1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/5level-fixup.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_NA		0
18 #define _PAGE_RO		0
19 #define _PAGE_USER		0
20 
21 #define _PAGE_EXEC		0x00001 /* execute permission */
22 #define _PAGE_WRITE		0x00002 /* write access allowed */
23 #define _PAGE_READ		0x00004	/* read access allowed */
24 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
25 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
26 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
27 #define _PAGE_SAO		0x00010 /* Strong access order */
28 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
29 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
30 #define _PAGE_DIRTY		0x00080 /* C: page changed */
31 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
32 /*
33  * Software bits
34  */
35 #define _RPAGE_SW0		0x2000000000000000UL
36 #define _RPAGE_SW1		0x00800
37 #define _RPAGE_SW2		0x00400
38 #define _RPAGE_SW3		0x00200
39 #define _RPAGE_RSV1		0x1000000000000000UL
40 #define _RPAGE_RSV2		0x0800000000000000UL
41 #define _RPAGE_RSV3		0x0400000000000000UL
42 #define _RPAGE_RSV4		0x0200000000000000UL
43 #define _RPAGE_RSV5		0x00040UL
44 
45 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
46 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
47 
48 /*
49  * Top and bottom bits of RPN which can be used by hash
50  * translation mode, because we expect them to be zero
51  * otherwise.
52  */
53 #define _RPAGE_RPN0		0x01000
54 #define _RPAGE_RPN1		0x02000
55 #define _RPAGE_RPN44		0x0100000000000000UL
56 #define _RPAGE_RPN43		0x0080000000000000UL
57 #define _RPAGE_RPN42		0x0040000000000000UL
58 #define _RPAGE_RPN41		0x0020000000000000UL
59 
60 /* Max physical address bit as per radix table */
61 #define _RPAGE_PA_MAX		57
62 
63 /*
64  * Max physical address bit we will use for now.
65  *
66  * This is mostly a hardware limitation and for now Power9 has
67  * a 51 bit limit.
68  *
69  * This is different from the number of physical bit required to address
70  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
71  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
72  * number of sections we can support (SECTIONS_SHIFT).
73  *
74  * This is different from Radix page table limitation above and
75  * should always be less than that. The limit is done such that
76  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
77  * for hash linux page table specific bits.
78  *
79  * In order to be compatible with future hardware generations we keep
80  * some offsets and limit this for now to 53
81  */
82 #define _PAGE_PA_MAX		53
83 
84 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
85 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
86 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
87 #define __HAVE_ARCH_PTE_DEVMAP
88 
89 /*
90  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
91  * Instead of fixing all of them, add an alternate define which
92  * maps CI pte mapping.
93  */
94 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
95 /*
96  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
97  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
98  * and every thing below PAGE_SHIFT;
99  */
100 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
101 /*
102  * set of bits not changed in pmd_modify. Even though we have hash specific bits
103  * in here, on radix we expect them to be zero.
104  */
105 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
106 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
107 			 _PAGE_SOFT_DIRTY)
108 /*
109  * user access blocked by key
110  */
111 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
112 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
113 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
114 				 _PAGE_RW | _PAGE_EXEC)
115 /*
116  * No page size encoding in the linux PTE
117  */
118 #define _PAGE_PSIZE		0
119 /*
120  * _PAGE_CHG_MASK masks of bits that are to be preserved across
121  * pgprot changes
122  */
123 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
124 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
125 			 _PAGE_SOFT_DIRTY)
126 
127 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
128 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
129 /*
130  * Mask of bits returned by pte_pgprot()
131  */
132 #define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
133 			 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
134 			 _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
135 			 _PAGE_SOFT_DIRTY | H_PTE_PKEY)
136 /*
137  * We define 2 sets of base prot bits, one for basic pages (ie,
138  * cacheable kernel and user pages) and one for non cacheable
139  * pages. We always set _PAGE_COHERENT when SMP is enabled or
140  * the processor might need it for DMA coherency.
