xref: /openbmc/linux/arch/powerpc/include/asm/eeh.h (revision f125e2d4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
4  * Copyright 2001-2012 IBM Corporation.
5  */
6 
7 #ifndef _POWERPC_EEH_H
8 #define _POWERPC_EEH_H
9 #ifdef __KERNEL__
10 
11 #include <linux/init.h>
12 #include <linux/list.h>
13 #include <linux/string.h>
14 #include <linux/time.h>
15 #include <linux/atomic.h>
16 
17 #include <uapi/asm/eeh.h>
18 
19 struct pci_dev;
20 struct pci_bus;
21 struct pci_dn;
22 
23 #ifdef CONFIG_EEH
24 
25 /* EEH subsystem flags */
26 #define EEH_ENABLED		0x01	/* EEH enabled			     */
27 #define EEH_FORCE_DISABLED	0x02	/* EEH disabled			     */
28 #define EEH_PROBE_MODE_DEV	0x04	/* From PCI device		     */
29 #define EEH_PROBE_MODE_DEVTREE	0x08	/* From device tree		     */
30 #define EEH_VALID_PE_ZERO	0x10	/* PE#0 is valid		     */
31 #define EEH_ENABLE_IO_FOR_LOG	0x20	/* Enable IO for log		     */
32 #define EEH_EARLY_DUMP_LOG	0x40	/* Dump log immediately		     */
33 
34 /*
35  * Delay for PE reset, all in ms
36  *
37  * PCI specification has reset hold time of 100 milliseconds.
38  * We have 250 milliseconds here. The PCI bus settlement time
39  * is specified as 1.5 seconds and we have 1.8 seconds.
40  */
41 #define EEH_PE_RST_HOLD_TIME		250
42 #define EEH_PE_RST_SETTLE_TIME		1800
43 
44 /*
45  * The struct is used to trace PE related EEH functionality.
46  * In theory, there will have one instance of the struct to
47  * be created against particular PE. In nature, PEs correlate
48  * to each other. the struct has to reflect that hierarchy in
49  * order to easily pick up those affected PEs when one particular
50  * PE has EEH errors.
51  *
52  * Also, one particular PE might be composed of PCI device, PCI
53  * bus and its subordinate components. The struct also need ship
54  * the information. Further more, one particular PE is only meaingful
55  * in the corresponding PHB. Therefore, the root PEs should be created
56  * against existing PHBs in on-to-one fashion.
57  */
58 #define EEH_PE_INVALID	(1 << 0)	/* Invalid   */
59 #define EEH_PE_PHB	(1 << 1)	/* PHB PE    */
60 #define EEH_PE_DEVICE 	(1 << 2)	/* Device PE */
61 #define EEH_PE_BUS	(1 << 3)	/* Bus PE    */
62 #define EEH_PE_VF	(1 << 4)	/* VF PE     */
63 
64 #define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
65 #define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
66 #define EEH_PE_CFG_BLOCKED	(1 << 2)	/* Block config access	*/
67 #define EEH_PE_RESET		(1 << 3)	/* PE reset in progress */
68 
69 #define EEH_PE_KEEP		(1 << 8)	/* Keep PE on hotplug	*/
70 #define EEH_PE_CFG_RESTRICTED	(1 << 9)	/* Block config on error */
71 #define EEH_PE_REMOVED		(1 << 10)	/* Removed permanently	*/
72 #define EEH_PE_PRI_BUS		(1 << 11)	/* Cached primary bus   */
73 
74 struct eeh_pe {
75 	int type;			/* PE type: PHB/Bus/Device	*/
76 	int state;			/* PE EEH dependent mode	*/
77 	int config_addr;		/* Traditional PCI address	*/
78 	int addr;			/* PE configuration address	*/
79 	struct pci_controller *phb;	/* Associated PHB		*/
80 	struct pci_bus *bus;		/* Top PCI bus for bus PE	*/
81 	int check_count;		/* Times of ignored error	*/
82 	int freeze_count;		/* Times of froze up		*/
83 	time64_t tstamp;		/* Time on first-time freeze	*/
84 	int false_positives;		/* Times of reported #ff's	*/
85 	atomic_t pass_dev_cnt;		/* Count of passed through devs	*/
86 	struct eeh_pe *parent;		/* Parent PE			*/
87 	void *data;			/* PE auxillary data		*/
88 	struct list_head child_list;	/* List of PEs below this PE	*/
89 	struct list_head child;		/* Memb. child_list/eeh_phb_pe	*/
90 	struct list_head edevs;		/* List of eeh_dev in this PE	*/
91 
92 #ifdef CONFIG_STACKTRACE
93 	/*
94 	 * Saved stack trace. When we find a PE freeze in eeh_dev_check_failure
95 	 * the stack trace is saved here so we can print it in the recovery
96 	 * thread if it turns out to due to a real problem rather than
97 	 * a hot-remove.
