1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/5level-fixup.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_NA		0
18 #define _PAGE_RO		0
19 #define _PAGE_USER		0
20 
21 #define _PAGE_EXEC		0x00001 /* execute permission */
22 #define _PAGE_WRITE		0x00002 /* write access allowed */
23 #define _PAGE_READ		0x00004	/* read access allowed */
24 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
25 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
26 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
27 #define _PAGE_SAO		0x00010 /* Strong access order */
28 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
29 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
30 #define _PAGE_DIRTY		0x00080 /* C: page changed */
31 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
32 /*
33  * Software bits
34  */
35 #define _RPAGE_SW0		0x2000000000000000UL
36 #define _RPAGE_SW1		0x00800
37 #define _RPAGE_SW2		0x00400
38 #define _RPAGE_SW3		0x00200
39 #define _RPAGE_RSV1		0x1000000000000000UL
40 #define _RPAGE_RSV2		0x0800000000000000UL
41 #define _RPAGE_RSV3		0x0400000000000000UL
42 #define _RPAGE_RSV4		0x0200000000000000UL
43 #define _RPAGE_RSV5		0x00040UL
44 
45 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
46 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
47 
48 /*
49  * Top and bottom bits of RPN which can be used by hash
50  * translation mode, because we expect them to be zero
51  * otherwise.
52  */
53 #define _RPAGE_RPN0		0x01000
54 #define _RPAGE_RPN1		0x02000
55 #define _RPAGE_RPN44		0x0100000000000000UL
56 #define _RPAGE_RPN43		0x0080000000000000UL
57 #define _RPAGE_RPN42		0x0040000000000000UL
58 #define _RPAGE_RPN41		0x0020000000000000UL
59 
60 /* Max physical address bit as per radix table */
61 #define _RPAGE_PA_MAX		57
62 
63 /*
64  * Max physical address bit we will use for now.
65  *
66  * This is mostly a hardware limitation and for now Power9 has
67  * a 51 bit limit.
68  *
69  * This is different from the number of physical bit required to address
70  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
71  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
72  * number of sections we can support (SECTIONS_SHIFT).
73  *
74  * This is different from Radix page table limitation above and
75  * should always be less than that. The limit is done such that
76  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
77  * for hash linux page table specific bits.
78  *
79  * In order to be compatible with future hardware generations we keep
80  * some offsets and limit this for now to 53
81  */
82 #define _PAGE_PA_MAX		53
83 
84 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
85 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
86 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
87 #define __HAVE_ARCH_PTE_DEVMAP
88 
89 /*
90  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
91  * Instead of fixing all of them, add an alternate define which
92  * maps CI pte mapping.
93  */
94 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
95 /*
96  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
97  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
98  * and every thing below PAGE_SHIFT;
99  */
100 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
101 /*
102  * set of bits not changed in pmd_modify. Even though we have hash specific bits
103  * in here, on radix we expect them to be zero.
104  */
105 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
106 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
107 			 _PAGE_SOFT_DIRTY)
108 /*
109  * user access blocked by key
110  */
111 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
112 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
113 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
114 				 _PAGE_RW | _PAGE_EXEC)
115 /*
116  * No page size encoding in the linux PTE
117  */
118 #define _PAGE_PSIZE		0
119 /*
120  * _PAGE_CHG_MASK masks of bits that are to be preserved across
121  * pgprot changes
122  */
123 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
124 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
125 			 _PAGE_SOFT_DIRTY)
126 
127 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
128 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
129 /*
130  * Mask of bits returned by pte_pgprot()
131  */
132 #define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
133 			 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
134 			 _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
135 			 _PAGE_SOFT_DIRTY | H_PTE_PKEY)
136 /*
137  * We define 2 sets of base prot bits, one for basic pages (ie,
138  * cacheable kernel and user pages) and one for non cacheable
139  * pages. We always set _PAGE_COHERENT when SMP is enabled or
140  * the processor might need it for DMA coherency.