141  */
142 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
143 #define _PAGE_BASE	(_PAGE_BASE_NC)
144 
145 /* Permission masks used to generate the __P and __S table,
146  *
147  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
148  *
149  * Write permissions imply read permissions for now (we could make write-only
150  * pages on BookE but we don't bother for now). Execute permission control is
151  * possible on platforms that define _PAGE_EXEC
152  *
153  * Note due to the way vm flags are laid out, the bits are XWR
154  */
155 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
156 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
157 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
158 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
159 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
160 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
161 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
162 
163 #define __P000	PAGE_NONE
164 #define __P001	PAGE_READONLY
165 #define __P010	PAGE_COPY
166 #define __P011	PAGE_COPY
167 #define __P100	PAGE_READONLY_X
168 #define __P101	PAGE_READONLY_X
169 #define __P110	PAGE_COPY_X
170 #define __P111	PAGE_COPY_X
171 
172 #define __S000	PAGE_NONE
173 #define __S001	PAGE_READONLY
174 #define __S010	PAGE_SHARED
175 #define __S011	PAGE_SHARED
176 #define __S100	PAGE_READONLY_X
177 #define __S101	PAGE_READONLY_X
178 #define __S110	PAGE_SHARED_X
179 #define __S111	PAGE_SHARED_X
180 
181 /* Permission masks used for kernel mappings */
182 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
183 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
184 				 _PAGE_TOLERANT)
185 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
186 				 _PAGE_NON_IDEMPOTENT)
187 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
188 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
189 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
190 
191 /*
192  * Protection used for kernel text. We want the debuggers to be able to
193  * set breakpoints anywhere, so don't write protect the kernel text
194  * on platforms where such control is possible.
195  */
196 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
197 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
198 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
199 #else
200 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
201 #endif
202 
203 /* Make modules code happy. We don't set RO yet */
204 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
205 #define PAGE_AGP		(PAGE_KERNEL_NC)
206 
207 #ifndef __ASSEMBLY__
208 /*
209  * page table defines
210  */
211 extern unsigned long __pte_index_size;
212 extern unsigned long __pmd_index_size;
213 extern unsigned long __pud_index_size;
214 extern unsigned long __pgd_index_size;
215 extern unsigned long __pud_cache_index;
216 #define PTE_INDEX_SIZE  __pte_index_size
217 #define PMD_INDEX_SIZE  __pmd_index_size
218 #define PUD_INDEX_SIZE  __pud_index_size
219 #define PGD_INDEX_SIZE  __pgd_index_size
220 /* pmd table use page table fragments */
221 #define PMD_CACHE_INDEX  0
222 #define PUD_CACHE_INDEX __pud_cache_index
223 /*
224  * Because of use of pte fragments and THP, size of page table
225  * are not always derived out of index size above.
226  */
227 extern unsigned long __pte_table_size;
228 extern unsigned long __pmd_table_size;
229 extern unsigned long __pud_table_size;
230 extern unsigned long __pgd_table_size;
231 #define PTE_TABLE_SIZE	__pte_table_size
232 #define PMD_TABLE_SIZE	__pmd_table_size
233 #define PUD_TABLE_SIZE	__pud_table_size
234 #define PGD_TABLE_SIZE	__pgd_table_size
235 
236 extern unsigned long __pmd_val_bits;
237 extern unsigned long __pud_val_bits;
238 extern unsigned long __pgd_val_bits;
239 #define PMD_VAL_BITS	__pmd_val_bits
240 #define PUD_VAL_BITS	__pud_val_bits
241 #define PGD_VAL_BITS	__pgd_val_bits
242 
243 extern unsigned long __pte_frag_nr;
244 #define PTE_FRAG_NR __pte_frag_nr
245 extern unsigned long __pte_frag_size_shift;
246 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
247 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
248 
249 extern unsigned long __pmd_frag_nr;
250 #define PMD_FRAG_NR __pmd_frag_nr
251 extern unsigned long __pmd_frag_size_shift;
252 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
253 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
254 
255 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
256 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
257 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
258 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
259 
260 /* PMD_SHIFT determines what a second-level page table entry can map */
261 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
262 #define PMD_SIZE	(1UL << PMD_SHIFT)
263 #define PMD_MASK	(~(PMD_SIZE-1))
264 
265 /* PUD_SHIFT determines what a third-level page table entry can map */
266 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
267 #define PUD_SIZE	(1UL << PUD_SHIFT)
268 #define PUD_MASK	(~(PUD_SIZE-1))
269 
