xref: /openbmc/linux/arch/powerpc/include/asm/eeh.h (revision 12eb4683)
1 /*
2  * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
3  * Copyright 2001-2012 IBM Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #ifndef _POWERPC_EEH_H
21 #define _POWERPC_EEH_H
22 #ifdef __KERNEL__
23 
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 #include <linux/time.h>
28 
29 struct pci_dev;
30 struct pci_bus;
31 struct device_node;
32 
33 #ifdef CONFIG_EEH
34 
35 /*
36  * The struct is used to trace PE related EEH functionality.
37  * In theory, there will have one instance of the struct to
38  * be created against particular PE. In nature, PEs corelate
39  * to each other. the struct has to reflect that hierarchy in
40  * order to easily pick up those affected PEs when one particular
41  * PE has EEH errors.
42  *
43  * Also, one particular PE might be composed of PCI device, PCI
44  * bus and its subordinate components. The struct also need ship
45  * the information. Further more, one particular PE is only meaingful
46  * in the corresponding PHB. Therefore, the root PEs should be created
47  * against existing PHBs in on-to-one fashion.
48  */
49 #define EEH_PE_INVALID	(1 << 0)	/* Invalid   */
50 #define EEH_PE_PHB	(1 << 1)	/* PHB PE    */
51 #define EEH_PE_DEVICE 	(1 << 2)	/* Device PE */
52 #define EEH_PE_BUS	(1 << 3)	/* Bus PE    */
53 
54 #define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
55 #define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
56 #define EEH_PE_PHB_DEAD		(1 << 2)	/* Dead PHB		*/
57 
58 #define EEH_PE_KEEP		(1 << 8)	/* Keep PE on hotplug	*/
59 
60 struct eeh_pe {
61 	int type;			/* PE type: PHB/Bus/Device	*/
62 	int state;			/* PE EEH dependent mode	*/
63 	int config_addr;		/* Traditional PCI address	*/
64 	int addr;			/* PE configuration address	*/
65 	struct pci_controller *phb;	/* Associated PHB		*/
66 	struct pci_bus *bus;		/* Top PCI bus for bus PE	*/
67 	int check_count;		/* Times of ignored error	*/
68 	int freeze_count;		/* Times of froze up		*/
69 	struct timeval tstamp;		/* Time on first-time freeze	*/
70 	int false_positives;		/* Times of reported #ff's	*/
71 	struct eeh_pe *parent;		/* Parent PE			*/
72 	struct list_head child_list;	/* Link PE to the child list	*/
73 	struct list_head edevs;		/* Link list of EEH devices	*/
74 	struct list_head child;		/* Child PEs			*/
75 };
76 
77 #define eeh_pe_for_each_dev(pe, edev, tmp) \
78 		list_for_each_entry_safe(edev, tmp, &pe->edevs, list)
79 
80 /*
81  * The struct is used to trace EEH state for the associated
82  * PCI device node or PCI device. In future, it might
83  * represent PE as well so that the EEH device to form
84  * another tree except the currently existing tree of PCI
85  * buses and PCI devices
86  */
87 #define EEH_DEV_BRIDGE		(1 << 0)	/* PCI bridge		*/
88 #define EEH_DEV_ROOT_PORT	(1 << 1)	/* PCIe root port	*/
89 #define EEH_DEV_DS_PORT		(1 << 2)	/* Downstream port	*/
90 #define EEH_DEV_IRQ_DISABLED	(1 << 3)	/* Interrupt disabled	*/
91 #define EEH_DEV_DISCONNECTED	(1 << 4)	/* Removing from PE	*/
92 
93 #define EEH_DEV_SYSFS		(1 << 8)	/* Sysfs created        */
94 
95 struct eeh_dev {
96 	int mode;			/* EEH mode			*/
97 	int class_code;			/* Class code of the device	*/
98 	int config_addr;		/* Config address		*/
99 	int pe_config_addr;		/* PE config address		*/
100 	u32 config_space[16];		/* Saved PCI config space	*/
101 	u8 pcie_cap;			/* Saved PCIe capability	*/
102 	struct eeh_pe *pe;		/* Associated PE		*/
103 	struct list_head list;		/* Form link list in the PE	*/
104 	struct pci_controller *phb;	/* Associated PHB		*/
105 	struct device_node *dn;		/* Associated device node	*/
106 	struct pci_dev *pdev;		/* Associated PCI device	*/
107 	struct pci_bus *bus;		/* PCI bus for partial hotplug	*/
108 };
109 
110 static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev)
111 {
112 	return edev ? edev->dn : NULL;
113 }
114 
115 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
116 {
117 	return edev ? edev->pdev : NULL;
118 }
119 
120 /*
121  * The struct is used to trace the registered EEH operation
122  * callback functions. Actually, those operation callback
123  * functions are heavily platform dependent. That means the
124  * platform should register its own EEH operation callback
125  * functions before any EEH further operations.