141  */
142 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
143 #define _PAGE_BASE	(_PAGE_BASE_NC)
144 
145 /* Permission masks used to generate the __P and __S table,
146  *
147  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
148  *
149  * Write permissions imply read permissions for now (we could make write-only
150  * pages on BookE but we don't bother for now). Execute permission control is
151  * possible on platforms that define _PAGE_EXEC
152  *
153  * Note due to the way vm flags are laid out, the bits are XWR
154  */
155 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
156 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
157 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
158 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
159 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
160 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
161 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
162 
163 #define __P000	PAGE_NONE
164 #define __P001	PAGE_READONLY
165 #define __P010	PAGE_COPY
166 #define __P011	PAGE_COPY
167 #define __P100	PAGE_READONLY_X
168 #define __P101	PAGE_READONLY_X
169 #define __P110	PAGE_COPY_X
170 #define __P111	PAGE_COPY_X
171 
172 #define __S000	PAGE_NONE
173 #define __S001	PAGE_READONLY
174 #define __S010	PAGE_SHARED
175 #define __S011	PAGE_SHARED
176 #define __S100	PAGE_READONLY_X
177 #define __S101	PAGE_READONLY_X
178 #define __S110	PAGE_SHARED_X
179 #define __S111	PAGE_SHARED_X
180 
181 /* Permission masks used for kernel mappings */
182 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
183 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
184 				 _PAGE_TOLERANT)
185 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
186 				 _PAGE_NON_IDEMPOTENT)
187 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
188 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
189 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
190 
191 /*
192  * Protection used for kernel text. We want the debuggers to be able to
193  * set breakpoints anywhere, so don't write protect the kernel text
194  * on platforms where such control is possible.
195  */
196 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
197 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
198 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
199 #else
200 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
201 #endif
202 
203 /* Make modules code happy. We don't set RO yet */
204 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
205 #define PAGE_AGP		(PAGE_KERNEL_NC)
206 
207 #ifndef __ASSEMBLY__
208 /*
209  * page table defines
210  */
211 extern unsigned long __pte_index_size;
212 extern unsigned long __pmd_index_size;
213 extern unsigned long __pud_index_size;
214 extern unsigned long __pgd_index_size;
215 extern unsigned long __pud_cache_index;
216 #define PTE_INDEX_SIZE  __pte_index_size
217 #define PMD_INDEX_SIZE  __pmd_index_size
218 #define PUD_INDEX_SIZE  __pud_index_size
219 #define PGD_INDEX_SIZE  __pgd_index_size
220 /* pmd table use page table fragments */
221 #define PMD_CACHE_INDEX  0
222 #define PUD_CACHE_INDEX __pud_cache_index
223 /*
224  * Because of use of pte fragments and THP, size of page table
225  * are not always derived out of index size above.
226  */
227 extern unsigned long __pte_table_size;
228 extern unsigned long __pmd_table_size;
229 extern unsigned long __pud_table_size;
230 extern unsigned long __pgd_table_size;
231 #define PTE_TABLE_SIZE	__pte_table_size
232 #define PMD_TABLE_SIZE	__pmd_table_size
233 #define PUD_TABLE_SIZE	__pud_table_size
234 #define PGD_TABLE_SIZE	__pgd_table_size
235 
236 extern unsigned long __pmd_val_bits;
237 extern unsigned long __pud_val_bits;
238 extern unsigned long __pgd_val_bits;
239 #define PMD_VAL_BITS	__pmd_val_bits
240 #define PUD_VAL_BITS	__pud_val_bits
241 #define PGD_VAL_BITS	__pgd_val_bits
242 
243 extern unsigned long __pte_frag_nr;
244 #define PTE_FRAG_NR __pte_frag_nr
245 extern unsigned long __pte_frag_size_shift;
246 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
247 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
248 
249 extern unsigned long __pmd_frag_nr;
250 #define PMD_FRAG_NR __pmd_frag_nr
251 extern unsigned long __pmd_frag_size_shift;
252 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
253 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
254 
255 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
256 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
257 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
258 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
259 
260 /* PMD_SHIFT determines what a second-level page table entry can map */
261 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
262 #define PMD_SIZE	(1UL << PMD_SHIFT)
263 #define PMD_MASK	(~(PMD_SIZE-1))
264 
265 /* PUD_SHIFT determines what a third-level page table entry can map */
266 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
267 #define PUD_SIZE	(1UL << PUD_SHIFT)
268 #define PUD_MASK	(~(PUD_SIZE-1))
269 
270 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