270 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
271 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
272 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
273 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
274 
275 /* Bits to mask out from a PMD to get to the PTE page */
276 #define PMD_MASKED_BITS		0xc0000000000000ffUL
277 /* Bits to mask out from a PUD to get to the PMD page */
278 #define PUD_MASKED_BITS		0xc0000000000000ffUL
279 /* Bits to mask out from a PGD to get to the PUD page */
280 #define PGD_MASKED_BITS		0xc0000000000000ffUL
281 
282 /*
283  * Used as an indicator for rcu callback functions
284  */
285 enum pgtable_index {
286 	PTE_INDEX = 0,
287 	PMD_INDEX,
288 	PUD_INDEX,
289 	PGD_INDEX,
290 };
291 
292 extern unsigned long __vmalloc_start;
293 extern unsigned long __vmalloc_end;
294 #define VMALLOC_START	__vmalloc_start
295 #define VMALLOC_END	__vmalloc_end
296 
297 extern unsigned long __kernel_virt_start;
298 extern unsigned long __kernel_virt_size;
299 extern unsigned long __kernel_io_start;
300 #define KERN_VIRT_START __kernel_virt_start
301 #define KERN_VIRT_SIZE  __kernel_virt_size
302 #define KERN_IO_START  __kernel_io_start
303 extern struct page *vmemmap;
304 extern unsigned long ioremap_bot;
305 extern unsigned long pci_io_base;
306 #endif /* __ASSEMBLY__ */
307 
308 #include <asm/book3s/64/hash.h>
309 #include <asm/book3s/64/radix.h>
310 
311 #ifdef CONFIG_PPC_64K_PAGES
312 #include <asm/book3s/64/pgtable-64k.h>
313 #else
314 #include <asm/book3s/64/pgtable-4k.h>
315 #endif
316 
317 #include <asm/barrier.h>
318 /*
319  * The second half of the kernel virtual space is used for IO mappings,
320  * it's itself carved into the PIO region (ISA and PHB IO space) and
321  * the ioremap space
322  *
323  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
324  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
325  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
326  */
327 #define FULL_IO_SIZE	0x80000000ul
328 #define  ISA_IO_BASE	(KERN_IO_START)
329 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
330 #define  PHB_IO_BASE	(ISA_IO_END)
331 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
332 #define IOREMAP_BASE	(PHB_IO_END)
333 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
334 
335 /* Advertise special mapping type for AGP */
336 #define HAVE_PAGE_AGP
337 
338 #ifndef __ASSEMBLY__
339 
340 /*
341  * This is the default implementation of various PTE accessors, it's
342  * used in all cases except Book3S with 64K pages where we have a
343  * concept of sub-pages
344  */
345 #ifndef __real_pte
346 
347 #define __real_pte(e, p, o)		((real_pte_t){(e)})
348 #define __rpte_to_pte(r)	((r).pte)
349 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
350 
351 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
352 	do {							         \
353 		index = 0;					         \
354 		shift = mmu_psize_defs[psize].shift;		         \
355 
356 #define pte_iterate_hashed_end() } while(0)
357 
358 /*
359  * We expect this to be called only for user addresses or kernel virtual
360  * addresses other than the linear mapping.
361  */
362 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
363 
364 #endif /* __real_pte */
365 
366 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
367 				       pte_t *ptep, unsigned long clr,
368 				       unsigned long set, int huge)
369 {
370 	if (radix_enabled())
371 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
372 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
373 }
374 /*
375  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
376  * We currently remove entries from the hashtable regardless of whether
377  * the entry was young or dirty.
378  *
379  * We should be more intelligent about this but for the moment we override
380  * these functions and force a tlb flush unconditionally
381  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
382  * function for both hash and radix.
383  */
384 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
385 					      unsigned long addr, pte_t *ptep)
386 {
387 	unsigned long old;
388 
389 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
390 		return 0;
391 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
392 	return (old & _PAGE_ACCESSED) != 0;
393 }
394 
395 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
396 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
397 ({								\
398 	int __r;						\
399 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
400 	__r;							\
401 })
402 
403 static inline int __pte_write(pte_t pte)
404 {
405 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
406 }
407 
408 #ifdef CONFIG_NUMA_BALANCING
409 #define pte_savedwrite pte_savedwrite
410 static inline bool pte_savedwrite(pte_t pte)
411 {
412 	/*
413 	 * Saved write ptes are prot none ptes that doesn't have
414 	 * privileged bit sit. We mark prot none as one which has
415 	 * present and pviliged bit set and RWX cleared. To mark
416 	 * protnone which used to have _PAGE_WRITE set we clear
417 	 * the privileged bit.