98 	 *
99 	 * A max of 64 entries might be overkill, but it also might not be.
100 	 */
101 	unsigned long stack_trace[64];
102 	int trace_entries;
103 #endif /* CONFIG_STACKTRACE */
104 };
105 
106 #define eeh_pe_for_each_dev(pe, edev, tmp) \
107 		list_for_each_entry_safe(edev, tmp, &pe->edevs, entry)
108 
109 #define eeh_for_each_pe(root, pe) \
110 	for (pe = root; pe; pe = eeh_pe_next(pe, root))
111 
112 static inline bool eeh_pe_passed(struct eeh_pe *pe)
113 {
114 	return pe ? !!atomic_read(&pe->pass_dev_cnt) : false;
115 }
116 
117 /*
118  * The struct is used to trace EEH state for the associated
119  * PCI device node or PCI device. In future, it might
120  * represent PE as well so that the EEH device to form
121  * another tree except the currently existing tree of PCI
122  * buses and PCI devices
123  */
124 #define EEH_DEV_BRIDGE		(1 << 0)	/* PCI bridge		*/
125 #define EEH_DEV_ROOT_PORT	(1 << 1)	/* PCIe root port	*/
126 #define EEH_DEV_DS_PORT		(1 << 2)	/* Downstream port	*/
127 #define EEH_DEV_IRQ_DISABLED	(1 << 3)	/* Interrupt disabled	*/
128 #define EEH_DEV_DISCONNECTED	(1 << 4)	/* Removing from PE	*/
129 
130 #define EEH_DEV_NO_HANDLER	(1 << 8)	/* No error handler	*/
131 #define EEH_DEV_SYSFS		(1 << 9)	/* Sysfs created	*/
132 #define EEH_DEV_REMOVED		(1 << 10)	/* Removed permanently	*/
133 
134 struct eeh_dev {
135 	int mode;			/* EEH mode			*/
136 	int class_code;			/* Class code of the device	*/
137 	int bdfn;			/* bdfn of device (for cfg ops) */
138 	struct pci_controller *controller;
139 	int pe_config_addr;		/* PE config address		*/
140 	u32 config_space[16];		/* Saved PCI config space	*/
141 	int pcix_cap;			/* Saved PCIx capability	*/
142 	int pcie_cap;			/* Saved PCIe capability	*/
143 	int aer_cap;			/* Saved AER capability		*/
144 	int af_cap;			/* Saved AF capability		*/
145 	struct eeh_pe *pe;		/* Associated PE		*/
146 	struct list_head entry;		/* Membership in eeh_pe.edevs	*/
147 	struct list_head rmv_entry;	/* Membership in rmv_list	*/
148 	struct pci_dn *pdn;		/* Associated PCI device node	*/
149 	struct pci_dev *pdev;		/* Associated PCI device	*/
150 	bool in_error;			/* Error flag for edev		*/
151 	struct pci_dev *physfn;		/* Associated SRIOV PF		*/
152 };
153 
154 /* "fmt" must be a simple literal string */
155 #define EEH_EDEV_PRINT(level, edev, fmt, ...) \
156 	pr_##level("PCI %04x:%02x:%02x.%x#%04x: EEH: " fmt, \
157 	(edev)->controller->global_number, PCI_BUSNO((edev)->bdfn), \
158 	PCI_SLOT((edev)->bdfn), PCI_FUNC((edev)->bdfn), \
159 	((edev)->pe ? (edev)->pe_config_addr : 0xffff), ##__VA_ARGS__)
160 #define eeh_edev_dbg(edev, fmt, ...) EEH_EDEV_PRINT(debug, (edev), fmt, ##__VA_ARGS__)
161 #define eeh_edev_info(edev, fmt, ...) EEH_EDEV_PRINT(info, (edev), fmt, ##__VA_ARGS__)
162 #define eeh_edev_warn(edev, fmt, ...) EEH_EDEV_PRINT(warn, (edev), fmt, ##__VA_ARGS__)
163 #define eeh_edev_err(edev, fmt, ...) EEH_EDEV_PRINT(err, (edev), fmt, ##__VA_ARGS__)
164 
165 static inline struct pci_dn *eeh_dev_to_pdn(struct eeh_dev *edev)
166 {
167 	return edev ? edev->pdn : NULL;
168 }
169 
170 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
171 {
172 	return edev ? edev->pdev : NULL;
173 }
174 
175 static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev)
