xref: /openbmc/linux/arch/powerpc/include/asm/eeh.h (revision 367e5927)
1 /*
2  * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
3  * Copyright 2001-2012 IBM Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #ifndef _POWERPC_EEH_H
21 #define _POWERPC_EEH_H
22 #ifdef __KERNEL__
23 
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 #include <linux/time.h>
28 #include <linux/atomic.h>
29 
30 #include <uapi/asm/eeh.h>
31 
32 struct pci_dev;
33 struct pci_bus;
34 struct pci_dn;
35 
36 #ifdef CONFIG_EEH
37 
38 /* EEH subsystem flags */
39 #define EEH_ENABLED		0x01	/* EEH enabled			     */
40 #define EEH_FORCE_DISABLED	0x02	/* EEH disabled			     */
41 #define EEH_PROBE_MODE_DEV	0x04	/* From PCI device		     */
42 #define EEH_PROBE_MODE_DEVTREE	0x08	/* From device tree		     */
43 #define EEH_VALID_PE_ZERO	0x10	/* PE#0 is valid		     */
44 #define EEH_ENABLE_IO_FOR_LOG	0x20	/* Enable IO for log		     */
45 #define EEH_EARLY_DUMP_LOG	0x40	/* Dump log immediately		     */
46 
47 /*
48  * Delay for PE reset, all in ms
49  *
50  * PCI specification has reset hold time of 100 milliseconds.
51  * We have 250 milliseconds here. The PCI bus settlement time
52  * is specified as 1.5 seconds and we have 1.8 seconds.
53  */
54 #define EEH_PE_RST_HOLD_TIME		250
55 #define EEH_PE_RST_SETTLE_TIME		1800
56 
57 /*
58  * The struct is used to trace PE related EEH functionality.
59  * In theory, there will have one instance of the struct to
60  * be created against particular PE. In nature, PEs correlate
61  * to each other. the struct has to reflect that hierarchy in
62  * order to easily pick up those affected PEs when one particular
63  * PE has EEH errors.
64  *
65  * Also, one particular PE might be composed of PCI device, PCI
66  * bus and its subordinate components. The struct also need ship
67  * the information. Further more, one particular PE is only meaingful
68  * in the corresponding PHB. Therefore, the root PEs should be created
69  * against existing PHBs in on-to-one fashion.
70  */
71 #define EEH_PE_INVALID	(1 << 0)	/* Invalid   */
72 #define EEH_PE_PHB	(1 << 1)	/* PHB PE    */
73 #define EEH_PE_DEVICE 	(1 << 2)	/* Device PE */
74 #define EEH_PE_BUS	(1 << 3)	/* Bus PE    */
75 #define EEH_PE_VF	(1 << 4)	/* VF PE     */
76 
77 #define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
78 #define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
79 #define EEH_PE_CFG_BLOCKED	(1 << 2)	/* Block config access	*/
80 #define EEH_PE_RESET		(1 << 3)	/* PE reset in progress */
81 
82 #define EEH_PE_KEEP		(1 << 8)	/* Keep PE on hotplug	*/
83 #define EEH_PE_CFG_RESTRICTED	(1 << 9)	/* Block config on error */
84 #define EEH_PE_REMOVED		(1 << 10)	/* Removed permanently	*/
85 #define EEH_PE_PRI_BUS		(1 << 11)	/* Cached primary bus   */
86 
87 struct eeh_pe {
88 	int type;			/* PE type: PHB/Bus/Device	*/
89 	int state;			/* PE EEH dependent mode	*/
90 	int config_addr;		/* Traditional PCI address	*/
91 	int addr;			/* PE configuration address	*/
92 	struct pci_controller *phb;	/* Associated PHB		*/
93 	struct pci_bus *bus;		/* Top PCI bus for bus PE	*/
94 	int check_count;		/* Times of ignored error	*/
95 	int freeze_count;		/* Times of froze up		*/
96 	time64_t tstamp;		/* Time on first-time freeze	*/