418 	 */
419 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
420 }
421 #else
422 #define pte_savedwrite pte_savedwrite
423 static inline bool pte_savedwrite(pte_t pte)
424 {
425 	return false;
426 }
427 #endif
428 
429 static inline int pte_write(pte_t pte)
430 {
431 	return __pte_write(pte) || pte_savedwrite(pte);
432 }
433 
434 static inline int pte_read(pte_t pte)
435 {
436 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
437 }
438 
439 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
440 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
441 				      pte_t *ptep)
442 {
443 	if (__pte_write(*ptep))
444 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
445 	else if (unlikely(pte_savedwrite(*ptep)))
446 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
447 }
448 
449 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
450 					   unsigned long addr, pte_t *ptep)
451 {
452 	/*
453 	 * We should not find protnone for hugetlb, but this complete the
454 	 * interface.
455 	 */
456 	if (__pte_write(*ptep))
457 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
458 	else if (unlikely(pte_savedwrite(*ptep)))
459 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
460 }
461 
462 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
463 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
464 				       unsigned long addr, pte_t *ptep)
465 {
466 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
467 	return __pte(old);
468 }
469 
470 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
471 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
472 					    unsigned long addr,
473 					    pte_t *ptep, int full)
474 {
475 	if (full && radix_enabled()) {
476 		/*
477 		 * Let's skip the DD1 style pte update here. We know that
478 		 * this is a full mm pte clear and hence can be sure there is
479 		 * no parallel set_pte.
480 		 */
481 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
482 	}
483 	return ptep_get_and_clear(mm, addr, ptep);
484 }
485 
486 
487 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
488 			     pte_t * ptep)
489 {
490 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
491 }
492 
493 static inline int pte_dirty(pte_t pte)
494 {
495 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
496 }
497 
498 static inline int pte_young(pte_t pte)
499 {
500 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
501 }
502 
503 static inline int pte_special(pte_t pte)
504 {
505 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
506 }
507 
508 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
509 
510 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
511 static inline bool pte_soft_dirty(pte_t pte)
512 {
513 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
514 }
515 
516 static inline pte_t pte_mksoft_dirty(pte_t pte)
517 {
518 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
519 }
520 
521 static inline pte_t pte_clear_soft_dirty(pte_t pte)
522 {
523 	return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
524 }
525 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
526 
527 #ifdef CONFIG_NUMA_BALANCING
528 static inline int pte_protnone(pte_t pte)
529 {
530 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
531 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
532 }
533 
534 #define pte_mk_savedwrite pte_mk_savedwrite
535 static inline pte_t pte_mk_savedwrite(pte_t pte)
536 {
537 	/*
538 	 * Used by Autonuma subsystem to preserve the write bit
539 	 * while marking the pte PROT_NONE. Only allow this
540 	 * on PROT_NONE pte
541 	 */
542 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
543 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
544 	return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
545 }
546 
547 #define pte_clear_savedwrite pte_clear_savedwrite
548 static inline pte_t pte_clear_savedwrite(pte_t pte)
549 {
550 	/*
551 	 * Used by KSM subsystem to make a protnone pte readonly.
552 	 */
553 	VM_BUG_ON(!pte_protnone(pte));
554 	return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
555 }
556 #else
557 #define pte_clear_savedwrite pte_clear_savedwrite
558 static inline pte_t pte_clear_savedwrite(pte_t pte)
559 {
560 	VM_WARN_ON(1);
561 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
562 }
563 #endif /* CONFIG_NUMA_BALANCING */
564 
565 static inline int pte_present(pte_t pte)
566 {
567 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
568 }
569 
570 #ifdef CONFIG_PPC_MEM_KEYS
571 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
572 #else
573 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
574 {
575 	return true;
576 }
577 #endif /* CONFIG_PPC_MEM_KEYS */
578 
579 #define pte_access_permitted pte_access_permitted
580 static inline bool pte_access_permitted(pte_t pte, bool write)
581 {
582 	unsigned long pteval = pte_val(pte);
583 	/* Also check for pte_user */
584 	unsigned long clear_pte_bits = _PAGE_PRIVILEGED;
585 	/*
586 	 * _PAGE_READ is needed for any access and will be
587 	 * cleared for PROT_NONE
588 	 */
589 	unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ;
590 
591 	if (write)
592 		need_pte_bits |= _PAGE_WRITE;
593 
594 	if ((pteval & need_pte_bits) != need_pte_bits)
595 		return false;
596 
597 	if ((pteval & clear_pte_bits) == clear_pte_bits)
598 		return false;
599 
600 	return arch_pte_access_permitted(pte_val(pte), write, 0);
601 }
602 
603 /*
604  * Conversion functions: convert a page and protection to a page entry,
605  * and a page entry and page directory to the page they refer to.
