1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 
4 #include <asm-generic/5level-fixup.h>
5 
6 #ifndef __ASSEMBLY__
7 #include <linux/mmdebug.h>
8 #endif
9 
10 /*
11  * Common bits between hash and Radix page table
12  */
13 #define _PAGE_BIT_SWAP_TYPE	0
14 
15 #define _PAGE_RO		0
16 #define _PAGE_SHARED		0
17 
18 #define _PAGE_EXEC		0x00001 /* execute permission */
19 #define _PAGE_WRITE		0x00002 /* write access allowed */
20 #define _PAGE_READ		0x00004	/* read access allowed */
21 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
22 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
23 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
24 #define _PAGE_SAO		0x00010 /* Strong access order */
25 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
26 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
27 #define _PAGE_DIRTY		0x00080 /* C: page changed */
28 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
29 /*
30  * Software bits
31  */
32 #define _RPAGE_SW0		0x2000000000000000UL
33 #define _RPAGE_SW1		0x00800
34 #define _RPAGE_SW2		0x00400
35 #define _RPAGE_SW3		0x00200
36 #define _RPAGE_RSV1		0x1000000000000000UL
37 #define _RPAGE_RSV2		0x0800000000000000UL
38 #define _RPAGE_RSV3		0x0400000000000000UL
39 #define _RPAGE_RSV4		0x0200000000000000UL
40 
41 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43 
44 /*
45  * Top and bottom bits of RPN which can be used by hash
46  * translation mode, because we expect them to be zero
47  * otherwise.
48  */
49 #define _RPAGE_RPN0		0x01000
50 #define _RPAGE_RPN1		0x02000
51 #define _RPAGE_RPN44		0x0100000000000000UL
52 #define _RPAGE_RPN43		0x0080000000000000UL
53 #define _RPAGE_RPN42		0x0040000000000000UL
54 #define _RPAGE_RPN41		0x0020000000000000UL
55 
56 /* Max physical address bit as per radix table */
57 #define _RPAGE_PA_MAX		57
58 
59 /*
60  * Max physical address bit we will use for now.
61  *
62  * This is mostly a hardware limitation and for now Power9 has
63  * a 51 bit limit.
64  *
65  * This is different from the number of physical bit required to address
66  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
67  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
68  * number of sections we can support (SECTIONS_SHIFT).
69  *
70  * This is different from Radix page table limitation above and
71  * should always be less than that. The limit is done such that
72  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
73  * for hash linux page table specific bits.
74  *
75  * In order to be compatible with future hardware generations we keep
76  * some offsets and limit this for now to 53
77  */
78 #define _PAGE_PA_MAX		53
79 
80 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
81 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
82 /*
83  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
84  * Instead of fixing all of them, add an alternate define which
85  * maps CI pte mapping.
86  */
87 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
88 /*
89  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
90  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
91  * and every thing below PAGE_SHIFT;
92  */
93 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
94 /*
95  * set of bits not changed in pmd_modify. Even though we have hash specific bits
96  * in here, on radix we expect them to be zero.
97  */
98 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
99 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
100 			 _PAGE_SOFT_DIRTY)
101 /*
102  * user access blocked by key
103  */
104 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
105 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
106 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
107 				 _PAGE_RW | _PAGE_EXEC)
108 /*
109  * No page size encoding in the linux PTE
110  */
111 #define _PAGE_PSIZE		0
112 /*
113  * _PAGE_CHG_MASK masks of bits that are to be preserved across
114  * pgprot changes
115  */
116 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
117 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
118 			 _PAGE_SOFT_DIRTY)
119 /*
120  * Mask of bits returned by pte_pgprot()
121  */
122 #define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
123 			 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
124 			 _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
125 			 _PAGE_SOFT_DIRTY)
126 /*
127  * We define 2 sets of base prot bits, one for basic pages (ie,
128  * cacheable kernel and user pages) and one for non cacheable
129  * pages. We always set _PAGE_COHERENT when SMP is enabled or
130  * the processor might need it for DMA coherency.