176 {
177 	return edev ? edev->pe : NULL;
178 }
179 
180 /* Return values from eeh_ops::next_error */
181 enum {
182 	EEH_NEXT_ERR_NONE = 0,
183 	EEH_NEXT_ERR_INF,
184 	EEH_NEXT_ERR_FROZEN_PE,
185 	EEH_NEXT_ERR_FENCED_PHB,
186 	EEH_NEXT_ERR_DEAD_PHB,
187 	EEH_NEXT_ERR_DEAD_IOC
188 };
189 
190 /*
191  * The struct is used to trace the registered EEH operation
192  * callback functions. Actually, those operation callback
193  * functions are heavily platform dependent. That means the
194  * platform should register its own EEH operation callback
195  * functions before any EEH further operations.
196  */
197 #define EEH_OPT_DISABLE		0	/* EEH disable	*/
198 #define EEH_OPT_ENABLE		1	/* EEH enable	*/
199 #define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
200 #define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
201 #define EEH_OPT_FREEZE_PE	4	/* Freeze PE	*/
202 #define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
203 #define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
204 #define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
205 #define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
206 #define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
207 #define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
208 #define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
209 #define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
210 #define EEH_RESET_HOT		1	/* Hot reset			*/
211 #define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
212 #define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
213 #define EEH_LOG_PERM		2	/* EEH permanent error log	*/
214 
215 struct eeh_ops {
216 	char *name;
217 	int (*init)(void);
218 	void* (*probe)(struct pci_dn *pdn, void *data);
219 	int (*set_option)(struct eeh_pe *pe, int option);
220 	int (*get_pe_addr)(struct eeh_pe *pe);
221 	int (*get_state)(struct eeh_pe *pe, int *delay);
222 	int (*reset)(struct eeh_pe *pe, int option);
223 	int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
224 	int (*configure_bridge)(struct eeh_pe *pe);
225 	int (*err_inject)(struct eeh_pe *pe, int type, int func,
226 			  unsigned long addr, unsigned long mask);
227 	int (*read_config)(struct pci_dn *pdn, int where, int size, u32 *val);
228 	int (*write_config)(struct pci_dn *pdn, int where, int size, u32 val);
229 	int (*next_error)(struct eeh_pe **pe);
230 	int (*restore_config)(struct pci_dn *pdn);
231 	int (*notify_resume)(struct pci_dn *pdn);
232 };
233 
234 extern int eeh_subsystem_flags;
235 extern u32 eeh_max_freezes;
236 extern bool eeh_debugfs_no_recover;
237 extern struct eeh_ops *eeh_ops;
238 extern raw_spinlock_t confirm_error_lock;
239 
240 static inline void eeh_add_flag(int flag)
241 {
242 	eeh_subsystem_flags |= flag;
243 }
244 
245 static inline void eeh_clear_flag(int flag)
246 {
247 	eeh_subsystem_flags &= ~flag;
248 }
249 
250 static inline bool eeh_has_flag(int flag)
251 {
252         return !!(eeh_subsystem_flags & flag);
253 }
254 
255 static inline bool eeh_enabled(void)
256 {
257 	return eeh_has_flag(EEH_ENABLED) && !eeh_has_flag(EEH_FORCE_DISABLED);
258 }
259 
260 static inline void eeh_serialize_lock(unsigned long *flags)
261 {
262 	raw_spin_lock_irqsave(&confirm_error_lock, *flags);