606  *
607  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
608  * long for now.
609  */
610 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
611 {
612 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
613 		     pgprot_val(pgprot));
614 }
615 
616 static inline unsigned long pte_pfn(pte_t pte)
617 {
618 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
619 }
620 
621 /* Generic modifiers for PTE bits */
622 static inline pte_t pte_wrprotect(pte_t pte)
623 {
624 	if (unlikely(pte_savedwrite(pte)))
625 		return pte_clear_savedwrite(pte);
626 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
627 }
628 
629 static inline pte_t pte_mkclean(pte_t pte)
630 {
631 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
632 }
633 
634 static inline pte_t pte_mkold(pte_t pte)
635 {
636 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
637 }
638 
639 static inline pte_t pte_mkwrite(pte_t pte)
640 {
641 	/*
642 	 * write implies read, hence set both
643 	 */
644 	return __pte(pte_val(pte) | _PAGE_RW);
645 }
646 
647 static inline pte_t pte_mkdirty(pte_t pte)
648 {
649 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
650 }
651 
652 static inline pte_t pte_mkyoung(pte_t pte)
653 {
654 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
655 }
656 
657 static inline pte_t pte_mkspecial(pte_t pte)
658 {
659 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
660 }
661 
662 static inline pte_t pte_mkhuge(pte_t pte)
663 {
664 	return pte;
665 }
666 
667 static inline pte_t pte_mkdevmap(pte_t pte)
668 {
669 	return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
670 }
671 
672 /*
673  * This is potentially called with a pmd as the argument, in which case it's not
674  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
675  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
676  * use in page directory entries (ie. non-ptes).
677  */
678 static inline int pte_devmap(pte_t pte)
679 {
680 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
681 
682 	return (pte_raw(pte) & mask) == mask;
683 }
684 
685 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
686 {
687 	/* FIXME!! check whether this need to be a conditional */
688 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
689 }
690 
691 static inline bool pte_user(pte_t pte)
692 {
693 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
694 }
695 
696 /* Encode and de-code a swap entry */
697 #define MAX_SWAPFILES_CHECK() do { \
698 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
699 	/*							\
700 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
701 	 * We filter HPTEFLAGS on set_pte.			\
702 	 */							\
703 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
704 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
705 	} while (0)
706 /*
707  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
708  */
709 #define SWP_TYPE_BITS 5
710 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
711 				& ((1UL << SWP_TYPE_BITS) - 1))
712 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
713 #define __swp_entry(type, offset)	((swp_entry_t) { \
714 				((type) << _PAGE_BIT_SWAP_TYPE) \
715 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
716 /*
717  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
718  * swap type and offset we get from swap and convert that to pte to find a
719  * matching pte in linux page table.
720  * Clear bits not found in swap entries here.