271 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
272 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
273 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
274 
275 /* Bits to mask out from a PMD to get to the PTE page */
276 #define PMD_MASKED_BITS		0xc0000000000000ffUL
277 /* Bits to mask out from a PUD to get to the PMD page */
278 #define PUD_MASKED_BITS		0xc0000000000000ffUL
279 /* Bits to mask out from a PGD to get to the PUD page */
280 #define PGD_MASKED_BITS		0xc0000000000000ffUL
281 
282 /*
283  * Used as an indicator for rcu callback functions
284  */
285 enum pgtable_index {
286 	PTE_INDEX = 0,
287 	PMD_INDEX,
288 	PUD_INDEX,
289 	PGD_INDEX,
290 	/*
291 	 * Below are used with 4k page size and hugetlb
292 	 */
293 	HTLB_16M_INDEX,
294 	HTLB_16G_INDEX,
295 };
296 
297 extern unsigned long __vmalloc_start;
298 extern unsigned long __vmalloc_end;
299 #define VMALLOC_START	__vmalloc_start
300 #define VMALLOC_END	__vmalloc_end
301 
302 extern unsigned long __kernel_virt_start;
303 extern unsigned long __kernel_virt_size;
304 extern unsigned long __kernel_io_start;
305 #define KERN_VIRT_START __kernel_virt_start
306 #define KERN_VIRT_SIZE  __kernel_virt_size
307 #define KERN_IO_START  __kernel_io_start
308 extern struct page *vmemmap;
309 extern unsigned long ioremap_bot;
310 extern unsigned long pci_io_base;
311 #endif /* __ASSEMBLY__ */
312 
313 #include <asm/book3s/64/hash.h>
314 #include <asm/book3s/64/radix.h>
315 
316 #ifdef CONFIG_PPC_64K_PAGES
317 #include <asm/book3s/64/pgtable-64k.h>
318 #else
319 #include <asm/book3s/64/pgtable-4k.h>
320 #endif
321 
322 #include <asm/barrier.h>
323 /*
324  * The second half of the kernel virtual space is used for IO mappings,
325  * it's itself carved into the PIO region (ISA and PHB IO space) and
326  * the ioremap space
327  *
328  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
329  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
330  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
331  */
332 #define FULL_IO_SIZE	0x80000000ul
333 #define  ISA_IO_BASE	(KERN_IO_START)
334 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
335 #define  PHB_IO_BASE	(ISA_IO_END)
336 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
337 #define IOREMAP_BASE	(PHB_IO_END)
338 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
339 
340 /* Advertise special mapping type for AGP */
341 #define HAVE_PAGE_AGP
342 
343 #ifndef __ASSEMBLY__
344 
345 /*
346  * This is the default implementation of various PTE accessors, it's
347  * used in all cases except Book3S with 64K pages where we have a
348  * concept of sub-pages
349  */
350 #ifndef __real_pte
351 
352 #define __real_pte(e, p, o)		((real_pte_t){(e)})
353 #define __rpte_to_pte(r)	((r).pte)
354 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
355 
356 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
357 	do {							         \
358 		index = 0;					         \
359 		shift = mmu_psize_defs[psize].shift;		         \
360 
361 #define pte_iterate_hashed_end() } while(0)
362 
363 /*
364  * We expect this to be called only for user addresses or kernel virtual
365  * addresses other than the linear mapping.
366  */
367 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
368 
369 #endif /* __real_pte */
370 
371 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
372 				       pte_t *ptep, unsigned long clr,
373 				       unsigned long set, int huge)
374 {
375 	if (radix_enabled())
376 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
377 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
378 }
379 /*
380  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
381  * We currently remove entries from the hashtable regardless of whether
382  * the entry was young or dirty.
383  *
384  * We should be more intelligent about this but for the moment we override
385  * these functions and force a tlb flush unconditionally
386  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
387  * function for both hash and radix.
388  */
389 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
390 					      unsigned long addr, pte_t *ptep)
391 {
392 	unsigned long old;
393 
394 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
395 		return 0;
396 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
397 	return (old & _PAGE_ACCESSED) != 0;
398 }
399 
400 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
401 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
402 ({								\
403 	int __r;						\
404 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
405 	__r;							\
406 })
407 
408 static inline int __pte_write(pte_t pte)
409 {
410 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
411 }
412 
413 #ifdef CONFIG_NUMA_BALANCING
414 #define pte_savedwrite pte_savedwrite
415 static inline bool pte_savedwrite(pte_t pte)
416 {
417 	/*
418 	 * Saved write ptes are prot none ptes that doesn't have
419 	 * privileged bit sit. We mark prot none as one which has
420 	 * present and pviliged bit set and RWX cleared. To mark
421 	 * protnone which used to have _PAGE_WRITE set we clear
422 	 * the privileged bit.