131  */
132 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
133 #define _PAGE_BASE	(_PAGE_BASE_NC)
134 
135 /* Permission masks used to generate the __P and __S table,
136  *
137  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
138  *
139  * Write permissions imply read permissions for now (we could make write-only
140  * pages on BookE but we don't bother for now). Execute permission control is
141  * possible on platforms that define _PAGE_EXEC
142  *
143  * Note due to the way vm flags are laid out, the bits are XWR
144  */
145 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
146 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
147 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
148 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
149 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
150 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 
153 #define __P000	PAGE_NONE
154 #define __P001	PAGE_READONLY
155 #define __P010	PAGE_COPY
156 #define __P011	PAGE_COPY
157 #define __P100	PAGE_READONLY_X
158 #define __P101	PAGE_READONLY_X
159 #define __P110	PAGE_COPY_X
160 #define __P111	PAGE_COPY_X
161 
162 #define __S000	PAGE_NONE
163 #define __S001	PAGE_READONLY
164 #define __S010	PAGE_SHARED
165 #define __S011	PAGE_SHARED
166 #define __S100	PAGE_READONLY_X
167 #define __S101	PAGE_READONLY_X
168 #define __S110	PAGE_SHARED_X
169 #define __S111	PAGE_SHARED_X
170 
171 /* Permission masks used for kernel mappings */
172 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
173 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
174 				 _PAGE_TOLERANT)
175 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
176 				 _PAGE_NON_IDEMPOTENT)
177 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
178 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
179 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
180 
181 /*
182  * Protection used for kernel text. We want the debuggers to be able to
183  * set breakpoints anywhere, so don't write protect the kernel text
184  * on platforms where such control is possible.
185  */
186 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
187 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
188 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
189 #else
190 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
191 #endif
192 
193 /* Make modules code happy. We don't set RO yet */
194 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
195 #define PAGE_AGP		(PAGE_KERNEL_NC)
196 
197 #ifndef __ASSEMBLY__
198 /*
199  * page table defines
200  */
201 extern unsigned long __pte_index_size;
202 extern unsigned long __pmd_index_size;
203 extern unsigned long __pud_index_size;
204 extern unsigned long __pgd_index_size;
205 extern unsigned long __pmd_cache_index;
206 #define PTE_INDEX_SIZE  __pte_index_size
207 #define PMD_INDEX_SIZE  __pmd_index_size
208 #define PUD_INDEX_SIZE  __pud_index_size
209 #define PGD_INDEX_SIZE  __pgd_index_size
210 #define PMD_CACHE_INDEX __pmd_cache_index
211 /*
212  * Because of use of pte fragments and THP, size of page table
213  * are not always derived out of index size above.
214  */
215 extern unsigned long __pte_table_size;
216 extern unsigned long __pmd_table_size;
217 extern unsigned long __pud_table_size;
218 extern unsigned long __pgd_table_size;
219 #define PTE_TABLE_SIZE	__pte_table_size
220 #define PMD_TABLE_SIZE	__pmd_table_size
221 #define PUD_TABLE_SIZE	__pud_table_size
222 #define PGD_TABLE_SIZE	__pgd_table_size
223 
224 extern unsigned long __pmd_val_bits;
225 extern unsigned long __pud_val_bits;
226 extern unsigned long __pgd_val_bits;
227 #define PMD_VAL_BITS	__pmd_val_bits
228 #define PUD_VAL_BITS	__pud_val_bits
229 #define PGD_VAL_BITS	__pgd_val_bits
230 
231 extern unsigned long __pte_frag_nr;
232 #define PTE_FRAG_NR __pte_frag_nr
233 extern unsigned long __pte_frag_size_shift;
234 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
235 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
236 
237 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
238 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
239 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
240 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
241 