126  */
127 #define EEH_OPT_DISABLE		0	/* EEH disable	*/
128 #define EEH_OPT_ENABLE		1	/* EEH enable	*/
129 #define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
130 #define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
131 #define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
132 #define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
133 #define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
134 #define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
135 #define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
136 #define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
137 #define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
138 #define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
139 #define EEH_RESET_HOT		1	/* Hot reset			*/
140 #define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
141 #define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
142 #define EEH_LOG_PERM		2	/* EEH permanent error log	*/
143 
144 struct eeh_ops {
145 	char *name;
146 	int (*init)(void);
147 	int (*post_init)(void);
148 	void* (*of_probe)(struct device_node *dn, void *flag);
149 	int (*dev_probe)(struct pci_dev *dev, void *flag);
150 	int (*set_option)(struct eeh_pe *pe, int option);
151 	int (*get_pe_addr)(struct eeh_pe *pe);
152 	int (*get_state)(struct eeh_pe *pe, int *state);
153 	int (*reset)(struct eeh_pe *pe, int option);
154 	int (*wait_state)(struct eeh_pe *pe, int max_wait);
155 	int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
156 	int (*configure_bridge)(struct eeh_pe *pe);
157 	int (*read_config)(struct device_node *dn, int where, int size, u32 *val);
158 	int (*write_config)(struct device_node *dn, int where, int size, u32 val);
159 	int (*next_error)(struct eeh_pe **pe);
160 };
161 
162 extern struct eeh_ops *eeh_ops;
163 extern int eeh_subsystem_enabled;
164 extern raw_spinlock_t confirm_error_lock;
165 extern int eeh_probe_mode;
166 
167 #define EEH_PROBE_MODE_DEV	(1<<0)	/* From PCI device	*/
168 #define EEH_PROBE_MODE_DEVTREE	(1<<1)	/* From device tree	*/
169 
170 static inline void eeh_probe_mode_set(int flag)
171 {
172 	eeh_probe_mode = flag;
173 }
174 
175 static inline int eeh_probe_mode_devtree(void)
176 {
177 	return (eeh_probe_mode == EEH_PROBE_MODE_DEVTREE);
178 }
179 
180 static inline int eeh_probe_mode_dev(void)
181 {
182 	return (eeh_probe_mode == EEH_PROBE_MODE_DEV);
183 }
184 
185 static inline void eeh_serialize_lock(unsigned long *flags)
186 {
187 	raw_spin_lock_irqsave(&confirm_error_lock, *flags);
188 }
189 
190 static inline void eeh_serialize_unlock(unsigned long flags)
191 {
192 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
193 }
194 
195 /*
196  * Max number of EEH freezes allowed before we consider the device
197  * to be permanently disabled.
198  */
199 #define EEH_MAX_ALLOWED_FREEZES 5
200 
201 typedef void *(*eeh_traverse_func)(void *data, void *flag);
202 int eeh_phb_pe_create(struct pci_controller *phb);
203 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
204 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev);
205 int eeh_add_to_parent_pe(struct eeh_dev *edev);
206 int eeh_rmv_from_parent_pe(struct eeh_dev *edev);
207 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
208 void *eeh_pe_traverse(struct eeh_pe *root,
209 		eeh_traverse_func fn, void *flag);
210 void *eeh_pe_dev_traverse(struct eeh_pe *root,
211 		eeh_traverse_func fn, void *flag);
212 void eeh_pe_restore_bars(struct eeh_pe *pe);
213 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
214 
215 void *eeh_dev_init(struct device_node *dn, void *data);
216 void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
217 int eeh_init(void);
218 int __init eeh_ops_register(struct eeh_ops *ops);
219 int __exit eeh_ops_unregister(const char *name);
220 unsigned long eeh_check_failure(const volatile void __iomem *token,
221 				unsigned long val);
222 int eeh_dev_check_failure(struct eeh_dev *edev);
223 void eeh_addr_cache_build(void);
224 void eeh_add_device_early(struct device_node *);
225 void eeh_add_device_tree_early(struct device_node *);
226 void eeh_add_device_late(struct pci_dev *);
227 void eeh_add_device_tree_late(struct pci_bus *);
228 void eeh_add_sysfs_files(struct pci_bus *);
229 void eeh_remove_device(struct pci_dev *);
230 
231 /**
232  * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
233  *
234  * If this macro yields TRUE, the caller relays to eeh_check_failure()
235  * which does further tests out of line.