97 	int false_positives;		/* Times of reported #ff's	*/
98 	atomic_t pass_dev_cnt;		/* Count of passed through devs	*/
99 	struct eeh_pe *parent;		/* Parent PE			*/
100 	void *data;			/* PE auxillary data		*/
101 	struct list_head child_list;	/* List of PEs below this PE	*/
102 	struct list_head child;		/* Memb. child_list/eeh_phb_pe	*/
103 	struct list_head edevs;		/* List of eeh_dev in this PE	*/
104 };
105 
106 #define eeh_pe_for_each_dev(pe, edev, tmp) \
107 		list_for_each_entry_safe(edev, tmp, &pe->edevs, entry)
108 
109 #define eeh_for_each_pe(root, pe) \
110 	for (pe = root; pe; pe = eeh_pe_next(pe, root))
111 
112 static inline bool eeh_pe_passed(struct eeh_pe *pe)
113 {
114 	return pe ? !!atomic_read(&pe->pass_dev_cnt) : false;
115 }
116 
117 /*
118  * The struct is used to trace EEH state for the associated
119  * PCI device node or PCI device. In future, it might
120  * represent PE as well so that the EEH device to form
121  * another tree except the currently existing tree of PCI
122  * buses and PCI devices
123  */
124 #define EEH_DEV_BRIDGE		(1 << 0)	/* PCI bridge		*/
125 #define EEH_DEV_ROOT_PORT	(1 << 1)	/* PCIe root port	*/
126 #define EEH_DEV_DS_PORT		(1 << 2)	/* Downstream port	*/
127 #define EEH_DEV_IRQ_DISABLED	(1 << 3)	/* Interrupt disabled	*/
128 #define EEH_DEV_DISCONNECTED	(1 << 4)	/* Removing from PE	*/
129 
130 #define EEH_DEV_NO_HANDLER	(1 << 8)	/* No error handler	*/
131 #define EEH_DEV_SYSFS		(1 << 9)	/* Sysfs created	*/
132 #define EEH_DEV_REMOVED		(1 << 10)	/* Removed permanently	*/
133 
134 struct eeh_dev {
135 	int mode;			/* EEH mode			*/
136 	int class_code;			/* Class code of the device	*/
137 	int pe_config_addr;		/* PE config address		*/
138 	u32 config_space[16];		/* Saved PCI config space	*/
139 	int pcix_cap;			/* Saved PCIx capability	*/
140 	int pcie_cap;			/* Saved PCIe capability	*/
141 	int aer_cap;			/* Saved AER capability		*/
142 	int af_cap;			/* Saved AF capability		*/
143 	struct eeh_pe *pe;		/* Associated PE		*/
144 	struct list_head entry;		/* Membership in eeh_pe.edevs	*/
145 	struct list_head rmv_entry;	/* Membership in rmv_list	*/
146 	struct pci_dn *pdn;		/* Associated PCI device node	*/
147 	struct pci_dev *pdev;		/* Associated PCI device	*/
148 	bool in_error;			/* Error flag for edev		*/
149 	struct pci_dev *physfn;		/* Associated SRIOV PF		*/
150 };
151 
152 static inline struct pci_dn *eeh_dev_to_pdn(struct eeh_dev *edev)
153 {
154 	return edev ? edev->pdn : NULL;
155 }
156 
157 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
158 {
159 	return edev ? edev->pdev : NULL;
160 }
161 
162 static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev)
163 {
164 	return edev ? edev->pe : NULL;
165 }
166 
167 /* Return values from eeh_ops::next_error */
168 enum {
169 	EEH_NEXT_ERR_NONE = 0,
170 	EEH_NEXT_ERR_INF,
171 	EEH_NEXT_ERR_FROZEN_PE,
172 	EEH_NEXT_ERR_FENCED_PHB,
173 	EEH_NEXT_ERR_DEAD_PHB,
174 	EEH_NEXT_ERR_DEAD_IOC
175 };
176 
177 /*
178  * The struct is used to trace the registered EEH operation
179  * callback functions. Actually, those operation callback
180  * functions are heavily platform dependent. That means the
181  * platform should register its own EEH operation callback
182  * functions before any EEH further operations.