423 	 */
424 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
425 }
426 #else
427 #define pte_savedwrite pte_savedwrite
428 static inline bool pte_savedwrite(pte_t pte)
429 {
430 	return false;
431 }
432 #endif
433 
434 static inline int pte_write(pte_t pte)
435 {
436 	return __pte_write(pte) || pte_savedwrite(pte);
437 }
438 
439 static inline int pte_read(pte_t pte)
440 {
441 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
442 }
443 
444 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
445 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
446 				      pte_t *ptep)
447 {
448 	if (__pte_write(*ptep))
449 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
450 	else if (unlikely(pte_savedwrite(*ptep)))
451 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
452 }
453 
454 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
455 					   unsigned long addr, pte_t *ptep)
456 {
457 	/*
458 	 * We should not find protnone for hugetlb, but this complete the
459 	 * interface.
460 	 */
461 	if (__pte_write(*ptep))
462 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
463 	else if (unlikely(pte_savedwrite(*ptep)))
464 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
465 }
466 
467 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
468 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
469 				       unsigned long addr, pte_t *ptep)
470 {
471 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
472 	return __pte(old);
473 }
474 
475 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
476 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
477 					    unsigned long addr,
478 					    pte_t *ptep, int full)
479 {
480 	if (full && radix_enabled()) {
481 		/*
482 		 * We know that this is a full mm pte clear and
483 		 * hence can be sure there is no parallel set_pte.
484 		 */
485 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
486 	}
487 	return ptep_get_and_clear(mm, addr, ptep);
488 }
489 
490 
491 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
492 			     pte_t * ptep)
493 {
494 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
495 }
496 
497 static inline int pte_dirty(pte_t pte)
498 {
499 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
500 }
501 
502 static inline int pte_young(pte_t pte)
503 {
504 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
505 }
506 
507 static inline int pte_special(pte_t pte)
508 {
509 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
510 }
511 
512 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
513 
514 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
515 static inline bool pte_soft_dirty(pte_t pte)
516 {
517 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
518 }
519 
520 static inline pte_t pte_mksoft_dirty(pte_t pte)
521 {
522 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
523 }
524 
525 static inline pte_t pte_clear_soft_dirty(pte_t pte)
526 {
527 	return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
528 }
529 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
530 
531 #ifdef CONFIG_NUMA_BALANCING
532 static inline int pte_protnone(pte_t pte)
533 {
534 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
535 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
536 }
537 
538 #define pte_mk_savedwrite pte_mk_savedwrite
539 static inline pte_t pte_mk_savedwrite(pte_t pte)
540 {
541 	/*
542 	 * Used by Autonuma subsystem to preserve the write bit
543 	 * while marking the pte PROT_NONE. Only allow this
544 	 * on PROT_NONE pte
545 	 */
546 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
547 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
548 	return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
549 }
550 
551 #define pte_clear_savedwrite pte_clear_savedwrite
552 static inline pte_t pte_clear_savedwrite(pte_t pte)
553 {
554 	/*
555 	 * Used by KSM subsystem to make a protnone pte readonly.
556 	 */
557 	VM_BUG_ON(!pte_protnone(pte));
558 	return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
559 }
560 #else
561 #define pte_clear_savedwrite pte_clear_savedwrite
562 static inline pte_t pte_clear_savedwrite(pte_t pte)
563 {
564 	VM_WARN_ON(1);
565 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
566 }
567 #endif /* CONFIG_NUMA_BALANCING */
568 
569 static inline int pte_present(pte_t pte)
570 {
571 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
572 }
573 
574 #ifdef CONFIG_PPC_MEM_KEYS
575 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
576 #else
577 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
578 {
579 	return true;
580 }
581 #endif /* CONFIG_PPC_MEM_KEYS */
582 
583 #define pte_access_permitted pte_access_permitted
584 static inline bool pte_access_permitted(pte_t pte, bool write)
585 {
586 	unsigned long pteval = pte_val(pte);
587 	/* Also check for pte_user */
588 	unsigned long clear_pte_bits = _PAGE_PRIVILEGED;
589 	/*
590 	 * _PAGE_READ is needed for any access and will be
591 	 * cleared for PROT_NONE
592 	 */
593 	unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ;
594 
595 	if (write)
596 		need_pte_bits |= _PAGE_WRITE;
597 
598 	if ((pteval & need_pte_bits) != need_pte_bits)
599 		return false;
600 
601 	if ((pteval & clear_pte_bits) == clear_pte_bits)
602 		return false;
603 
604 	return arch_pte_access_permitted(pte_val(pte), write, 0);
605 }
606 
607 /*
608  * Conversion functions: convert a page and protection to a page entry,
609  * and a page entry and page directory to the page they refer to.