242 /* PMD_SHIFT determines what a second-level page table entry can map */
243 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
244 #define PMD_SIZE	(1UL << PMD_SHIFT)
245 #define PMD_MASK	(~(PMD_SIZE-1))
246 
247 /* PUD_SHIFT determines what a third-level page table entry can map */
248 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
249 #define PUD_SIZE	(1UL << PUD_SHIFT)
250 #define PUD_MASK	(~(PUD_SIZE-1))
251 
252 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
253 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
254 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
255 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
256 
257 /* Bits to mask out from a PMD to get to the PTE page */
258 #define PMD_MASKED_BITS		0xc0000000000000ffUL
259 /* Bits to mask out from a PUD to get to the PMD page */
260 #define PUD_MASKED_BITS		0xc0000000000000ffUL
261 /* Bits to mask out from a PGD to get to the PUD page */
262 #define PGD_MASKED_BITS		0xc0000000000000ffUL
263 
264 extern unsigned long __vmalloc_start;
265 extern unsigned long __vmalloc_end;
266 #define VMALLOC_START	__vmalloc_start
267 #define VMALLOC_END	__vmalloc_end
268 
269 extern unsigned long __kernel_virt_start;
270 extern unsigned long __kernel_virt_size;
271 #define KERN_VIRT_START __kernel_virt_start
272 #define KERN_VIRT_SIZE  __kernel_virt_size
273 extern struct page *vmemmap;
274 extern unsigned long ioremap_bot;
275 extern unsigned long pci_io_base;
276 #endif /* __ASSEMBLY__ */
277 
278 #include <asm/book3s/64/hash.h>
279 #include <asm/book3s/64/radix.h>
280 
281 #ifdef CONFIG_PPC_64K_PAGES
282 #include <asm/book3s/64/pgtable-64k.h>
283 #else
284 #include <asm/book3s/64/pgtable-4k.h>
285 #endif
286 
287 #include <asm/barrier.h>
288 /*
289  * The second half of the kernel virtual space is used for IO mappings,
290  * it's itself carved into the PIO region (ISA and PHB IO space) and
291  * the ioremap space
292  *
293  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
294  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
295  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
296  */
297 #define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
298 #define FULL_IO_SIZE	0x80000000ul
299 #define  ISA_IO_BASE	(KERN_IO_START)
300 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
301 #define  PHB_IO_BASE	(ISA_IO_END)
302 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
303 #define IOREMAP_BASE	(PHB_IO_END)
304 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
305 
306 /* Advertise special mapping type for AGP */
307 #define HAVE_PAGE_AGP
308 
309 /* Advertise support for _PAGE_SPECIAL */
310 #define __HAVE_ARCH_PTE_SPECIAL
311 
312 #ifndef __ASSEMBLY__
313 
314 /*
315  * This is the default implementation of various PTE accessors, it's
316  * used in all cases except Book3S with 64K pages where we have a
317  * concept of sub-pages
318  */
319 #ifndef __real_pte
320 
321 #define __real_pte(e,p)		((real_pte_t){(e)})
322 #define __rpte_to_pte(r)	((r).pte)
323 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
324 
325 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
326 	do {							         \
327 		index = 0;					         \
328 		shift = mmu_psize_defs[psize].shift;		         \
329 
330 #define pte_iterate_hashed_end() } while(0)
331 
332 /*
333  * We expect this to be called only for user addresses or kernel virtual
334  * addresses other than the linear mapping.
335  */
336 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
337 
338 #endif /* __real_pte */
339 
340 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
341 				       pte_t *ptep, unsigned long clr,
342 				       unsigned long set, int huge)
343 {
344 	if (radix_enabled())
345 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
346 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
347 }
348 /*
349  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
350  * We currently remove entries from the hashtable regardless of whether
351  * the entry was young or dirty.
352  *
353  * We should be more intelligent about this but for the moment we override
354  * these functions and force a tlb flush unconditionally
355  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
356  * function for both hash and radix.