183  */
184 #define EEH_OPT_DISABLE		0	/* EEH disable	*/
185 #define EEH_OPT_ENABLE		1	/* EEH enable	*/
186 #define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
187 #define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
188 #define EEH_OPT_FREEZE_PE	4	/* Freeze PE	*/
189 #define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
190 #define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
191 #define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
192 #define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
193 #define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
194 #define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
195 #define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
196 #define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
197 #define EEH_RESET_HOT		1	/* Hot reset			*/
198 #define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
199 #define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
200 #define EEH_LOG_PERM		2	/* EEH permanent error log	*/
201 
202 struct eeh_ops {
203 	char *name;
204 	int (*init)(void);
205 	void* (*probe)(struct pci_dn *pdn, void *data);
206 	int (*set_option)(struct eeh_pe *pe, int option);
207 	int (*get_pe_addr)(struct eeh_pe *pe);
208 	int (*get_state)(struct eeh_pe *pe, int *delay);
209 	int (*reset)(struct eeh_pe *pe, int option);
210 	int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
211 	int (*configure_bridge)(struct eeh_pe *pe);
212 	int (*err_inject)(struct eeh_pe *pe, int type, int func,
213 			  unsigned long addr, unsigned long mask);
214 	int (*read_config)(struct pci_dn *pdn, int where, int size, u32 *val);
215 	int (*write_config)(struct pci_dn *pdn, int where, int size, u32 val);
216 	int (*next_error)(struct eeh_pe **pe);
217 	int (*restore_config)(struct pci_dn *pdn);
218 	int (*notify_resume)(struct pci_dn *pdn);
219 };
220 
221 extern int eeh_subsystem_flags;
222 extern u32 eeh_max_freezes;
223 extern bool eeh_debugfs_no_recover;
224 extern struct eeh_ops *eeh_ops;
225 extern raw_spinlock_t confirm_error_lock;
226 
227 static inline void eeh_add_flag(int flag)
228 {
229 	eeh_subsystem_flags |= flag;
230 }
231 
232 static inline void eeh_clear_flag(int flag)
233 {
234 	eeh_subsystem_flags &= ~flag;
235 }
236 
237 static inline bool eeh_has_flag(int flag)
238 {
239         return !!(eeh_subsystem_flags & flag);
240 }
241 
242 static inline bool eeh_enabled(void)
243 {
244 	return eeh_has_flag(EEH_ENABLED) && !eeh_has_flag(EEH_FORCE_DISABLED);
245 }
246 
247 static inline void eeh_serialize_lock(unsigned long *flags)
248 {
249 	raw_spin_lock_irqsave(&confirm_error_lock, *flags);
250 }
251 
252 static inline void eeh_serialize_unlock(unsigned long flags)
253 {
254 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
255 }
256 
257 static inline bool eeh_state_active(int state)
258 {
259 	return (state & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE))
260 	== (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
261 }
262 
263 typedef void *(*eeh_edev_traverse_func)(struct eeh_dev *edev, void *flag);
264 typedef void *(*eeh_pe_traverse_func)(struct eeh_pe *pe, void *flag);
265 void eeh_set_pe_aux_size(int size);
266 int eeh_phb_pe_create(struct pci_controller *phb);
267 int eeh_wait_state(struct eeh_pe *pe, int max_wait);
268 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
269 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root);
270 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
271 			  int pe_no, int config_addr);
272 int eeh_add_to_parent_pe(struct eeh_dev *edev);
273 int eeh_rmv_from_parent_pe(struct eeh_dev *edev);
274 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
275 void *eeh_pe_traverse(struct eeh_pe *root,
276 		      eeh_pe_traverse_func fn, void *flag);
277 void *eeh_pe_dev_traverse(struct eeh_pe *root,
278 			  eeh_edev_traverse_func fn, void *flag);
279 void eeh_pe_restore_bars(struct eeh_pe *pe);
280 const char *eeh_pe_loc_get(struct eeh_pe *pe);
281 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
282 
283 struct eeh_dev *eeh_dev_init(struct pci_dn *pdn);
284 void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
285 void eeh_probe_devices(void);
286 int __init eeh_ops_register(struct eeh_ops *ops);
287 int __exit eeh_ops_unregister(const char *name);
288 int eeh_check_failure(const volatile void __iomem *token);
289 int eeh_dev_check_failure(struct eeh_dev *edev);
290 void eeh_addr_cache_build(void);
291 void eeh_add_device_early(struct pci_dn *);
292 void eeh_add_device_tree_early(struct pci_dn *);
293 void eeh_add_device_late(struct pci_dev *);
294 void eeh_add_device_tree_late(struct pci_bus *);
295 void eeh_add_sysfs_files(struct pci_bus *);
296 void eeh_remove_device(struct pci_dev *);
297 int eeh_unfreeze_pe(struct eeh_pe *pe);
298 int eeh_pe_reset_and_recover(struct eeh_pe *pe);
299 int eeh_dev_open(struct pci_dev *pdev);
300 void eeh_dev_release(struct pci_dev *pdev);
301 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group);
302 int eeh_pe_set_option(struct eeh_pe *pe, int option);
303 int eeh_pe_get_state(struct eeh_pe *pe);
304 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed);
305 int eeh_pe_configure(struct eeh_pe *pe);
306 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
307 		      unsigned long addr, unsigned long mask);
308 int eeh_restore_vf_config(struct pci_dn *pdn);
309 
310 /**
311  * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
312  *
313  * If this macro yields TRUE, the caller relays to eeh_check_failure()
314  * which does further tests out of line.