610  *
611  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
612  * long for now.
613  */
614 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
615 {
616 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
617 		     pgprot_val(pgprot));
618 }
619 
620 static inline unsigned long pte_pfn(pte_t pte)
621 {
622 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
623 }
624 
625 /* Generic modifiers for PTE bits */
626 static inline pte_t pte_wrprotect(pte_t pte)
627 {
628 	if (unlikely(pte_savedwrite(pte)))
629 		return pte_clear_savedwrite(pte);
630 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
631 }
632 
633 static inline pte_t pte_mkclean(pte_t pte)
634 {
635 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
636 }
637 
638 static inline pte_t pte_mkold(pte_t pte)
639 {
640 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
641 }
642 
643 static inline pte_t pte_mkwrite(pte_t pte)
644 {
645 	/*
646 	 * write implies read, hence set both
647 	 */
648 	return __pte(pte_val(pte) | _PAGE_RW);
649 }
650 
651 static inline pte_t pte_mkdirty(pte_t pte)
652 {
653 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
654 }
655 
656 static inline pte_t pte_mkyoung(pte_t pte)
657 {
658 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
659 }
660 
661 static inline pte_t pte_mkspecial(pte_t pte)
662 {
663 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
664 }
665 
666 static inline pte_t pte_mkhuge(pte_t pte)
667 {
668 	return pte;
669 }
670 
671 static inline pte_t pte_mkdevmap(pte_t pte)
672 {
673 	return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
674 }
675 
676 /*
677  * This is potentially called with a pmd as the argument, in which case it's not
678  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
679  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
680  * use in page directory entries (ie. non-ptes).
681  */
682 static inline int pte_devmap(pte_t pte)
683 {
684 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
685 
686 	return (pte_raw(pte) & mask) == mask;
687 }
688 
689 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
690 {
691 	/* FIXME!! check whether this need to be a conditional */
692 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
693 }
694 
695 static inline bool pte_user(pte_t pte)
696 {
697 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
698 }
699 
700 /* Encode and de-code a swap entry */
701 #define MAX_SWAPFILES_CHECK() do { \
702 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
703 	/*							\
704 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
705 	 * We filter HPTEFLAGS on set_pte.			\
706 	 */							\
707 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
708 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
709 	} while (0)
710 /*
711  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
712  */
713 #define SWP_TYPE_BITS 5
714 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
715 				& ((1UL << SWP_TYPE_BITS) - 1))
716 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
717 #define __swp_entry(type, offset)	((swp_entry_t) { \
718 				((type) << _PAGE_BIT_SWAP_TYPE) \
719 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
720 /*
721  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
722  * swap type and offset we get from swap and convert that to pte to find a
723  * matching pte in linux page table.
724  * Clear bits not found in swap entries here.