721  */
722 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
723 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
724 
725 #ifdef CONFIG_MEM_SOFT_DIRTY
726 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
727 #else
728 #define _PAGE_SWP_SOFT_DIRTY	0UL
729 #endif /* CONFIG_MEM_SOFT_DIRTY */
730 
731 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
732 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
733 {
734 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
735 }
736 
737 static inline bool pte_swp_soft_dirty(pte_t pte)
738 {
739 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
740 }
741 
742 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
743 {
744 	return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
745 }
746 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
747 
748 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
749 {
750 	/*
751 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
752 	 */
753 	if (access & ~ptev)
754 		return false;
755 	/*
756 	 * This check for access to privilege space
757 	 */
758 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
759 		return false;
760 
761 	return true;
762 }
763 /*
764  * Generic functions with hash/radix callbacks
765  */
766 
767 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
768 					   pte_t *ptep, pte_t entry,
769 					   unsigned long address,
770 					   int psize)
771 {
772 	if (radix_enabled())
773 		return radix__ptep_set_access_flags(vma, ptep, entry,
774 						    address, psize);
775 	return hash__ptep_set_access_flags(ptep, entry);
776 }
777 
778 #define __HAVE_ARCH_PTE_SAME
779 static inline int pte_same(pte_t pte_a, pte_t pte_b)
780 {
781 	if (radix_enabled())
782 		return radix__pte_same(pte_a, pte_b);
783 	return hash__pte_same(pte_a, pte_b);
784 }
785 
786 static inline int pte_none(pte_t pte)
787 {
788 	if (radix_enabled())
789 		return radix__pte_none(pte);
790 	return hash__pte_none(pte);
791 }
792 
793 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
794 				pte_t *ptep, pte_t pte, int percpu)
795 {
796 	if (radix_enabled())
797 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
798 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
799 }
800 
801 #define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
802 
803 #define pgprot_noncached pgprot_noncached
804 static inline pgprot_t pgprot_noncached(pgprot_t prot)
805 {
806 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
807 			_PAGE_NON_IDEMPOTENT);
808 }
809 
810 #define pgprot_noncached_wc pgprot_noncached_wc
811 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
812 {
813 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
814 			_PAGE_TOLERANT);
815 }
816 
817 #define pgprot_cached pgprot_cached
818 static inline pgprot_t pgprot_cached(pgprot_t prot)
819 {
820 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
821 }
822 
823 #define pgprot_writecombine pgprot_writecombine
824 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
825 {
826 	return pgprot_noncached_wc(prot);
827 }
828 /*
829  * check a pte mapping have cache inhibited property
830  */
831 static inline bool pte_ci(pte_t pte)
832 {
833 	unsigned long pte_v = pte_val(pte);
834 
835 	if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
836 	    ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
837 		return true;
838 	return false;
839 }
840 
841 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
842 {
843 	*pmdp = __pmd(val);
844 }
845 
846 static inline void pmd_clear(pmd_t *pmdp)
847 {
848 	*pmdp = __pmd(0);
849 }
850 
851 static inline int pmd_none(pmd_t pmd)
852 {
853 	return !pmd_raw(pmd);
854 }
855 
856 static inline int pmd_present(pmd_t pmd)
857 {
858 
859 	return !pmd_none(pmd);
860 }
861 
862 static inline int pmd_bad(pmd_t pmd)
863 {
864 	if (radix_enabled())
865 		return radix__pmd_bad(pmd);
866 	return hash__pmd_bad(pmd);
867 }
868 
869 static inline void pud_set(pud_t *pudp, unsigned long val)
870 {
871 	*pudp = __pud(val);
872 }
873 
874 static inline void pud_clear(pud_t *pudp)
875 {
876 	*pudp = __pud(0);
877 }
878 
879 static inline int pud_none(pud_t pud)
880 {
881 	return !pud_raw(pud);
882 }
883 
884 static inline int pud_present(pud_t pud)
885 {
886 	return !pud_none(pud);
887 }
888 
889 extern struct page *pud_page(pud_t pud);
890 extern struct page *pmd_page(pmd_t pmd);
891 static inline pte_t pud_pte(pud_t pud)
892 {
893 	return __pte_raw(pud_raw(pud));
894 }
895 
896 static inline pud_t pte_pud(pte_t pte)
897 {
898 	return __pud_raw(pte_raw(pte));
899 }
900 #define pud_write(pud)		pte_write(pud_pte(pud))
901 
902 static inline int pud_bad(pud_t pud)
903 {
904 	if (radix_enabled())
905 		return radix__pud_bad(pud);
906 	return hash__pud_bad(pud);
907 }
908 
909 #define pud_access_permitted pud_access_permitted
910 static inline bool pud_access_permitted(pud_t pud, bool write)
911 {
912 	return pte_access_permitted(pud_pte(pud), write);
913 }
914 
915 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
916 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
917 {
918 	*pgdp = __pgd(val);
919 }
920 
921 static inline void pgd_clear(pgd_t *pgdp)
922 {
923 	*pgdp = __pgd(0);
924 }
925 
926 static inline int pgd_none(pgd_t pgd)
927 {
928 	return !pgd_raw(pgd);
929 }
930 
931 static inline int pgd_present(pgd_t pgd)
932 {
933 	return !pgd_none(pgd);
934 }
935 
936 static inline pte_t pgd_pte(pgd_t pgd)
937 {
938 	return __pte_raw(pgd_raw(pgd));
939 }
940 
941 static inline pgd_t pte_pgd(pte_t pte)
942 {
943 	return __pgd_raw(pte_raw(pte));
944 }
945 
946 static inline int pgd_bad(pgd_t pgd)
947 {
948 	if (radix_enabled())
949 		return radix__pgd_bad(pgd);
950 	return hash__pgd_bad(pgd);
951 }
952 
953 #define pgd_access_permitted pgd_access_permitted
954 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
955 {
956 	return pte_access_permitted(pgd_pte(pgd), write);
957 }
958 
959 extern struct page *pgd_page(pgd_t pgd);
960 
961 /* Pointers in the page table tree are physical addresses */
962 #define __pgtable_ptr_val(ptr)	__pa(ptr)
963 
964 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
965 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
966 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
967 
968 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
969 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
970 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
971 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
972 
973 /*
974  * Find an entry in a page-table-directory.  We combine the address region
975  * (the high order N bits) and the pgd portion of the address.
