xref: /openbmc/linux/arch/powerpc/include/asm/eeh.h (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
4  * Copyright 2001-2012 IBM Corporation.
5  */
6 
7 #ifndef _POWERPC_EEH_H
8 #define _POWERPC_EEH_H
9 #ifdef __KERNEL__
10 
11 #include <linux/init.h>
12 #include <linux/list.h>
13 #include <linux/string.h>
14 #include <linux/time.h>
15 #include <linux/atomic.h>
16 
17 #include <uapi/asm/eeh.h>
18 
19 struct pci_dev;
20 struct pci_bus;
21 struct pci_dn;
22 
23 #ifdef CONFIG_EEH
24 
25 /* EEH subsystem flags */
26 #define EEH_ENABLED		0x01	/* EEH enabled			     */
27 #define EEH_FORCE_DISABLED	0x02	/* EEH disabled			     */
28 #define EEH_PROBE_MODE_DEV	0x04	/* From PCI device		     */
29 #define EEH_PROBE_MODE_DEVTREE	0x08	/* From device tree		     */
30 #define EEH_VALID_PE_ZERO	0x10	/* PE#0 is valid		     */
31 #define EEH_ENABLE_IO_FOR_LOG	0x20	/* Enable IO for log		     */
32 #define EEH_EARLY_DUMP_LOG	0x40	/* Dump log immediately		     */
33 
34 /*
35  * Delay for PE reset, all in ms
36  *
37  * PCI specification has reset hold time of 100 milliseconds.
38  * We have 250 milliseconds here. The PCI bus settlement time
39  * is specified as 1.5 seconds and we have 1.8 seconds.
40  */
41 #define EEH_PE_RST_HOLD_TIME		250
42 #define EEH_PE_RST_SETTLE_TIME		1800
43 
44 /*
45  * The struct is used to trace PE related EEH functionality.
46  * In theory, there will have one instance of the struct to
47  * be created against particular PE. In nature, PEs correlate
48  * to each other. the struct has to reflect that hierarchy in
49  * order to easily pick up those affected PEs when one particular
50  * PE has EEH errors.
51  *
52  * Also, one particular PE might be composed of PCI device, PCI
53  * bus and its subordinate components. The struct also need ship
54  * the information. Further more, one particular PE is only meaingful
55  * in the corresponding PHB. Therefore, the root PEs should be created
56  * against existing PHBs in on-to-one fashion.
57  */
58 #define EEH_PE_INVALID	(1 << 0)	/* Invalid   */
59 #define EEH_PE_PHB	(1 << 1)	/* PHB PE    */
60 #define EEH_PE_DEVICE 	(1 << 2)	/* Device PE */
61 #define EEH_PE_BUS	(1 << 3)	/* Bus PE    */
62 #define EEH_PE_VF	(1 << 4)	/* VF PE     */
63 
64 #define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
65 #define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
66 #define EEH_PE_CFG_BLOCKED	(1 << 2)	/* Block config access	*/
67 #define EEH_PE_RESET		(1 << 3)	/* PE reset in progress */
68 
69 #define EEH_PE_KEEP		(1 << 8)	/* Keep PE on hotplug	*/
70 #define EEH_PE_CFG_RESTRICTED	(1 << 9)	/* Block config on error */
71 #define EEH_PE_REMOVED		(1 << 10)	/* Removed permanently	*/
72 #define EEH_PE_PRI_BUS		(1 << 11)	/* Cached primary bus   */
73 
74 struct eeh_pe {
75 	int type;			/* PE type: PHB/Bus/Device	*/
76 	int state;			/* PE EEH dependent mode	*/
77 	int config_addr;		/* Traditional PCI address	*/
78 	int addr;			/* PE configuration address	*/
79 	struct pci_controller *phb;	/* Associated PHB		*/
80 	struct pci_bus *bus;		/* Top PCI bus for bus PE	*/
81 	int check_count;		/* Times of ignored error	*/
82 	int freeze_count;		/* Times of froze up		*/
83 	time64_t tstamp;		/* Time on first-time freeze	*/
84 	int false_positives;		/* Times of reported #ff's	*/
85 	atomic_t pass_dev_cnt;		/* Count of passed through devs	*/
86 	struct eeh_pe *parent;		/* Parent PE			*/
87 	void *data;			/* PE auxillary data		*/
88 	struct list_head child_list;	/* List of PEs below this PE	*/
89 	struct list_head child;		/* Memb. child_list/eeh_phb_pe	*/
90 	struct list_head edevs;		/* List of eeh_dev in this PE	*/
91 
92 #ifdef CONFIG_STACKTRACE
93 	/*
94 	 * Saved stack trace. When we find a PE freeze in eeh_dev_check_failure
95 	 * the stack trace is saved here so we can print it in the recovery
96 	 * thread if it turns out to due to a real problem rather than
97 	 * a hot-remove.