725  */
726 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
727 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
728 
729 #ifdef CONFIG_MEM_SOFT_DIRTY
730 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
731 #else
732 #define _PAGE_SWP_SOFT_DIRTY	0UL
733 #endif /* CONFIG_MEM_SOFT_DIRTY */
734 
735 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
736 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
737 {
738 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
739 }
740 
741 static inline bool pte_swp_soft_dirty(pte_t pte)
742 {
743 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
744 }
745 
746 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
747 {
748 	return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
749 }
750 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
751 
752 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
753 {
754 	/*
755 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
756 	 */
757 	if (access & ~ptev)
758 		return false;
759 	/*
760 	 * This check for access to privilege space
761 	 */
762 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
763 		return false;
764 
765 	return true;
766 }
767 /*
768  * Generic functions with hash/radix callbacks
769  */
770 
771 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
772 					   pte_t *ptep, pte_t entry,
773 					   unsigned long address,
774 					   int psize)
775 {
776 	if (radix_enabled())
777 		return radix__ptep_set_access_flags(vma, ptep, entry,
778 						    address, psize);
779 	return hash__ptep_set_access_flags(ptep, entry);
780 }
781 
782 #define __HAVE_ARCH_PTE_SAME
783 static inline int pte_same(pte_t pte_a, pte_t pte_b)
784 {
785 	if (radix_enabled())
786 		return radix__pte_same(pte_a, pte_b);
787 	return hash__pte_same(pte_a, pte_b);
788 }
789 
790 static inline int pte_none(pte_t pte)
791 {
792 	if (radix_enabled())
793 		return radix__pte_none(pte);
794 	return hash__pte_none(pte);
795 }
796 
797 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
798 				pte_t *ptep, pte_t pte, int percpu)
799 {
800 	if (radix_enabled())
801 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
802 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
803 }
804 
805 #define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
806 
807 #define pgprot_noncached pgprot_noncached
808 static inline pgprot_t pgprot_noncached(pgprot_t prot)
809 {
810 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
811 			_PAGE_NON_IDEMPOTENT);
812 }
813 
814 #define pgprot_noncached_wc pgprot_noncached_wc
815 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
816 {
817 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
818 			_PAGE_TOLERANT);
819 }
820 
821 #define pgprot_cached pgprot_cached
822 static inline pgprot_t pgprot_cached(pgprot_t prot)
823 {
824 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
825 }
826 
827 #define pgprot_writecombine pgprot_writecombine
828 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
829 {
830 	return pgprot_noncached_wc(prot);
831 }
832 /*
833  * check a pte mapping have cache inhibited property
834  */
835 static inline bool pte_ci(pte_t pte)
836 {
837 	unsigned long pte_v = pte_val(pte);
838 
839 	if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
840 	    ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
841 		return true;
842 	return false;
843 }
844 
845 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
846 {
847 	*pmdp = __pmd(val);
848 }
849 
850 static inline void pmd_clear(pmd_t *pmdp)
851 {
852 	*pmdp = __pmd(0);
853 }
854 
855 static inline int pmd_none(pmd_t pmd)
856 {
857 	return !pmd_raw(pmd);
858 }
859 
860 static inline int pmd_present(pmd_t pmd)
861 {
862 
863 	return !pmd_none(pmd);
864 }
865 
866 static inline int pmd_bad(pmd_t pmd)
867 {
868 	if (radix_enabled())
869 		return radix__pmd_bad(pmd);
870 	return hash__pmd_bad(pmd);
871 }
872 
873 static inline void pud_set(pud_t *pudp, unsigned long val)
874 {
875 	*pudp = __pud(val);
876 }
877 
878 static inline void pud_clear(pud_t *pudp)
879 {
880 	*pudp = __pud(0);
881 }
882 
883 static inline int pud_none(pud_t pud)
884 {
885 	return !pud_raw(pud);
886 }
887 
888 static inline int pud_present(pud_t pud)
889 {
890 	return !pud_none(pud);
891 }
892 
893 extern struct page *pud_page(pud_t pud);
894 extern struct page *pmd_page(pmd_t pmd);
895 static inline pte_t pud_pte(pud_t pud)
896 {
897 	return __pte_raw(pud_raw(pud));
898 }
899 
900 static inline pud_t pte_pud(pte_t pte)
901 {
902 	return __pud_raw(pte_raw(pte));
903 }
904 #define pud_write(pud)		pte_write(pud_pte(pud))
905 
906 static inline int pud_bad(pud_t pud)
907 {
908 	if (radix_enabled())
909 		return radix__pud_bad(pud);
910 	return hash__pud_bad(pud);
911 }
912 
913 #define pud_access_permitted pud_access_permitted
914 static inline bool pud_access_permitted(pud_t pud, bool write)
915 {
916 	return pte_access_permitted(pud_pte(pud), write);
917 }
918 
919 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
920 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
921 {
922 	*pgdp = __pgd(val);
923 }
924 
925 static inline void pgd_clear(pgd_t *pgdp)
926 {
927 	*pgdp = __pgd(0);
928 }
929 
930 static inline int pgd_none(pgd_t pgd)
931 {
932 	return !pgd_raw(pgd);
933 }
934 
935 static inline int pgd_present(pgd_t pgd)
936 {
937 	return !pgd_none(pgd);
938 }
939 
940 static inline pte_t pgd_pte(pgd_t pgd)
941 {
942 	return __pte_raw(pgd_raw(pgd));
943 }
944 
945 static inline pgd_t pte_pgd(pte_t pte)
946 {
947 	return __pgd_raw(pte_raw(pte));
948 }
949 
950 static inline int pgd_bad(pgd_t pgd)
951 {
952 	if (radix_enabled())
953 		return radix__pgd_bad(pgd);
954 	return hash__pgd_bad(pgd);
955 }
956 
957 #define pgd_access_permitted pgd_access_permitted
958 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
959 {
960 	return pte_access_permitted(pgd_pte(pgd), write);
961 }
962 
963 extern struct page *pgd_page(pgd_t pgd);
964 
965 /* Pointers in the page table tree are physical addresses */
966 #define __pgtable_ptr_val(ptr)	__pa(ptr)
967 
968 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
969 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
970 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
971 
972 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
973 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
974 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
975 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
976 
977 /*
978  * Find an entry in a page-table-directory.  We combine the address region
979  * (the high order N bits) and the pgd portion of the address.