357  */
358 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
359 					      unsigned long addr, pte_t *ptep)
360 {
361 	unsigned long old;
362 
363 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
364 		return 0;
365 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
366 	return (old & _PAGE_ACCESSED) != 0;
367 }
368 
369 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
370 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
371 ({								\
372 	int __r;						\
373 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
374 	__r;							\
375 })
376 
377 static inline int __pte_write(pte_t pte)
378 {
379 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
380 }
381 
382 #ifdef CONFIG_NUMA_BALANCING
383 #define pte_savedwrite pte_savedwrite
384 static inline bool pte_savedwrite(pte_t pte)
385 {
386 	/*
387 	 * Saved write ptes are prot none ptes that doesn't have
388 	 * privileged bit sit. We mark prot none as one which has
389 	 * present and pviliged bit set and RWX cleared. To mark
390 	 * protnone which used to have _PAGE_WRITE set we clear
391 	 * the privileged bit.
392 	 */
393 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
394 }
395 #else
396 #define pte_savedwrite pte_savedwrite
397 static inline bool pte_savedwrite(pte_t pte)
398 {
399 	return false;
400 }
401 #endif
402 
403 static inline int pte_write(pte_t pte)
404 {
405 	return __pte_write(pte) || pte_savedwrite(pte);
406 }
407 
408 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
409 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
410 				      pte_t *ptep)
411 {
412 	if (__pte_write(*ptep))
413 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
414 	else if (unlikely(pte_savedwrite(*ptep)))
415 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
416 }
417 
418 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
419 					   unsigned long addr, pte_t *ptep)
420 {
421 	/*
422 	 * We should not find protnone for hugetlb, but this complete the
423 	 * interface.
424 	 */
425 	if (__pte_write(*ptep))
426 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
427 	else if (unlikely(pte_savedwrite(*ptep)))
428 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
429 }
430 
431 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
432 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
433 				       unsigned long addr, pte_t *ptep)
434 {
435 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
436 	return __pte(old);
437 }
438 
439 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
440 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
441 					    unsigned long addr,
442 					    pte_t *ptep, int full)
443 {
444 	if (full && radix_enabled()) {
445 		/*
446 		 * Let's skip the DD1 style pte update here. We know that
447 		 * this is a full mm pte clear and hence can be sure there is
448 		 * no parallel set_pte.
449 		 */
450 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
451 	}
452 	return ptep_get_and_clear(mm, addr, ptep);
453 }
454 
455 
456 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
457 			     pte_t * ptep)
458 {
459 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
460 }
461 
462 static inline int pte_dirty(pte_t pte)
463 {
464 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
465 }
466 
467 static inline int pte_young(pte_t pte)
468 {
469 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
470 }
471 
472 static inline int pte_special(pte_t pte)
473 {
474 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
475 }
476 
477 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
478 
479 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
480 static inline bool pte_soft_dirty(pte_t pte)
481 {
482 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
483 }
484 
485 static inline pte_t pte_mksoft_dirty(pte_t pte)
486 {
487 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
488 }
489 
490 static inline pte_t pte_clear_soft_dirty(pte_t pte)
491 {
492 	return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
493 }
494 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
495 
496 #ifdef CONFIG_NUMA_BALANCING
497 static inline int pte_protnone(pte_t pte)
498 {
499 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
500 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
501 }
502 
503 #define pte_mk_savedwrite pte_mk_savedwrite
504 static inline pte_t pte_mk_savedwrite(pte_t pte)
505 {
506 	/*
507 	 * Used by Autonuma subsystem to preserve the write bit
508 	 * while marking the pte PROT_NONE. Only allow this
509 	 * on PROT_NONE pte
510 	 */
511 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
512 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
513 	return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
514 }
515 
516 #define pte_clear_savedwrite pte_clear_savedwrite
517 static inline pte_t pte_clear_savedwrite(pte_t pte)
518 {
519 	/*
520 	 * Used by KSM subsystem to make a protnone pte readonly.
