 		: "=&r" (x)				\
382 		: "r" (port + _IO_BASE)			\
383 		: "memory");  				\
384 	return x;					\
385 }
386 
387 #define __do_out_asm(name, op)				\
388 static inline void name(unsigned int val, unsigned int port) \
389 {							\
390 	__asm__ __volatile__(				\
391 		"sync\n"				\
392 		"0:" op " %0,0,%1\n"			\
393 		"1:	sync\n"				\
394 		"2:\n"					\
395 		".section __ex_table,\"a\"\n"		\
396 		"	.align	2\n"			\
397 		"	.long	0b,2b\n"		\
398 		"	.long	1b,2b\n"		\
399 		".previous"				\
400 		: : "r" (val), "r" (port + _IO_BASE)	\
401 		: "memory");   	   	   		\
402 }
403 
404 __do_in_asm(_rec_inb, "lbzx")
405 __do_in_asm(_rec_inw, "lhbrx")
406 __do_in_asm(_rec_inl, "lwbrx")
407 __do_out_asm(_rec_outb, "stbx")
408 __do_out_asm(_rec_outw, "sthbrx")
409 __do_out_asm(_rec_outl, "stwbrx")
410 
411 #endif /* CONFIG_PPC32 */
412 
413 /* The "__do_*" operations below provide the actual "base" implementation
414  * for each of the defined accessors. Some of them use the out_* functions
415  * directly, some of them still use EEH, though we might change that in the
416  * future. Those macros below provide the necessary argument swapping and
417  * handling of the IO base for PIO.
418  *
419  * They are themselves used by the macros that define the actual accessors
420  * and can be used by the hooks if any.
421  *
422  * Note that PIO operations are always defined in terms of their corresonding
423  * MMIO operations. That allows platforms like iSeries who want to modify the
424  * behaviour of both to only hook on the MMIO version and get both. It's also
425  * possible to hook directly at the toplevel PIO operation if they have to
426  * be handled differently
427  */
428 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
429 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
430 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
431 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
432 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
433 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
434 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
435 
436 #ifdef CONFIG_EEH
437 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
438 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
439 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
440 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
441 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
442 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
443 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
444 #else /* CONFIG_EEH */
445 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
446 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
447 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
448 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
449 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
450 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
451 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
452 #endif /* !defined(CONFIG_EEH) */
453 
454 #ifdef CONFIG_PPC32
455 #define __do_outb(val, port)	_rec_outb(val, port)
456 #define __do_outw(val, port)	_rec_outw(val, port)
457 #define __do_outl(val, port)	_rec_outl(val, port)
458 #define __do_inb(port)		_rec_inb(port)
459 #define __do_inw(port)		_rec_inw(port)
460 #define __do_inl(port)		_rec_inl(port)
461 #else /* CONFIG_PPC32 */
462 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
463 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
464 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
465 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
466 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
467 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
468 #endif /* !CONFIG_PPC32 */
469 
470 #ifdef CONFIG_EEH
471 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
472 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
473 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
474 #else /* CONFIG_EEH */
475 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
476 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
477 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
478 #endif /* !CONFIG_EEH */
479 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
480 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
481 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
482 
483 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
484 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
485 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
486 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
487 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
488 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
489 
490 #define __do_memset_io(addr, c, n)	\
491 				_memset_io(PCI_FIX_ADDR(addr), c, n)
492 #define __do_memcpy_toio(dst, src, n)	\
493 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
494 
495 #ifdef CONFIG_EEH
496 #define __do_memcpy_fromio(dst, src, n)	\
497 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
498 #else /* CONFIG_EEH */
499 #define __do_memcpy_fromio(dst, src, n)	\
500 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
501 #endif /* !CONFIG_EEH */
502 
503 #ifdef CONFIG_PPC_INDIRECT_PIO
504 #define DEF_PCI_HOOK_pio(x)	x
505 #else
506 #define DEF_PCI_HOOK_pio(x)	NULL
507 #endif
508 
509 #ifdef CONFIG_PPC_INDIRECT_MMIO
510 #define DEF_PCI_HOOK_mem(x)	x
511 #else
512 #define DEF_PCI_HOOK_mem(x)	NULL
513 #endif
514 
515 /* Structure containing all the hooks */
516 extern struct ppc_pci_io {
517 
518 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
519 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
520 
521 #include <asm/io-defs.h>
522 
523 #undef DEF_PCI_AC_RET
524 #undef DEF_PCI_AC_NORET
525 
526 } ppc_pci_io;
527 
528 /* The inline wrappers */
529 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
530 static inline ret name at					\
531 {								\
532 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
533 		return ppc_pci_io.name al;			\
534 	return __do_##name al;					\
535 }
536 
537 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
538 static inline void name at					\
539 {								\
540 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
541 		ppc_pci_io.name al;				\
542 	else							\
543 		__do_##name al;					\
544 }
545 
546 #include <asm/io-defs.h>
547 
548 #undef DEF_PCI_AC_RET
549 #undef DEF_PCI_AC_NORET
550 
551 /* Some drivers check for the presence of readq & writeq with
552  * a #ifdef, so we make them happy here.