315  */
316 #define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_enabled())
317 
318 /*
319  * Reads from a device which has been isolated by EEH will return
320  * all 1s.  This macro gives an all-1s value of the given size (in
321  * bytes: 1, 2, or 4) for comparing with the result of a read.
322  */
323 #define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
324 
325 #else /* !CONFIG_EEH */
326 
327 static inline bool eeh_enabled(void)
328 {
329         return false;
330 }
331 
332 static inline void eeh_probe_devices(void) { }
333 
334 static inline void *eeh_dev_init(struct pci_dn *pdn, void *data)
335 {
336 	return NULL;
337 }
338 
339 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
340 
341 static inline int eeh_check_failure(const volatile void __iomem *token)
342 {
343 	return 0;
344 }
345 
346 #define eeh_dev_check_failure(x) (0)
347 
348 static inline void eeh_addr_cache_build(void) { }
349 
350 static inline void eeh_add_device_early(struct pci_dn *pdn) { }
351 
352 static inline void eeh_add_device_tree_early(struct pci_dn *pdn) { }
353 
354 static inline void eeh_add_device_late(struct pci_dev *dev) { }
355 
356 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
357 
358 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
359 
360 static inline void eeh_remove_device(struct pci_dev *dev) { }
361 
362 #define EEH_POSSIBLE_ERROR(val, type) (0)
363 #define EEH_IO_ERROR_VALUE(size) (-1UL)
364 #endif /* CONFIG_EEH */
365 
366 #ifdef CONFIG_PPC64
367 /*
368  * MMIO read/write operations with EEH support.
369  */
370 static inline u8 eeh_readb(const volatile void __iomem *addr)
371 {
372 	u8 val = in_8(addr);
373 	if (EEH_POSSIBLE_ERROR(val, u8))
374 		eeh_check_failure(addr);
375 	return val;
376 }
377 
378 static inline u16 eeh_readw(const volatile void __iomem *addr)
379 {
380 	u16 val = in_le16(addr);
381 	if (EEH_POSSIBLE_ERROR(val, u16))
382 		eeh_check_failure(addr);
383 	return val;
384 }
385 
386 static inline u32 eeh_readl(const volatile void __iomem *addr)
387 {
388 	u32 val = in_le32(addr);
389 	if (EEH_POSSIBLE_ERROR(val, u32))
390 		eeh_check_failure(addr);
391 	return val;
392 }
393 
394 static inline u64 eeh_readq(const volatile void __iomem *addr)
395 {
396 	u64 val = in_le64(addr);
397 	if (EEH_POSSIBLE_ERROR(val, u64))
398 		eeh_check_failure(addr);
399 	return val;
400 }
401 
402 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
403 {
404 	u16 val = in_be16(addr);
405 	if (EEH_POSSIBLE_ERROR(val, u16))
406 		eeh_check_failure(addr);
407 	return val;
408 }
409 
410 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
411 {
412 	u32 val = in_be32(addr);
413 	if (EEH_POSSIBLE_ERROR(val, u32))
414 		eeh_check_failure(addr);
415 	return val;
416 }
417 
418 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
419 {
420 	u64 val = in_be64(addr);
421 	if (EEH_POSSIBLE_ERROR(val, u64))
422 		eeh_check_failure(addr);
423 	return val;
424 }
425 
426 static inline void eeh_memcpy_fromio(void *dest, const
427 				     volatile void __iomem *src,
428 				     unsigned long n)
429 {
430 	_memcpy_fromio(dest, src, n);
431 
432 	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
433 	 * were copied. Check all four bytes.
434 	 */
435 	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
436 		eeh_check_failure(src);
437 }
438 
439 /* in-string eeh macros */
440 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
441 			      int ns)
442 {
443 	_insb(addr, buf, ns);
444 	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
445 		eeh_check_failure(addr);
446 }
447 
448 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
449 			      int ns)
450 {
451 	_insw(addr, buf, ns);
452 	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
453 		eeh_check_failure(addr);
454 }
455 
456 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
457 			      int nl)
458 {
459 	_insl(addr, buf, nl);
460 	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
461 		eeh_check_failure(addr);
462 }
463 
464 
465 void eeh_cache_debugfs_init(void);
466 
467 #endif /* CONFIG_PPC64 */
468 #endif /* __KERNEL__ */
469 #endif /* _POWERPC_EEH_H */
470