521 	 */
522 	VM_BUG_ON(!pte_protnone(pte));
523 	return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
524 }
525 #else
526 #define pte_clear_savedwrite pte_clear_savedwrite
527 static inline pte_t pte_clear_savedwrite(pte_t pte)
528 {
529 	VM_WARN_ON(1);
530 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
531 }
532 #endif /* CONFIG_NUMA_BALANCING */
533 
534 static inline int pte_present(pte_t pte)
535 {
536 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
537 }
538 /*
539  * Conversion functions: convert a page and protection to a page entry,
540  * and a page entry and page directory to the page they refer to.
541  *
542  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
543  * long for now.
544  */
545 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
546 {
547 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
548 		     pgprot_val(pgprot));
549 }
550 
551 static inline unsigned long pte_pfn(pte_t pte)
552 {
553 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
554 }
555 
556 /* Generic modifiers for PTE bits */
557 static inline pte_t pte_wrprotect(pte_t pte)
558 {
559 	if (unlikely(pte_savedwrite(pte)))
560 		return pte_clear_savedwrite(pte);
561 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
562 }
563 
564 static inline pte_t pte_mkclean(pte_t pte)
565 {
566 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
567 }
568 
569 static inline pte_t pte_mkold(pte_t pte)
570 {
571 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
572 }
573 
574 static inline pte_t pte_mkwrite(pte_t pte)
575 {
576 	/*
577 	 * write implies read, hence set both
578 	 */
579 	return __pte(pte_val(pte) | _PAGE_RW);
580 }
581 
582 static inline pte_t pte_mkdirty(pte_t pte)
583 {
584 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
585 }
586 
587 static inline pte_t pte_mkyoung(pte_t pte)
588 {
589 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
590 }
591 
592 static inline pte_t pte_mkspecial(pte_t pte)
593 {
594 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
595 }
596 
597 static inline pte_t pte_mkhuge(pte_t pte)
598 {
599 	return pte;
600 }
601 
602 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
603 {
604 	/* FIXME!! check whether this need to be a conditional */
605 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
606 }
607 
608 static inline bool pte_user(pte_t pte)
609 {
610 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
611 }
612 
613 /* Encode and de-code a swap entry */
614 #define MAX_SWAPFILES_CHECK() do { \
615 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
616 	/*							\
617 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
618 	 * We filter HPTEFLAGS on set_pte.			\
619 	 */							\
620 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
621 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
622 	} while (0)
623 /*
624  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
625  */
626 #define SWP_TYPE_BITS 5
627 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
628 				& ((1UL << SWP_TYPE_BITS) - 1))
629 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
630 #define __swp_entry(type, offset)	((swp_entry_t) { \
631 				((type) << _PAGE_BIT_SWAP_TYPE) \
632 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
633 /*
634  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
635  * swap type and offset we get from swap and convert that to pte to find a
636  * matching pte in linux page table.
637  * Clear bits not found in swap entries here.