263 }
264 
265 static inline void eeh_serialize_unlock(unsigned long flags)
266 {
267 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
268 }
269 
270 static inline bool eeh_state_active(int state)
271 {
272 	return (state & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE))
273 	== (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
274 }
275 
276 typedef void (*eeh_edev_traverse_func)(struct eeh_dev *edev, void *flag);
277 typedef void *(*eeh_pe_traverse_func)(struct eeh_pe *pe, void *flag);
278 void eeh_set_pe_aux_size(int size);
279 int eeh_phb_pe_create(struct pci_controller *phb);
280 int eeh_wait_state(struct eeh_pe *pe, int max_wait);
281 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
282 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root);
283 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
284 			  int pe_no, int config_addr);
285 int eeh_add_to_parent_pe(struct eeh_dev *edev);
286 int eeh_rmv_from_parent_pe(struct eeh_dev *edev);
287 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
288 void *eeh_pe_traverse(struct eeh_pe *root,
289 		      eeh_pe_traverse_func fn, void *flag);
290 void eeh_pe_dev_traverse(struct eeh_pe *root,
291 			 eeh_edev_traverse_func fn, void *flag);
292 void eeh_pe_restore_bars(struct eeh_pe *pe);
293 const char *eeh_pe_loc_get(struct eeh_pe *pe);
294 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
295 
296 struct eeh_dev *eeh_dev_init(struct pci_dn *pdn);
297 void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
298 void eeh_show_enabled(void);
299 int __init eeh_ops_register(struct eeh_ops *ops);
300 int __exit eeh_ops_unregister(const char *name);
301 int eeh_check_failure(const volatile void __iomem *token);
302 int eeh_dev_check_failure(struct eeh_dev *edev);
303 void eeh_addr_cache_init(void);
304 void eeh_add_device_early(struct pci_dn *);
305 void eeh_add_device_tree_early(struct pci_dn *);
306 void eeh_add_device_late(struct pci_dev *);
307 void eeh_add_device_tree_late(struct pci_bus *);
308 void eeh_add_sysfs_files(struct pci_bus *);
309 void eeh_remove_device(struct pci_dev *);
310 int eeh_unfreeze_pe(struct eeh_pe *pe);
311 int eeh_pe_reset_and_recover(struct eeh_pe *pe);
312 int eeh_dev_open(struct pci_dev *pdev);
313 void eeh_dev_release(struct pci_dev *pdev);
314 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group);
315 int eeh_pe_set_option(struct eeh_pe *pe, int option);
316 int eeh_pe_get_state(struct eeh_pe *pe);
317 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed);
318 int eeh_pe_configure(struct eeh_pe *pe);
319 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
320 		      unsigned long addr, unsigned long mask);
321 int eeh_restore_vf_config(struct pci_dn *pdn);
322 
323 /**
324  * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
325  *
326  * If this macro yields TRUE, the caller relays to eeh_check_failure()
327  * which does further tests out of line.
328  */
329 #define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_enabled())
330 
331 /*
332  * Reads from a device which has been isolated by EEH will return
333  * all 1s.  This macro gives an all-1s value of the given size (in
334  * bytes: 1, 2, or 4) for comparing with the result of a read.