553  */
554 #ifdef __powerpc64__
555 #define readq	readq
556 #define writeq	writeq
557 #endif
558 
559 /*
560  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
561  * access
562  */
563 #define xlate_dev_mem_ptr(p)	__va(p)
564 
565 /*
566  * Convert a virtual cached pointer to an uncached pointer
567  */
568 #define xlate_dev_kmem_ptr(p)	p
569 
570 /*
571  * We don't do relaxed operations yet, at least not with this semantic
572  */
573 #define readb_relaxed(addr) readb(addr)
574 #define readw_relaxed(addr) readw(addr)
575 #define readl_relaxed(addr) readl(addr)
576 #define readq_relaxed(addr) readq(addr)
577 
578 #ifdef CONFIG_PPC32
579 #define mmiowb()
580 #else
581 /*
582  * Enforce synchronisation of stores vs. spin_unlock
583  * (this does it explicitly, though our implementation of spin_unlock
584  * does it implicitely too)
585  */
586 static inline void mmiowb(void)
587 {
588 	unsigned long tmp;
589 
590 	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
591 	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
592 	: "memory");
593 }
594 #endif /* !CONFIG_PPC32 */
595 
596 static inline void iosync(void)
597 {
598         __asm__ __volatile__ ("sync" : : : "memory");
599 }
600 
601 /* Enforce in-order execution of data I/O.
602  * No distinction between read/write on PPC; use eieio for all three.
603  * Those are fairly week though. They don't provide a barrier between
604  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
605  * they only provide barriers between 2 __raw MMIO operations and
606  * possibly break write combining.
607  */
608 #define iobarrier_rw() eieio()
609 #define iobarrier_r()  eieio()
610 #define iobarrier_w()  eieio()
611 
612 
613 /*
614  * output pause versions need a delay at least for the
615  * w83c105 ide controller in a p610.
616  */
617 #define inb_p(port)             inb(port)
618 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
619 #define inw_p(port)             inw(port)
620 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
621 #define inl_p(port)             inl(port)
622 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
623 
624 
625 #define IO_SPACE_LIMIT ~(0UL)
626 
627 
628 /**
629  * ioremap     -   map bus memory into CPU space
630  * @address:   bus address of the memory
631  * @size:      size of the resource to map
632  *
633  * ioremap performs a platform specific sequence of operations to
634  * make bus memory CPU accessible via the readb/readw/readl/writeb/
635  * writew/writel functions and the other mmio helpers. The returned
636  * address is not guaranteed to be usable directly as a virtual
637  * address.
638  *
639  * We provide a few variations of it:
640  *
641  * * ioremap is the standard one and provides non-cacheable guarded mappings
642  *   and can be hooked by the platform via ppc_md
643  *
644  * * ioremap_prot allows to specify the page flags as an argument and can
645  *   also be hooked by the platform via ppc_md.
646  *
647  * * ioremap_nocache is identical to ioremap
648  *
649  * * ioremap_wc enables write combining
650  *
651  * * iounmap undoes such a mapping and can be hooked
652  *
653  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
654  *   create hand-made mappings for use only by the PCI code and cannot
655  *   currently be hooked. Must be page aligned.