98 	 *
99 	 * A max of 64 entries might be overkill, but it also might not be.
100 	 */
101 	unsigned long stack_trace[64];
102 	int trace_entries;
103 #endif /* CONFIG_STACKTRACE */
104 };
105 
106 #define eeh_pe_for_each_dev(pe, edev, tmp) \
107 		list_for_each_entry_safe(edev, tmp, &pe->edevs, entry)
108 
109 #define eeh_for_each_pe(root, pe) \
110 	for (pe = root; pe; pe = eeh_pe_next(pe, root))
111 
112 static inline bool eeh_pe_passed(struct eeh_pe *pe)
113 {
114 	return pe ? !!atomic_read(&pe->pass_dev_cnt) : false;
115 }
116 
117 /*
118  * The struct is used to trace EEH state for the associated
119  * PCI device node or PCI device. In future, it might
120  * represent PE as well so that the EEH device to form
121  * another tree except the currently existing tree of PCI
122  * buses and PCI devices
123  */
124 #define EEH_DEV_BRIDGE		(1 << 0)	/* PCI bridge		*/
125 #define EEH_DEV_ROOT_PORT	(1 << 1)	/* PCIe root port	*/
126 #define EEH_DEV_DS_PORT		(1 << 2)	/* Downstream port	*/
127 #define EEH_DEV_IRQ_DISABLED	(1 << 3)	/* Interrupt disabled	*/
128 #define EEH_DEV_DISCONNECTED	(1 << 4)	/* Removing from PE	*/
129 
130 #define EEH_DEV_NO_HANDLER	(1 << 8)	/* No error handler	*/
131 #define EEH_DEV_SYSFS		(1 << 9)	/* Sysfs created	*/
132 #define EEH_DEV_REMOVED		(1 << 10)	/* Removed permanently	*/
133 
134 struct eeh_dev {
135 	int mode;			/* EEH mode			*/
136 	int bdfn;			/* bdfn of device (for cfg ops) */
137 	struct pci_controller *controller;
138 	int pe_config_addr;		/* PE config address		*/
139 	u32 config_space[16];		/* Saved PCI config space	*/
140 	int pcix_cap;			/* Saved PCIx capability	*/
141 	int pcie_cap;			/* Saved PCIe capability	*/
142 	int aer_cap;			/* Saved AER capability		*/
143 	int af_cap;			/* Saved AF capability		*/
144 	struct eeh_pe *pe;		/* Associated PE		*/
145 	struct list_head entry;		/* Membership in eeh_pe.edevs	*/
146 	struct list_head rmv_entry;	/* Membership in rmv_list	*/
147 	struct pci_dn *pdn;		/* Associated PCI device node	*/
148 	struct pci_dev *pdev;		/* Associated PCI device	*/
149 	bool in_error;			/* Error flag for edev		*/
150 
151 	/* VF specific properties */
152 	struct pci_dev *physfn;		/* Associated SRIOV PF		*/
153 	int vf_index;			/* Index of this VF 		*/
154 };
155 
156 /* "fmt" must be a simple literal string */
157 #define EEH_EDEV_PRINT(level, edev, fmt, ...) \
158 	pr_##level("PCI %04x:%02x:%02x.%x#%04x: EEH: " fmt, \
159 	(edev)->controller->global_number, PCI_BUSNO((edev)->bdfn), \
160 	PCI_SLOT((edev)->bdfn), PCI_FUNC((edev)->bdfn), \
161 	((edev)->pe ? (edev)->pe_config_addr : 0xffff), ##__VA_ARGS__)
162 #define eeh_edev_dbg(edev, fmt, ...) EEH_EDEV_PRINT(debug, (edev), fmt, ##__VA_ARGS__)
163 #define eeh_edev_info(edev, fmt, ...) EEH_EDEV_PRINT(info, (edev), fmt, ##__VA_ARGS__)
164 #define eeh_edev_warn(edev, fmt, ...) EEH_EDEV_PRINT(warn, (edev), fmt, ##__VA_ARGS__)
165 #define eeh_edev_err(edev, fmt, ...) EEH_EDEV_PRINT(err, (edev), fmt, ##__VA_ARGS__)
166 
167 static inline struct pci_dn *eeh_dev_to_pdn(struct eeh_dev *edev)
168 {
169 	return edev ? edev->pdn : NULL;
170 }
171 