638  */
639 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
640 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
641 
642 #ifdef CONFIG_MEM_SOFT_DIRTY
643 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
644 #else
645 #define _PAGE_SWP_SOFT_DIRTY	0UL
646 #endif /* CONFIG_MEM_SOFT_DIRTY */
647 
648 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
649 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
650 {
651 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
652 }
653 
654 static inline bool pte_swp_soft_dirty(pte_t pte)
655 {
656 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
657 }
658 
659 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
660 {
661 	return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
662 }
663 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
664 
665 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
666 {
667 	/*
668 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
669 	 */
670 	if (access & ~ptev)
671 		return false;
672 	/*
673 	 * This check for access to privilege space
674 	 */
675 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
676 		return false;
677 
678 	return true;
679 }
680 /*
681  * Generic functions with hash/radix callbacks
682  */
683 
684 static inline void __ptep_set_access_flags(struct mm_struct *mm,
685 					   pte_t *ptep, pte_t entry,
686 					   unsigned long address)
687 {
688 	if (radix_enabled())
689 		return radix__ptep_set_access_flags(mm, ptep, entry, address);
690 	return hash__ptep_set_access_flags(ptep, entry);
691 }
692 
693 #define __HAVE_ARCH_PTE_SAME
694 static inline int pte_same(pte_t pte_a, pte_t pte_b)
695 {
696 	if (radix_enabled())
697 		return radix__pte_same(pte_a, pte_b);
698 	return hash__pte_same(pte_a, pte_b);
699 }
700 
701 static inline int pte_none(pte_t pte)
702 {
703 	if (radix_enabled())
704 		return radix__pte_none(pte);
705 	return hash__pte_none(pte);
706 }
707 
708 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
709 				pte_t *ptep, pte_t pte, int percpu)
710 {
711 	if (radix_enabled())
712 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
713 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
714 }
715 
716 #define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
717 
718 #define pgprot_noncached pgprot_noncached
719 static inline pgprot_t pgprot_noncached(pgprot_t prot)
720 {
721 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
722 			_PAGE_NON_IDEMPOTENT);
723 }
724 
725 #define pgprot_noncached_wc pgprot_noncached_wc
726 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
727 {
728 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
729 			_PAGE_TOLERANT);
730 }
731 
732 #define pgprot_cached pgprot_cached
733 static inline pgprot_t pgprot_cached(pgprot_t prot)
734 {
735 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
736 }
737 
738 #define pgprot_writecombine pgprot_writecombine
739 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
740 {
741 	return pgprot_noncached_wc(prot);
742 }
743 /*
744  * check a pte mapping have cache inhibited property
745  */
746 static inline bool pte_ci(pte_t pte)
747 {
748 	unsigned long pte_v = pte_val(pte);
749 
750 	if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
751 	    ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
752 		return true;
753 	return false;
754 }
755 
756 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
757 {
758 	*pmdp = __pmd(val);
759 }
760 
761 static inline void pmd_clear(pmd_t *pmdp)
762 {
763 	*pmdp = __pmd(0);
764 }
765 
766 static inline int pmd_none(pmd_t pmd)
767 {
768 	return !pmd_raw(pmd);
769 }
770 
771 static inline int pmd_present(pmd_t pmd)
772 {
773 
774 	return !pmd_none(pmd);
775 }
776 
777 static inline int pmd_bad(pmd_t pmd)
778 {
779 	if (radix_enabled())
780 		return radix__pmd_bad(pmd);
781 	return hash__pmd_bad(pmd);
782 }
783 
784 static inline void pud_set(pud_t *pudp, unsigned long val)
785 {
786 	*pudp = __pud(val);
787 }
788 
789 static inline void pud_clear(pud_t *pudp)
790 {
791 	*pudp = __pud(0);
792 }
793 
794 static inline int pud_none(pud_t pud)
795 {
796 	return !pud_raw(pud);
797 }
798 
799 static inline int pud_present(pud_t pud)
800 {
801 	return !pud_none(pud);
802 }
803 
804 extern struct page *pud_page(pud_t pud);
805 extern struct page *pmd_page(pmd_t pmd);
806 static inline pte_t pud_pte(pud_t pud)
807 {
808 	return __pte_raw(pud_raw(pud));
809 }
810 
811 static inline pud_t pte_pud(pte_t pte)
812 {
813 	return __pud_raw(pte_raw(pte));
814 }
815 #define pud_write(pud)		pte_write(pud_pte(pud))
816 
817 static inline int pud_bad(pud_t pud)
818 {
819 	if (radix_enabled())
820 		return radix__pud_bad(pud);
821 	return hash__pud_bad(pud);
822 }
823 
824 
825 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
826 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
827 {
828 	*pgdp = __pgd(val);
829 }
830 
831 static inline void pgd_clear(pgd_t *pgdp)
832 {
833 	*pgdp = __pgd(0);
834 }
835 
836 static inline int pgd_none(pgd_t pgd)
837 {
838 	return !pgd_raw(pgd);
839 }
840 
841 static inline int pgd_present(pgd_t pgd)
842 {
843 	return !pgd_none(pgd);
844 }
845 
846 static inline pte_t pgd_pte(pgd_t pgd)
847 {
848 	return __pte_raw(pgd_raw(pgd));
849 }
850 
851 static inline pgd_t pte_pgd(pte_t pte)
852 {
853 	return __pgd_raw(pte_raw(pte));
854 }
855 
856 static inline int pgd_bad(pgd_t pgd)
857 {
858 	if (radix_enabled())
859 		return radix__pgd_bad(pgd);
860 	return hash__pgd_bad(pgd);
861 }
862 
863 extern struct page *pgd_page(pgd_t pgd);
864 
865 /* Pointers in the page table tree are physical addresses */
866 #define __pgtable_ptr_val(ptr)	__pa(ptr)
867 
868 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
869 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
870 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
871 
872 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
873 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
874 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
875 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
876 
877 /*
878  * Find an entry in a page-table-directory.  We combine the address region
879  * (the high order N bits) and the pgd portion of the address.