976  */
977 
978 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
979 
980 #define pud_offset(pgdp, addr)	\
981 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
982 #define pmd_offset(pudp,addr) \
983 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
984 #define pte_offset_kernel(dir,addr) \
985 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
986 
987 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
988 #define pte_unmap(pte)			do { } while(0)
989 
990 /* to find an entry in a kernel page-table-directory */
991 /* This now only contains the vmalloc pages */
992 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
993 
994 #define pte_ERROR(e) \
995 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
996 #define pmd_ERROR(e) \
997 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
998 #define pud_ERROR(e) \
999 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1000 #define pgd_ERROR(e) \
1001 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1002 
1003 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
1004 				  unsigned long flags)
1005 {
1006 	if (radix_enabled()) {
1007 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1008 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1009 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1010 #endif
1011 		return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
1012 	}
1013 	return hash__map_kernel_page(ea, pa, flags);
1014 }
1015 
1016 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1017 						   unsigned long page_size,
1018 						   unsigned long phys)
1019 {
1020 	if (radix_enabled())
1021 		return radix__vmemmap_create_mapping(start, page_size, phys);
1022 	return hash__vmemmap_create_mapping(start, page_size, phys);
1023 }
1024 
1025 #ifdef CONFIG_MEMORY_HOTPLUG
1026 static inline void vmemmap_remove_mapping(unsigned long start,
1027 					  unsigned long page_size)
1028 {
1029 	if (radix_enabled())
1030 		return radix__vmemmap_remove_mapping(start, page_size);
1031 	return hash__vmemmap_remove_mapping(start, page_size);
1032 }
1033 #endif
1034 struct page *realmode_pfn_to_page(unsigned long pfn);
1035 
1036 static inline pte_t pmd_pte(pmd_t pmd)
1037 {
1038 	return __pte_raw(pmd_raw(pmd));
1039 }
1040 
1041 static inline pmd_t pte_pmd(pte_t pte)
1042 {
1043 	return __pmd_raw(pte_raw(pte));
1044 }
1045 
1046 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1047 {
1048 	return (pte_t *)pmd;
1049 }
1050 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1051 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1052 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1053 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1054 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1055 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1056 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1057 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1058 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1059 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1060 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1061 
1062 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1063 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1064 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1065 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1066 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1067 
1068 #ifdef CONFIG_NUMA_BALANCING
1069 static inline int pmd_protnone(pmd_t pmd)
1070 {
1071 	return pte_protnone(pmd_pte(pmd));
1072 }
1073 #endif /* CONFIG_NUMA_BALANCING */
1074 
1075 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1076 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1077 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1078 
1079 #define pmd_access_permitted pmd_access_permitted
1080 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1081 {
1082 	return pte_access_permitted(pmd_pte(pmd), write);
1083 }
1084 
1085 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1086 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1087 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1088 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1089 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1090 		       pmd_t *pmdp, pmd_t pmd);
1091 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1092 				 pmd_t *pmd);
1093 extern int hash__has_transparent_hugepage(void);
1094 static inline int has_transparent_hugepage(void)
1095 {
1096 	if (radix_enabled())
1097 		return radix__has_transparent_hugepage();
1098 	return hash__has_transparent_hugepage();
1099 }
1100 #define has_transparent_hugepage has_transparent_hugepage
1101 
1102 static inline unsigned long
1103 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1104 		    unsigned long clr, unsigned long set)
1105 {
1106 	if (radix_enabled())
1107 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1108 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1109 }
1110 
1111 static inline int pmd_large(pmd_t pmd)