172 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
173 {
174 	return edev ? edev->pdev : NULL;
175 }
176 
177 static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev)
178 {
179 	return edev ? edev->pe : NULL;
180 }
181 
182 /* Return values from eeh_ops::next_error */
183 enum {
184 	EEH_NEXT_ERR_NONE = 0,
185 	EEH_NEXT_ERR_INF,
186 	EEH_NEXT_ERR_FROZEN_PE,
187 	EEH_NEXT_ERR_FENCED_PHB,
188 	EEH_NEXT_ERR_DEAD_PHB,
189 	EEH_NEXT_ERR_DEAD_IOC
190 };
191 
192 /*
193  * The struct is used to trace the registered EEH operation
194  * callback functions. Actually, those operation callback
195  * functions are heavily platform dependent. That means the
196  * platform should register its own EEH operation callback
197  * functions before any EEH further operations.
198  */
199 #define EEH_OPT_DISABLE		0	/* EEH disable	*/
200 #define EEH_OPT_ENABLE		1	/* EEH enable	*/
201 #define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
202 #define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
203 #define EEH_OPT_FREEZE_PE	4	/* Freeze PE	*/
204 #define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
205 #define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
206 #define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
207 #define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
208 #define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
209 #define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
210 #define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
211 #define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
212 #define EEH_RESET_HOT		1	/* Hot reset			*/
213 #define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
214 #define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
215 #define EEH_LOG_PERM		2	/* EEH permanent error log	*/
216 
217 struct eeh_ops {
218 	char *name;
219 	int (*init)(void);
220 	struct eeh_dev *(*probe)(struct pci_dev *pdev);
221 	int (*set_option)(struct eeh_pe *pe, int option);
222 	int (*get_state)(struct eeh_pe *pe, int *delay);
223 	int (*reset)(struct eeh_pe *pe, int option);
224 	int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
225 	int (*configure_bridge)(struct eeh_pe *pe);
226 	int (*err_inject)(struct eeh_pe *pe, int type, int func,
227 			  unsigned long addr, unsigned long mask);
228 	int (*read_config)(struct eeh_dev *edev, int where, int size, u32 *val);
229 	int (*write_config)(struct eeh_dev *edev, int where, int size, u32 val);
230 	int (*next_error)(struct eeh_pe **pe);
231 	int (*restore_config)(struct eeh_dev *edev);
232 	int (*notify_resume)(struct eeh_dev *edev);
233 };
234 
235 extern int eeh_subsystem_flags;
236 extern u32 eeh_max_freezes;
237 extern bool eeh_debugfs_no_recover;
238 extern struct eeh_ops *eeh_ops;
239 extern raw_spinlock_t confirm_error_lock;
240 
241 static inline void eeh_add_flag(int flag)
242 {
243 	eeh_subsystem_flags |= flag;
244 }
245 
246 static inline void eeh_clear_flag(int flag)
247 {
248 	eeh_subsystem_flags &= ~flag;
249 }
250 
251 static inline bool eeh_has_flag(int flag)
252 {
253         return !!(eeh_subsystem_flags & flag);
254 }
255 