880  */
881 
882 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
883 
884 #define pud_offset(pgdp, addr)	\
885 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
886 #define pmd_offset(pudp,addr) \
887 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
888 #define pte_offset_kernel(dir,addr) \
889 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
890 
891 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
892 #define pte_unmap(pte)			do { } while(0)
893 
894 /* to find an entry in a kernel page-table-directory */
895 /* This now only contains the vmalloc pages */
896 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
897 
898 #define pte_ERROR(e) \
899 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
900 #define pmd_ERROR(e) \
901 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
902 #define pud_ERROR(e) \
903 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
904 #define pgd_ERROR(e) \
905 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
906 
907 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
908 				  unsigned long flags)
909 {
910 	if (radix_enabled()) {
911 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
912 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
913 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
914 #endif
915 		return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
916 	}
917 	return hash__map_kernel_page(ea, pa, flags);
918 }
919 
920 static inline int __meminit vmemmap_create_mapping(unsigned long start,
921 						   unsigned long page_size,
922 						   unsigned long phys)
923 {
924 	if (radix_enabled())
925 		return radix__vmemmap_create_mapping(start, page_size, phys);
926 	return hash__vmemmap_create_mapping(start, page_size, phys);
927 }
928 
929 #ifdef CONFIG_MEMORY_HOTPLUG
930 static inline void vmemmap_remove_mapping(unsigned long start,
931 					  unsigned long page_size)
932 {
933 	if (radix_enabled())
934 		return radix__vmemmap_remove_mapping(start, page_size);
935 	return hash__vmemmap_remove_mapping(start, page_size);
936 }
937 #endif
938 struct page *realmode_pfn_to_page(unsigned long pfn);
939 
940 static inline pte_t pmd_pte(pmd_t pmd)
941 {
942 	return __pte_raw(pmd_raw(pmd));
943 }
944 
945 static inline pmd_t pte_pmd(pte_t pte)
946 {
947 	return __pmd_raw(pte_raw(pte));
948 }
949 
950 static inline pte_t *pmdp_ptep(pmd_t *pmd)
951 {
952 	return (pte_t *)pmd;
953 }
954 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
955 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
956 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
957 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
958 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
959 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
960 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
961 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
962 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
963 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
964 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
965 
966 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
967 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
968 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
969 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
970 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
971 
972 #ifdef CONFIG_NUMA_BALANCING
973 static inline int pmd_protnone(pmd_t pmd)
974 {
975 	return pte_protnone(pmd_pte(pmd));
976 }
977 #endif /* CONFIG_NUMA_BALANCING */
978 
979 #define __HAVE_ARCH_PMD_WRITE
980 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
981 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
982 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
983 
984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
985 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
986 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
987 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
988 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
989 		       pmd_t *pmdp, pmd_t pmd);
990 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
991 				 pmd_t *pmd);
992 extern int hash__has_transparent_hugepage(void);
993 static inline int has_transparent_hugepage(void)
994 {
995 	if (radix_enabled())
996 		return radix__has_transparent_hugepage();
997 	return hash__has_transparent_hugepage();
998 }
999 #define has_transparent_hugepage has_transparent_hugepage
1000 
1001 static inline unsigned long
1002 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1003 		    unsigned long clr, unsigned long set)
1004 {
1005 	if (radix_enabled())
1006 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1007 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1008 }