236  */
237 #define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_subsystem_enabled)
238 
239 /*
240  * Reads from a device which has been isolated by EEH will return
241  * all 1s.  This macro gives an all-1s value of the given size (in
242  * bytes: 1, 2, or 4) for comparing with the result of a read.
243  */
244 #define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
245 
246 #else /* !CONFIG_EEH */
247 
248 static inline int eeh_init(void)
249 {
250 	return 0;
251 }
252 
253 static inline void *eeh_dev_init(struct device_node *dn, void *data)
254 {
255 	return NULL;
256 }
257 
258 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
259 
260 static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
261 {
262 	return val;
263 }
264 
265 #define eeh_dev_check_failure(x) (0)
266 
267 static inline void eeh_addr_cache_build(void) { }
268 
269 static inline void eeh_add_device_early(struct device_node *dn) { }
270 
271 static inline void eeh_add_device_tree_early(struct device_node *dn) { }
272 
273 static inline void eeh_add_device_late(struct pci_dev *dev) { }
274 
275 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
276 
277 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
278 
279 static inline void eeh_remove_device(struct pci_dev *dev) { }
280 
281 #define EEH_POSSIBLE_ERROR(val, type) (0)
282 #define EEH_IO_ERROR_VALUE(size) (-1UL)
283 #endif /* CONFIG_EEH */
284 
285 #ifdef CONFIG_PPC64
286 /*
287  * MMIO read/write operations with EEH support.
288  */
289 static inline u8 eeh_readb(const volatile void __iomem *addr)
290 {
291 	u8 val = in_8(addr);
292 	if (EEH_POSSIBLE_ERROR(val, u8))
293 		return eeh_check_failure(addr, val);
294 	return val;
295 }
296 
297 static inline u16 eeh_readw(const volatile void __iomem *addr)
298 {
299 	u16 val = in_le16(addr);
300 	if (EEH_POSSIBLE_ERROR(val, u16))
301 		return eeh_check_failure(addr, val);
302 	return val;
303 }
304 
305 static inline u32 eeh_readl(const volatile void __iomem *addr)
306 {
307 	u32 val = in_le32(addr);
308 	if (EEH_POSSIBLE_ERROR(val, u32))
309 		return eeh_check_failure(addr, val);
310 	return val;
311 }
312 
313 static inline u64 eeh_readq(const volatile void __iomem *addr)
314 {
315 	u64 val = in_le64(addr);
316 	if (EEH_POSSIBLE_ERROR(val, u64))
317 		return eeh_check_failure(addr, val);
318 	return val;
319 }
320 
321 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
322 {
323 	u16 val = in_be16(addr);
324 	if (EEH_POSSIBLE_ERROR(val, u16))
325 		return eeh_check_failure(addr, val);
326 	return val;
327 }
328 
329 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
330 {
331 	u32 val = in_be32(addr);
332 	if (EEH_POSSIBLE_ERROR(val, u32))
333 		return eeh_check_failure(addr, val);
334 	return val;
335 }
336 
337 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
338 {
339 	u64 val = in_be64(addr);
340 	if (EEH_POSSIBLE_ERROR(val, u64))
341 		return eeh_check_failure(addr, val);
342 	return val;
343 }
344 
345 static inline void eeh_memcpy_fromio(void *dest, const
346 				     volatile void __iomem *src,
347 				     unsigned long n)
348 {
349 	_memcpy_fromio(dest, src, n);
350 
351 	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
352 	 * were copied. Check all four bytes.
353 	 */
354 	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
355 		eeh_check_failure(src, *((u32 *)(dest + n - 4)));
356 }
357 
358 /* in-string eeh macros */
359 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
360 			      int ns)
361 {
362 	_insb(addr, buf, ns);
363 	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
364 		eeh_check_failure(addr, *(u8*)buf);
365 }
366 
367 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
368 			      int ns)
369 {
370 	_insw(addr, buf, ns);
371 	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
372 		eeh_check_failure(addr, *(u16*)buf);
373 }
374 
375 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
376 			      int nl)
377 {
378 	_insl(addr, buf, nl);
379 	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
380 		eeh_check_failure(addr, *(u32*)buf);
381 }
382 
383 #endif /* CONFIG_PPC64 */
384 #endif /* __KERNEL__ */
385 #endif /* _POWERPC_EEH_H */
386