980  */
981 
982 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
983 
984 #define pud_offset(pgdp, addr)	\
985 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
986 #define pmd_offset(pudp,addr) \
987 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
988 #define pte_offset_kernel(dir,addr) \
989 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
990 
991 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
992 #define pte_unmap(pte)			do { } while(0)
993 
994 /* to find an entry in a kernel page-table-directory */
995 /* This now only contains the vmalloc pages */
996 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
997 
998 #define pte_ERROR(e) \
999 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1000 #define pmd_ERROR(e) \
1001 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1002 #define pud_ERROR(e) \
1003 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1004 #define pgd_ERROR(e) \
1005 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1006 
1007 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
1008 				  unsigned long flags)
1009 {
1010 	if (radix_enabled()) {
1011 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1012 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1013 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1014 #endif
1015 		return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
1016 	}
1017 	return hash__map_kernel_page(ea, pa, flags);
1018 }
1019 
1020 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1021 						   unsigned long page_size,
1022 						   unsigned long phys)
1023 {
1024 	if (radix_enabled())
1025 		return radix__vmemmap_create_mapping(start, page_size, phys);
1026 	return hash__vmemmap_create_mapping(start, page_size, phys);
1027 }
1028 
1029 #ifdef CONFIG_MEMORY_HOTPLUG
1030 static inline void vmemmap_remove_mapping(unsigned long start,
1031 					  unsigned long page_size)
1032 {
1033 	if (radix_enabled())
1034 		return radix__vmemmap_remove_mapping(start, page_size);
1035 	return hash__vmemmap_remove_mapping(start, page_size);
1036 }
1037 #endif
1038 struct page *realmode_pfn_to_page(unsigned long pfn);
1039 
1040 static inline pte_t pmd_pte(pmd_t pmd)
1041 {
1042 	return __pte_raw(pmd_raw(pmd));
1043 }
1044 
1045 static inline pmd_t pte_pmd(pte_t pte)
1046 {
1047 	return __pmd_raw(pte_raw(pte));
1048 }
1049 
1050 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1051 {
1052 	return (pte_t *)pmd;
1053 }
1054 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1055 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1056 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1057 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1058 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1059 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1060 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1061 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1062 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1063 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1064 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1065 
1066 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1067 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1068 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1069 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1070 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1071 
1072 #ifdef CONFIG_NUMA_BALANCING
1073 static inline int pmd_protnone(pmd_t pmd)
1074 {
1075 	return pte_protnone(pmd_pte(pmd));
1076 }
1077 #endif /* CONFIG_NUMA_BALANCING */
1078 
1079 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1080 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1081 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1082 
1083 #define pmd_access_permitted pmd_access_permitted
1084 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1085 {
1086 	return pte_access_permitted(pmd_pte(pmd), write);
1087 }
1088 
1089 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1090 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1091 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1092 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1093 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1094 		       pmd_t *pmdp, pmd_t pmd);
1095 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1096 				 pmd_t *pmd);
1097 extern int hash__has_transparent_hugepage(void);
1098 static inline int has_transparent_hugepage(void)
1099 {
1100 	if (radix_enabled())
1101 		return radix__has_transparent_hugepage();
1102 	return hash__has_transparent_hugepage();
1103 }
1104 #define has_transparent_hugepage has_transparent_hugepage
1105 
1106 static inline unsigned long
1107 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1108 		    unsigned long clr, unsigned long set)
1109 {
1110 	if (radix_enabled())
1111 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1112 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1113 }
1114 
1115 static inline int pmd_large(pmd_t pmd)
