1 /* 2 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation. 3 * Copyright 2001-2012 IBM Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 #ifndef _POWERPC_EEH_H 21 #define _POWERPC_EEH_H 22 #ifdef __KERNEL__ 23 24 #include <linux/init.h> 25 #include <linux/list.h> 26 #include <linux/string.h> 27 #include <linux/time.h> 28 29 struct pci_dev; 30 struct pci_bus; 31 struct device_node; 32 33 #ifdef CONFIG_EEH 34 35 /* 36 * The struct is used to trace PE related EEH functionality. 37 * In theory, there will have one instance of the struct to 38 * be created against particular PE. In nature, PEs corelate 39 * to each other. the struct has to reflect that hierarchy in 40 * order to easily pick up those affected PEs when one particular 41 * PE has EEH errors. 42 * 43 * Also, one particular PE might be composed of PCI device, PCI 44 * bus and its subordinate components. The struct also need ship 45 * the information. Further more, one particular PE is only meaingful 46 * in the corresponding PHB. Therefore, the root PEs should be created 47 * against existing PHBs in on-to-one fashion. 48 */ 49 #define EEH_PE_INVALID (1 << 0) /* Invalid */ 50 #define EEH_PE_PHB (1 << 1) /* PHB PE */ 51 #define EEH_PE_DEVICE (1 << 2) /* Device PE */ 52 #define EEH_PE_BUS (1 << 3) /* Bus PE */ 53 54 #define EEH_PE_ISOLATED (1 << 0) /* Isolated PE */ 55 #define EEH_PE_RECOVERING (1 << 1) /* Recovering PE */ 56 #define EEH_PE_PHB_DEAD (1 << 2) /* Dead PHB */ 57 58 #define EEH_PE_KEEP (1 << 8) /* Keep PE on hotplug */ 59 60 struct eeh_pe { 61 int type; /* PE type: PHB/Bus/Device */ 62 int state; /* PE EEH dependent mode */ 63 int config_addr; /* Traditional PCI address */ 64 int addr; /* PE configuration address */ 65 struct pci_controller *phb; /* Associated PHB */ 66 struct pci_bus *bus; /* Top PCI bus for bus PE */ 67 int check_count; /* Times of ignored error */ 68 int freeze_count; /* Times of froze up */ 69 struct timeval tstamp; /* Time on first-time freeze */ 70 int false_positives; /* Times of reported #ff's */ 71 struct eeh_pe *parent; /* Parent PE */ 72 struct list_head child_list; /* Link PE to the child list */ 73 struct list_head edevs; /* Link list of EEH devices */ 74 struct list_head child; /* Child PEs */ 75 }; 76 77 #define eeh_pe_for_each_dev(pe, edev, tmp) \ 78 list_for_each_entry_safe(edev, tmp, &pe->edevs, list) 79 80 /* 81 * The struct is used to trace EEH state for the associated 82 * PCI device node or PCI device. In future, it might 83 * represent PE as well so that the EEH device to form 84 * another tree except the currently existing tree of PCI 85 * buses and PCI devices 86 */ 87 #define EEH_DEV_BRIDGE (1 << 0) /* PCI bridge */ 88 #define EEH_DEV_ROOT_PORT (1 << 1) /* PCIe root port */ 89 #define EEH_DEV_DS_PORT (1 << 2) /* Downstream port */ 90 #define EEH_DEV_IRQ_DISABLED (1 << 3) /* Interrupt disabled */ 91 #define EEH_DEV_DISCONNECTED (1 << 4) /* Removing from PE */ 92 93 #define EEH_DEV_NO_HANDLER (1 << 8) /* No error handler */ 94 #define EEH_DEV_SYSFS (1 << 9) /* Sysfs created */ 95 96 struct eeh_dev { 97 int mode; /* EEH mode */ 98 int class_code; /* Class code of the device */ 99 int config_addr; /* Config address */ 100 int pe_config_addr; /* PE config address */ 101 u32 config_space[16]; /* Saved PCI config space */ 102 u8 pcie_cap; /* Saved PCIe capability */ 103 struct eeh_pe *pe; /* Associated PE */ 104 struct list_head list; /* Form link list in the PE */ 105 struct pci_controller *phb; /* Associated PHB */ 106 struct device_node *dn; /* Associated device node */ 107 struct pci_dev *pdev; /* Associated PCI device */ 108 struct pci_bus *bus; /* PCI bus for partial hotplug */ 109 }; 110 111 static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev) 112 { 113 return edev ? edev->dn : NULL; 114 } 115 116 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev) 117 { 118 return edev ? edev->pdev : NULL; 119 } 120 121 /* Return values from eeh_ops::next_error */ 122 enum { 123 EEH_NEXT_ERR_NONE = 0, 124 EEH_NEXT_ERR_INF, 125 EEH_NEXT_ERR_FROZEN_PE, 126 EEH_NEXT_ERR_FENCED_PHB, 127 EEH_NEXT_ERR_DEAD_PHB, 128 EEH_NEXT_ERR_DEAD_IOC 129 }; 130 131 /* 132 * The struct is used to trace the registered EEH operation 133 * callback functions. Actually, those operation callback 134 * functions are heavily platform dependent. That means the 135 * platform should register its own EEH operation callback 136 * functions before any EEH further operations. 