656  *
657  * * __ioremap is the low level implementation used by ioremap and
658  *   ioremap_prot and cannot be hooked (but can be used by a hook on one
659  *   of the previous ones)
660  *
661  * * __ioremap_caller is the same as above but takes an explicit caller
662  *   reference rather than using __builtin_return_address(0)
663  *
664  * * __iounmap, is the low level implementation used by iounmap and cannot
665  *   be hooked (but can be used by a hook on iounmap)
666  *
667  */
668 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
669 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
670 				  unsigned long flags);
671 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
672 #define ioremap_nocache(addr, size)	ioremap((addr), (size))
673 
674 extern void iounmap(volatile void __iomem *addr);
675 
676 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
677 			       unsigned long flags);
678 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
679 				      unsigned long flags, void *caller);
680 
681 extern void __iounmap(volatile void __iomem *addr);
682 
683 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
684 				   unsigned long size, unsigned long flags);
685 extern void __iounmap_at(void *ea, unsigned long size);
686 
687 /*
688  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
689  * which needs some additional definitions here. They basically allow PIO
690  * space overall to be 1GB. This will work as long as we never try to use
691  * iomap to map MMIO below 1GB which should be fine on ppc64
692  */
693 #define HAVE_ARCH_PIO_SIZE		1
694 #define PIO_OFFSET			0x00000000UL
695 #define PIO_MASK			(FULL_IO_SIZE - 1)
696 #define PIO_RESERVED			(FULL_IO_SIZE)
697 
698 #define mmio_read16be(addr)		readw_be(addr)
699 #define mmio_read32be(addr)		readl_be(addr)
700 #define mmio_write16be(val, addr)	writew_be(val, addr)
701 #define mmio_write32be(val, addr)	writel_be(val, addr)
702 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
703 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
704 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
705 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
706 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
707 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
708 
709 /**
710  *	virt_to_phys	-	map virtual addresses to physical
711  *	@address: address to remap
712  *
713  *	The returned physical address is the physical (CPU) mapping for
714  *	the memory address given. It is only valid to use this function on
715  *	addresses directly mapped or allocated via kmalloc.
716  *
717  *	This function does not give bus mappings for DMA transfers. In
718  *	almost all conceivable cases a device driver should not be using
719  *	this function
720  */
721 static inline unsigned long virt_to_phys(volatile void * address)
722 {
723 	return __pa((unsigned long)address);
724 }
725 
726 /**
727  *	phys_to_virt	-	map physical address to virtual
728  *	@address: address to remap
729  *
730  *	The returned virtual address is a current CPU mapping for
731  *	the memory address given. It is only valid to use this function on
732  *	addresses that have a kernel mapping
733  *
734  *	This function does not handle bus mappings for DMA transfers. In
735  *	almost all conceivable cases a device driver should not be using
736  *	this function
737  */
738 static inline void * phys_to_virt(unsigned long address)
739 {
740 	return (void *)__va(address);
741 }
742 
743 /*
744  * Change "struct page" to physical address.
745  */
746 #define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
747 
748 /*
749  * 32 bits still uses virt_to_bus() for it's implementation of DMA
750  * mappings se we have to keep it defined here. We also have some old
751  * drivers (shame shame shame) that use bus_to_virt() and haven't been
752  * fixed yet so I need to define it here.
753  */
754 #ifdef CONFIG_PPC32
755 
756 static inline unsigned long virt_to_bus(volatile void * address)
757 {
758         if (address == NULL)
759 		return 0;
760         return __pa(address) + PCI_DRAM_OFFSET;
761 }
762 
763 static inline void * bus_to_virt(unsigned long address)
764 {
765         if (address == 0)
766 		return NULL;
767         return __va(address - PCI_DRAM_OFFSET);
768 }
769 
770 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
771 
772 #endif /* CONFIG_PPC32 */
773 
774 /* access ports */
775 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
776 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
777 
778 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
779 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
780 
781 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
782 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
783 
784 /* Clear and set bits in one shot.  These macros can be used to clear and
785  * set multiple bits in a register using a single read-modify-write.  These
786  * macros can also be used to set a multiple-bit bit pattern using a mask,
787  * by specifying the mask in the 'clear' parameter and the new bit pattern
788  * in the 'set' parameter.
789  */
790 
791 #define clrsetbits(type, addr, clear, set) \
792 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
793 
794 #ifdef __powerpc64__
795 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
796 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
797 #endif
798 
799 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
800 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
801 
802 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
803 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
804 
805 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
806 
807 void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset,
808 				size_t size, unsigned long flags);
809 
810 #endif /* __KERNEL__ */
811 
812 #endif /* _ASM_POWERPC_IO_H */
813