1116 {
1117 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1118 }
1119 
1120 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1121 {
1122 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1123 }
1124 /*
1125  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1126  * the below will work for radix too
1127  */
1128 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1129 					      unsigned long addr, pmd_t *pmdp)
1130 {
1131 	unsigned long old;
1132 
1133 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1134 		return 0;
1135 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1136 	return ((old & _PAGE_ACCESSED) != 0);
1137 }
1138 
1139 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1140 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1141 				      pmd_t *pmdp)
1142 {
1143 	if (__pmd_write((*pmdp)))
1144 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1145 	else if (unlikely(pmd_savedwrite(*pmdp)))
1146 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1147 }
1148 
1149 static inline int pmd_trans_huge(pmd_t pmd)
1150 {
1151 	if (radix_enabled())
1152 		return radix__pmd_trans_huge(pmd);
1153 	return hash__pmd_trans_huge(pmd);
1154 }
1155 
1156 #define __HAVE_ARCH_PMD_SAME
1157 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1158 {
1159 	if (radix_enabled())
1160 		return radix__pmd_same(pmd_a, pmd_b);
1161 	return hash__pmd_same(pmd_a, pmd_b);
1162 }
1163 
1164 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1165 {
1166 	if (radix_enabled())
1167 		return radix__pmd_mkhuge(pmd);
1168 	return hash__pmd_mkhuge(pmd);
1169 }
1170 
1171 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1172 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1173 				 unsigned long address, pmd_t *pmdp,
1174 				 pmd_t entry, int dirty);
1175 
1176 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1177 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1178 				     unsigned long address, pmd_t *pmdp);
1179 
1180 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1181 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1182 					    unsigned long addr, pmd_t *pmdp)
1183 {
1184 	if (radix_enabled())
1185 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1186 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1187 }
1188 
1189 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1190 					unsigned long address, pmd_t *pmdp)
1191 {
1192 	if (radix_enabled())
1193 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1194 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1195 }
1196 #define pmdp_collapse_flush pmdp_collapse_flush
1197 
1198 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1199 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1200 					      pmd_t *pmdp, pgtable_t pgtable)
1201 {
1202 	if (radix_enabled())
1203 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1204 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1205 }
1206 
1207 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1208 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1209 						    pmd_t *pmdp)
1210 {
1211 	if (radix_enabled())
1212 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1213 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1214 }
1215 
1216 #define __HAVE_ARCH_PMDP_INVALIDATE
1217 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1218 			     pmd_t *pmdp);
1219 
1220 #define pmd_move_must_withdraw pmd_move_must_withdraw
1221 struct spinlock;
1222 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1223 					 struct spinlock *old_pmd_ptl,
1224 					 struct vm_area_struct *vma)
1225 {
1226 	if (radix_enabled())
1227 		return false;
1228 	/*
1229 	 * Archs like ppc64 use pgtable to store per pmd
1230 	 * specific information. So when we switch the pmd,
1231 	 * we should also withdraw and deposit the pgtable
1232 	 */
1233 	return true;
1234 }
1235 
1236 
1237 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1238 static inline bool arch_needs_pgtable_deposit(void)
1239 {
1240 	if (radix_enabled())
1241 		return false;
1242 	return true;
1243 }
1244 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1245 
1246 
1247 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1248 {
1249 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1250 }
1251 
1252 static inline int pmd_devmap(pmd_t pmd)
1253 {
1254 	return pte_devmap(pmd_pte(pmd));
1255 }
1256 
1257 static inline int pud_devmap(pud_t pud)
1258 {
1259 	return 0;
1260 }
1261 
1262 static inline int pgd_devmap(pgd_t pgd)
1263 {
1264 	return 0;
1265 }
1266 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1267 
1268 static inline const int pud_pfn(pud_t pud)
1269 {
1270 	/*
1271 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1272 	 * check so this should never be used. If it grows another user we
1273 	 * want to know about it.
1274 	 */
1275 	BUILD_BUG();
1276 	return 0;
1277 }
1278 
1279 #endif /* __ASSEMBLY__ */
1280 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1281