137 */ 138 #define EEH_OPT_DISABLE 0 /* EEH disable */ 139 #define EEH_OPT_ENABLE 1 /* EEH enable */ 140 #define EEH_OPT_THAW_MMIO 2 /* MMIO enable */ 141 #define EEH_OPT_THAW_DMA 3 /* DMA enable */ 142 #define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */ 143 #define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */ 144 #define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */ 145 #define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */ 146 #define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */ 147 #define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */ 148 #define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */ 149 #define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */ 150 #define EEH_RESET_HOT 1 /* Hot reset */ 151 #define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */ 152 #define EEH_LOG_TEMP 1 /* EEH temporary error log */ 153 #define EEH_LOG_PERM 2 /* EEH permanent error log */ 154 155 struct eeh_ops { 156 char *name; 157 int (*init)(void); 158 int (*post_init)(void); 159 void* (*of_probe)(struct device_node *dn, void *flag); 160 int (*dev_probe)(struct pci_dev *dev, void *flag); 161 int (*set_option)(struct eeh_pe *pe, int option); 162 int (*get_pe_addr)(struct eeh_pe *pe); 163 int (*get_state)(struct eeh_pe *pe, int *state); 164 int (*reset)(struct eeh_pe *pe, int option); 165 int (*wait_state)(struct eeh_pe *pe, int max_wait); 166 int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len); 167 int (*configure_bridge)(struct eeh_pe *pe); 168 int (*read_config)(struct device_node *dn, int where, int size, u32 *val); 169 int (*write_config)(struct device_node *dn, int where, int size, u32 val); 170 int (*next_error)(struct eeh_pe **pe); 171 int (*restore_config)(struct device_node *dn); 172 }; 173 174 extern struct eeh_ops *eeh_ops; 175 extern bool eeh_subsystem_enabled; 176 extern raw_spinlock_t confirm_error_lock; 177 extern int eeh_probe_mode; 178 179 static inline bool eeh_enabled(void) 180 { 181 return eeh_subsystem_enabled; 182 } 183 184 static inline void eeh_set_enable(bool mode) 185 { 186 eeh_subsystem_enabled = mode; 187 } 188 189 #define EEH_PROBE_MODE_DEV (1<<0) /* From PCI device */ 190 #define EEH_PROBE_MODE_DEVTREE (1<<1) /* From device tree */ 191 192 static inline void eeh_probe_mode_set(int flag) 193 { 194 eeh_probe_mode = flag; 195 } 196 197 static inline int eeh_probe_mode_devtree(void) 198 { 199 return (eeh_probe_mode == EEH_PROBE_MODE_DEVTREE); 200 } 201 202 static inline int eeh_probe_mode_dev(void) 203 { 204 return (eeh_probe_mode == EEH_PROBE_MODE_DEV); 205 } 206 207 static inline void eeh_serialize_lock(unsigned long *flags) 208 { 209 raw_spin_lock_irqsave(&confirm_error_lock, *flags); 210 } 211 212 static inline void eeh_serialize_unlock(unsigned long flags) 213 { 214 raw_spin_unlock_irqrestore(&confirm_error_lock, flags); 215 } 216 217 /* 218 * Max number of EEH freezes allowed before we consider the device 219 * to be permanently disabled. 220 */ 221 #define EEH_MAX_ALLOWED_FREEZES 5 222 223 typedef void *(*eeh_traverse_func)(void *data, void *flag); 224 int eeh_phb_pe_create(struct pci_controller *phb); 225 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb); 226 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev); 227 int eeh_add_to_parent_pe(struct eeh_dev *edev); 228 int eeh_rmv_from_parent_pe(struct eeh_dev *edev); 229 void eeh_pe_update_time_stamp(struct eeh_pe *pe); 230 void *eeh_pe_traverse(struct eeh_pe *root, 231 eeh_traverse_func fn, void *flag); 232 void *eeh_pe_dev_traverse(struct eeh_pe *root, 233 eeh_traverse_func fn, void *flag); 234 void eeh_pe_restore_bars(struct eeh_pe *pe); 235 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe); 236 237 void *eeh_dev_init(struct device_node *dn, void *data); 238 void eeh_dev_phb_init_dynamic(struct pci_controller *phb); 239 int eeh_init(void); 240 int __init eeh_ops_register(struct eeh_ops *ops); 241 int __exit eeh_ops_unregister(const char *name); 242 unsigned long eeh_check_failure(const volatile void __iomem *token, 243 unsigned long val); 244 int eeh_dev_check_failure(struct eeh_dev *edev); 245 void eeh_addr_cache_build(void); 246 void eeh_add_device_early(struct device_node *); 247 void eeh_add_device_tree_early(struct device_node *); 248 void eeh_add_device_late(struct pci_dev *); 249 void eeh_add_device_tree_late(struct pci_bus *); 250 void eeh_add_sysfs_files(struct pci_bus *); 251 void eeh_remove_device(struct pci_dev *); 252 253 /** 254 * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure. 255 * 256 * If this macro yields TRUE, the caller relays to eeh_check_failure() 257 * which does further tests out of line. 258 */ 259 #define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_enabled()) 260 261 /* 262 * Reads from a device which has been isolated by EEH will return 263 * all 1s. This macro gives an all-1s value of the given size (in 264 * bytes: 1, 2, or 4) for comparing with the result of a read. 265 */ 266 #define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8)) 267 268 #else /* !CONFIG_EEH */ 269 270 static inline bool eeh_enabled(void) 271 { 272 return false; 273 } 274 275 static inline void eeh_set_enable(bool mode) { } 276 277 static inline int eeh_init(void) 278 { 279 return 0; 280 } 281 282 static inline void *eeh_dev_init(struct device_node *dn, void *data) 283 { 284 return NULL; 285 } 286 287 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { } 288 289 static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val) 290 { 291 return val; 292 } 293 294 #define eeh_dev_check_failure(x) (0) 295 296 static inline void eeh_addr_cache_build(void) { } 297 298 static inline void eeh_add_device_early(struct device_node *dn) { } 299 300 static inline void eeh_add_device_tree_early(struct device_node *dn) { } 301 302 static inline void eeh_add_device_late(struct pci_dev *dev) { } 303 304 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { } 305 306 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { } 307 308 static inline void eeh_remove_device(struct pci_dev *dev) { } 309 310 #define EEH_POSSIBLE_ERROR(val, type) (0) 311 #define EEH_IO_ERROR_VALUE(size) (-1UL) 312 #endif /* CONFIG_EEH */ 313 314 #ifdef CONFIG_PPC64 315 /* 316 * MMIO read/write operations with EEH support. 317 */ 318 static inline u8 eeh_readb(const volatile void __iomem *addr) 319 { 320 u8 val = in_8(addr); 321 if (EEH_POSSIBLE_ERROR(val, u8)) 322 return eeh_check_failure(addr, val); 323 return val; 324 } 325 326 static inline u16 eeh_readw(const volatile void __iomem *addr) 327 { 328 u16 val = in_le16(addr); 329 if (EEH_POSSIBLE_ERROR(val, u16)) 330 return eeh_check_failure(addr, val); 331 return val; 332 } 333 334 static inline u32 eeh_readl(const volatile void __iomem *addr) 335 { 336 u32 val = in_le32(addr); 337 if (EEH_POSSIBLE_ERROR(val, u32)) 338 return eeh_check_failure(addr, val); 339 return val; 340 } 341 342 static inline u64 eeh_readq(const volatile void __iomem *addr) 343 { 344 u64 val = in_le64(addr); 345 if (EEH_POSSIBLE_ERROR(val, u64)) 346 return eeh_check_failure(addr, val); 347 return val; 348 } 349 350 static inline u16 eeh_readw_be(const volatile void __iomem *addr) 351 { 352 u16 val = in_be16(addr); 353 if (EEH_POSSIBLE_ERROR(val, u16)) 354 return eeh_check_failure(addr, val); 355 return val; 356 } 357 358 static inline u32 eeh_readl_be(const volatile void __iomem *addr) 359 { 360 u32 val = in_be32(addr); 361 if (EEH_POSSIBLE_ERROR(val, u32)) 362 return eeh_check_failure(addr, val); 363 return val; 364 } 365 366 static inline u64 eeh_readq_be(const volatile void __iomem *addr) 367 { 368 u64 val = in_be64(addr); 369 if (EEH_POSSIBLE_ERROR(val, u64)) 370 return eeh_check_failure(addr, val); 371 return val; 372 } 373 374 static inline void eeh_memcpy_fromio(void *dest, const 375 volatile void __iomem *src, 376 unsigned long n) 377 { 378 _memcpy_fromio(dest, src, n); 379 380 /* Look for ffff's here at dest[n]. Assume that at least 4 bytes 381 * were copied. Check all four bytes. 382 */ 383 if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32)) 384 eeh_check_failure(src, *((u32 *)(dest + n - 4))); 385 } 386 387 /* in-string eeh macros */ 388 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf, 389 int ns) 390 { 391 _insb(addr, buf, ns); 392 if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8)) 393 eeh_check_failure(addr, *(u8*)buf); 394 } 395 396 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf, 397 int ns) 398 { 399 _insw(addr, buf, ns); 400 if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16)) 401 eeh_check_failure(addr, *(u16*)buf); 402 } 403 404 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf, 405 int nl) 406 { 407 _insl(addr, buf, nl); 408 if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32)) 409 eeh_check_failure(addr, *(u32*)buf); 410 } 411 412 #endif /* CONFIG_PPC64 */ 413 #endif /* __KERNEL__ */ 414 #endif /* _POWERPC_EEH_H */ 415