1112 {
1113 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1114 }
1115 
1116 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1117 {
1118 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1119 }
1120 /*
1121  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1122  * the below will work for radix too
1123  */
1124 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1125 					      unsigned long addr, pmd_t *pmdp)
1126 {
1127 	unsigned long old;
1128 
1129 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1130 		return 0;
1131 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1132 	return ((old & _PAGE_ACCESSED) != 0);
1133 }
1134 
1135 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1136 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1137 				      pmd_t *pmdp)
1138 {
1139 	if (__pmd_write((*pmdp)))
1140 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1141 	else if (unlikely(pmd_savedwrite(*pmdp)))
1142 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1143 }
1144 
1145 static inline int pmd_trans_huge(pmd_t pmd)
1146 {
1147 	if (radix_enabled())
1148 		return radix__pmd_trans_huge(pmd);
1149 	return hash__pmd_trans_huge(pmd);
1150 }
1151 
1152 #define __HAVE_ARCH_PMD_SAME
1153 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1154 {
1155 	if (radix_enabled())
1156 		return radix__pmd_same(pmd_a, pmd_b);
1157 	return hash__pmd_same(pmd_a, pmd_b);
1158 }
1159 
1160 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1161 {
1162 	if (radix_enabled())
1163 		return radix__pmd_mkhuge(pmd);
1164 	return hash__pmd_mkhuge(pmd);
1165 }
1166 
1167 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1168 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1169 				 unsigned long address, pmd_t *pmdp,
1170 				 pmd_t entry, int dirty);
1171 
1172 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1173 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1174 				     unsigned long address, pmd_t *pmdp);
1175 
1176 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1177 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1178 					    unsigned long addr, pmd_t *pmdp)
1179 {
1180 	if (radix_enabled())
1181 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1182 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1183 }
1184 
1185 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1186 					unsigned long address, pmd_t *pmdp)
1187 {
1188 	if (radix_enabled())
1189 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1190 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1191 }
1192 #define pmdp_collapse_flush pmdp_collapse_flush
1193 
1194 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1195 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1196 					      pmd_t *pmdp, pgtable_t pgtable)
1197 {
1198 	if (radix_enabled())
1199 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1200 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1201 }
1202 
1203 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1204 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1205 						    pmd_t *pmdp)
1206 {
1207 	if (radix_enabled())
1208 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1209 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1210 }
1211 
1212 #define __HAVE_ARCH_PMDP_INVALIDATE
1213 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1214 			     pmd_t *pmdp);
1215 
1216 #define pmd_move_must_withdraw pmd_move_must_withdraw
1217 struct spinlock;
1218 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1219 					 struct spinlock *old_pmd_ptl,
1220 					 struct vm_area_struct *vma)
1221 {
1222 	if (radix_enabled())
1223 		return false;
1224 	/*
1225 	 * Archs like ppc64 use pgtable to store per pmd
1226 	 * specific information. So when we switch the pmd,
1227 	 * we should also withdraw and deposit the pgtable
1228 	 */
1229 	return true;
1230 }
1231 
1232 
1233 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1234 static inline bool arch_needs_pgtable_deposit(void)
1235 {
1236 	if (radix_enabled())
1237 		return false;
1238 	return true;
1239 }
1240 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1241 
1242 
1243 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1244 {
1245 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1246 }
1247 
1248 static inline int pmd_devmap(pmd_t pmd)
1249 {
1250 	return pte_devmap(pmd_pte(pmd));
1251 }
1252 
1253 static inline int pud_devmap(pud_t pud)
1254 {
1255 	return 0;
1256 }
1257 
1258 static inline int pgd_devmap(pgd_t pgd)
1259 {
1260 	return 0;
1261 }
1262 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1263 
1264 static inline const int pud_pfn(pud_t pud)
1265 {
1266 	/*
1267 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1268 	 * check so this should never be used. If it grows another user we
1269 	 * want to know about it.
1270 	 */
1271 	BUILD_BUG();
1272 	return 0;
1273 }
1274 
1275 #endif /* __ASSEMBLY__ */
1276 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1277