256 static inline bool eeh_enabled(void)
257 {
258 	return eeh_has_flag(EEH_ENABLED) && !eeh_has_flag(EEH_FORCE_DISABLED);
259 }
260 
261 static inline void eeh_serialize_lock(unsigned long *flags)
262 {
263 	raw_spin_lock_irqsave(&confirm_error_lock, *flags);
264 }
265 
266 static inline void eeh_serialize_unlock(unsigned long flags)
267 {
268 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
269 }
270 
271 static inline bool eeh_state_active(int state)
272 {
273 	return (state & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE))
274 	== (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
275 }
276 
277 typedef void (*eeh_edev_traverse_func)(struct eeh_dev *edev, void *flag);
278 typedef void *(*eeh_pe_traverse_func)(struct eeh_pe *pe, void *flag);
279 void eeh_set_pe_aux_size(int size);
280 int eeh_phb_pe_create(struct pci_controller *phb);
281 int eeh_wait_state(struct eeh_pe *pe, int max_wait);
282 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
283 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root);
284 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
285 			  int pe_no, int config_addr);
286 int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent);
287 int eeh_pe_tree_remove(struct eeh_dev *edev);
288 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
289 void *eeh_pe_traverse(struct eeh_pe *root,
290 		      eeh_pe_traverse_func fn, void *flag);
291 void eeh_pe_dev_traverse(struct eeh_pe *root,
292 			 eeh_edev_traverse_func fn, void *flag);
293 void eeh_pe_restore_bars(struct eeh_pe *pe);
294 const char *eeh_pe_loc_get(struct eeh_pe *pe);
295 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
296 
297 void eeh_show_enabled(void);
298 int __init eeh_ops_register(struct eeh_ops *ops);
299 int __exit eeh_ops_unregister(const char *name);
300 int eeh_check_failure(const volatile void __iomem *token);
301 int eeh_dev_check_failure(struct eeh_dev *edev);
302 void eeh_addr_cache_init(void);
303 void eeh_probe_device(struct pci_dev *pdev);
304 void eeh_remove_device(struct pci_dev *);
305 int eeh_unfreeze_pe(struct eeh_pe *pe);
306 int eeh_pe_reset_and_recover(struct eeh_pe *pe);
307 int eeh_dev_open(struct pci_dev *pdev);
308 void eeh_dev_release(struct pci_dev *pdev);
309 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group);
310 int eeh_pe_set_option(struct eeh_pe *pe, int option);
311 int eeh_pe_get_state(struct eeh_pe *pe);
312 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed);
313 int eeh_pe_configure(struct eeh_pe *pe);
314 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
315 		      unsigned long addr, unsigned long mask);
316 
317 /**
318  * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
319  *
320  * If this macro yields TRUE, the caller relays to eeh_check_failure()
321  * which does further tests out of line.
322  */
323 #define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_enabled())
324 
325 /*
326  * Reads from a device which has been isolated by EEH will return
327  * all 1s.  This macro gives an all-1s value of the given size (in
328  * bytes: 1, 2, or 4) for comparing with the result of a read.