335  */
336 #define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
337 
338 #else /* !CONFIG_EEH */
339 
340 static inline bool eeh_enabled(void)
341 {
342         return false;
343 }
344 
345 static inline void eeh_show_enabled(void) { }
346 
347 static inline void *eeh_dev_init(struct pci_dn *pdn, void *data)
348 {
349 	return NULL;
350 }
351 
352 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
353 
354 static inline int eeh_check_failure(const volatile void __iomem *token)
355 {
356 	return 0;
357 }
358 
359 #define eeh_dev_check_failure(x) (0)
360 
361 static inline void eeh_addr_cache_init(void) { }
362 
363 static inline void eeh_add_device_early(struct pci_dn *pdn) { }
364 
365 static inline void eeh_add_device_tree_early(struct pci_dn *pdn) { }
366 
367 static inline void eeh_add_device_late(struct pci_dev *dev) { }
368 
369 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
370 
371 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
372 
373 static inline void eeh_remove_device(struct pci_dev *dev) { }
374 
375 #define EEH_POSSIBLE_ERROR(val, type) (0)
376 #define EEH_IO_ERROR_VALUE(size) (-1UL)
377 #endif /* CONFIG_EEH */
378 
379 #ifdef CONFIG_PPC64
380 /*
381  * MMIO read/write operations with EEH support.
382  */
383 static inline u8 eeh_readb(const volatile void __iomem *addr)
384 {
385 	u8 val = in_8(addr);
386 	if (EEH_POSSIBLE_ERROR(val, u8))
387 		eeh_check_failure(addr);
388 	return val;
389 }
390 
391 static inline u16 eeh_readw(const volatile void __iomem *addr)
392 {
393 	u16 val = in_le16(addr);
394 	if (EEH_POSSIBLE_ERROR(val, u16))
395 		eeh_check_failure(addr);
396 	return val;
397 }
398 
399 static inline u32 eeh_readl(const volatile void __iomem *addr)
400 {
401 	u32 val = in_le32(addr);
402 	if (EEH_POSSIBLE_ERROR(val, u32))
403 		eeh_check_failure(addr);
404 	return val;
405 }
406 
407 static inline u64 eeh_readq(const volatile void __iomem *addr)
408 {
409 	u64 val = in_le64(addr);
410 	if (EEH_POSSIBLE_ERROR(val, u64))
411 		eeh_check_failure(addr);
412 	return val;
413 }
414 
415 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
416 {
417 	u16 val = in_be16(addr);
418 	if (EEH_POSSIBLE_ERROR(val, u16))
419 		eeh_check_failure(addr);
420 	return val;
421 }
422 
423 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
424 {
425 	u32 val = in_be32(addr);
426 	if (EEH_POSSIBLE_ERROR(val, u32))
427 		eeh_check_failure(addr);
428 	return val;
429 }
430 
431 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
432 {
433 	u64 val = in_be64(addr);
434 	if (EEH_POSSIBLE_ERROR(val, u64))
435 		eeh_check_failure(addr);
436 	return val;
437 }
438 
439 static inline void eeh_memcpy_fromio(void *dest, const
440 				     volatile void __iomem *src,
441 				     unsigned long n)
442 {
443 	_memcpy_fromio(dest, src, n);
444 
445 	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
446 	 * were copied. Check all four bytes.
447 	 */
448 	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
449 		eeh_check_failure(src);
450 }
451 
452 /* in-string eeh macros */
453 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
454 			      int ns)
455 {
456 	_insb(addr, buf, ns);
457 	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
458 		eeh_check_failure(addr);
459 }
460 
461 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
462 			      int ns)
463 {
464 	_insw(addr, buf, ns);
465 	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
466 		eeh_check_failure(addr);
467 }
468 
469 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
470 			      int nl)
471 {
472 	_insl(addr, buf, nl);
473 	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
474 		eeh_check_failure(addr);
475 }
476 
477 
478 void eeh_cache_debugfs_init(void);
479 
480 #endif /* CONFIG_PPC64 */
481 #endif /* __KERNEL__ */
482 #endif /* _POWERPC_EEH_H */
483