1009 
1010 static inline int pmd_large(pmd_t pmd)
1011 {
1012 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1013 }
1014 
1015 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1016 {
1017 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1018 }
1019 /*
1020  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1021  * the below will work for radix too
1022  */
1023 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1024 					      unsigned long addr, pmd_t *pmdp)
1025 {
1026 	unsigned long old;
1027 
1028 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1029 		return 0;
1030 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1031 	return ((old & _PAGE_ACCESSED) != 0);
1032 }
1033 
1034 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1035 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1036 				      pmd_t *pmdp)
1037 {
1038 	if (__pmd_write((*pmdp)))
1039 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1040 	else if (unlikely(pmd_savedwrite(*pmdp)))
1041 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1042 }
1043 
1044 static inline int pmd_trans_huge(pmd_t pmd)
1045 {
1046 	if (radix_enabled())
1047 		return radix__pmd_trans_huge(pmd);
1048 	return hash__pmd_trans_huge(pmd);
1049 }
1050 
1051 #define __HAVE_ARCH_PMD_SAME
1052 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1053 {
1054 	if (radix_enabled())
1055 		return radix__pmd_same(pmd_a, pmd_b);
1056 	return hash__pmd_same(pmd_a, pmd_b);
1057 }
1058 
1059 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1060 {
1061 	if (radix_enabled())
1062 		return radix__pmd_mkhuge(pmd);
1063 	return hash__pmd_mkhuge(pmd);
1064 }
1065 
1066 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1067 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1068 				 unsigned long address, pmd_t *pmdp,
1069 				 pmd_t entry, int dirty);
1070 
1071 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1072 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1073 				     unsigned long address, pmd_t *pmdp);
1074 
1075 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1076 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1077 					    unsigned long addr, pmd_t *pmdp)
1078 {
1079 	if (radix_enabled())
1080 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1081 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1082 }
1083 
1084 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1085 					unsigned long address, pmd_t *pmdp)
1086 {
1087 	if (radix_enabled())
1088 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1089 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1090 }
1091 #define pmdp_collapse_flush pmdp_collapse_flush
1092 
1093 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1094 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1095 					      pmd_t *pmdp, pgtable_t pgtable)
1096 {
1097 	if (radix_enabled())
1098 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1099 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1100 }
1101 
1102 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1103 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1104 						    pmd_t *pmdp)
1105 {
1106 	if (radix_enabled())
1107 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1108 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1109 }
1110 
1111 #define __HAVE_ARCH_PMDP_INVALIDATE
1112 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1113 			    pmd_t *pmdp);
1114 
1115 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1116 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1117 					   unsigned long address, pmd_t *pmdp)
1118 {
1119 	if (radix_enabled())
1120 		return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1121 	return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1122 }
1123 
1124 #define pmd_move_must_withdraw pmd_move_must_withdraw
1125 struct spinlock;
1126 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1127 					 struct spinlock *old_pmd_ptl,
1128 					 struct vm_area_struct *vma)
1129 {
1130 	if (radix_enabled())
1131 		return false;
1132 	/*
1133 	 * Archs like ppc64 use pgtable to store per pmd
1134 	 * specific information. So when we switch the pmd,
1135 	 * we should also withdraw and deposit the pgtable
1136 	 */
1137 	return true;
1138 }
1139 
1140 
1141 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1142 static inline bool arch_needs_pgtable_deposit(void)
1143 {
1144 	if (radix_enabled())
1145 		return false;
1146 	return true;
1147 }
1148 
1149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1150 #endif /* __ASSEMBLY__ */
1151 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1152