329  */
330 #define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
331 
332 #else /* !CONFIG_EEH */
333 
334 static inline bool eeh_enabled(void)
335 {
336         return false;
337 }
338 
339 static inline void eeh_show_enabled(void) { }
340 
341 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
342 
343 static inline int eeh_check_failure(const volatile void __iomem *token)
344 {
345 	return 0;
346 }
347 
348 #define eeh_dev_check_failure(x) (0)
349 
350 static inline void eeh_addr_cache_init(void) { }
351 
352 static inline void eeh_probe_device(struct pci_dev *dev) { }
353 
354 static inline void eeh_remove_device(struct pci_dev *dev) { }
355 
356 #define EEH_POSSIBLE_ERROR(val, type) (0)
357 #define EEH_IO_ERROR_VALUE(size) (-1UL)
358 static inline int eeh_phb_pe_create(struct pci_controller *phb) { return 0; }
359 #endif /* CONFIG_EEH */
360 
361 #if defined(CONFIG_PPC_PSERIES) && defined(CONFIG_EEH)
362 void pseries_eeh_init_edev(struct pci_dn *pdn);
363 void pseries_eeh_init_edev_recursive(struct pci_dn *pdn);
364 #else
365 static inline void pseries_eeh_add_device_early(struct pci_dn *pdn) { }
366 static inline void pseries_eeh_add_device_tree_early(struct pci_dn *pdn) { }
367 #endif
368 
369 #ifdef CONFIG_PPC64
370 /*
371  * MMIO read/write operations with EEH support.
372  */
373 static inline u8 eeh_readb(const volatile void __iomem *addr)
374 {
375 	u8 val = in_8(addr);
376 	if (EEH_POSSIBLE_ERROR(val, u8))
377 		eeh_check_failure(addr);
378 	return val;
379 }
380 
381 static inline u16 eeh_readw(const volatile void __iomem *addr)
382 {
383 	u16 val = in_le16(addr);
384 	if (EEH_POSSIBLE_ERROR(val, u16))
385 		eeh_check_failure(addr);
386 	return val;
387 }
388 
389 static inline u32 eeh_readl(const volatile void __iomem *addr)
390 {
391 	u32 val = in_le32(addr);
392 	if (EEH_POSSIBLE_ERROR(val, u32))
393 		eeh_check_failure(addr);
394 	return val;
395 }
396 
397 static inline u64 eeh_readq(const volatile void __iomem *addr)
398 {
399 	u64 val = in_le64(addr);
400 	if (EEH_POSSIBLE_ERROR(val, u64))
401 		eeh_check_failure(addr);
402 	return val;
403 }
404 
405 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
406 {
407 	u16 val = in_be16(addr);
408 	if (EEH_POSSIBLE_ERROR(val, u16))
409 		eeh_check_failure(addr);
410 	return val;
411 }
412 
413 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
414 {
415 	u32 val = in_be32(addr);
416 	if (EEH_POSSIBLE_ERROR(val, u32))
417 		eeh_check_failure(addr);
418 	return val;
419 }
420 
421 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
422 {
423 	u64 val = in_be64(addr);
424 	if (EEH_POSSIBLE_ERROR(val, u64))
425 		eeh_check_failure(addr);
426 	return val;
427 }
428 
429 static inline void eeh_memcpy_fromio(void *dest, const
430 				     volatile void __iomem *src,
431 				     unsigned long n)
432 {
433 	_memcpy_fromio(dest, src, n);
434 
435 	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
436 	 * were copied. Check all four bytes.
437 	 */
438 	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
439 		eeh_check_failure(src);
440 }
441 
442 /* in-string eeh macros */
443 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
444 			      int ns)
445 {
446 	_insb(addr, buf, ns);
447 	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
448 		eeh_check_failure(addr);
449 }
450 
451 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
452 			      int ns)
453 {
454 	_insw(addr, buf, ns);
455 	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
456 		eeh_check_failure(addr);
457 }
458 
459 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
460 			      int nl)
461 {
462 	_insl(addr, buf, nl);
463 	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
464 		eeh_check_failure(addr);
465 }
466 
467 
468 void eeh_cache_debugfs_init(void);
469 
470 #endif /* CONFIG_PPC64 */
471 #endif /* __KERNEL__ */
472 #endif /* _POWERPC_EEH_H */
473