1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/5level-fixup.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x1000000000000000UL
36 #define _RPAGE_RSV2		0x0800000000000000UL
37 #define _RPAGE_RSV3		0x0400000000000000UL
38 #define _RPAGE_RSV4		0x0200000000000000UL
39 #define _RPAGE_RSV5		0x00040UL
40 
41 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43 /*
44  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46  * differentiate between two use a SW field when invalidating.
47  *
48  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49  *
50  * This is used only when _PAGE_PRESENT is cleared.
51  */
52 #define _PAGE_INVALID		_RPAGE_SW0
53 
54 /*
55  * Top and bottom bits of RPN which can be used by hash
56  * translation mode, because we expect them to be zero
57  * otherwise.
58  */
59 #define _RPAGE_RPN0		0x01000
60 #define _RPAGE_RPN1		0x02000
61 #define _RPAGE_RPN44		0x0100000000000000UL
62 #define _RPAGE_RPN43		0x0080000000000000UL
63 #define _RPAGE_RPN42		0x0040000000000000UL
64 #define _RPAGE_RPN41		0x0020000000000000UL
65 
66 /* Max physical address bit as per radix table */
67 #define _RPAGE_PA_MAX		57
68 
69 /*
70  * Max physical address bit we will use for now.
71  *
72  * This is mostly a hardware limitation and for now Power9 has
73  * a 51 bit limit.
74  *
75  * This is different from the number of physical bit required to address
76  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
77  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
78  * number of sections we can support (SECTIONS_SHIFT).
79  *
80  * This is different from Radix page table limitation above and
81  * should always be less than that. The limit is done such that
82  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
83  * for hash linux page table specific bits.
84  *
85  * In order to be compatible with future hardware generations we keep
86  * some offsets and limit this for now to 53
87  */
88 #define _PAGE_PA_MAX		53
89 
90 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
91 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
92 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
93 #define __HAVE_ARCH_PTE_DEVMAP
94 
95 /*
96  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97  * Instead of fixing all of them, add an alternate define which
98  * maps CI pte mapping.
99  */
100 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101 /*
102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104  * and every thing below PAGE_SHIFT;
105  */
106 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 /*
108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
109  * in here, on radix we expect them to be zero.
110  */
111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114 /*
115  * user access blocked by key
116  */
117 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
120 				 _PAGE_RW | _PAGE_EXEC)
121 /*
122  * _PAGE_CHG_MASK masks of bits that are to be preserved across
123  * pgprot changes
124  */
125 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
126 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
127 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
128 
129 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
130 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
131 /*
132  * We define 2 sets of base prot bits, one for basic pages (ie,
133  * cacheable kernel and user pages) and one for non cacheable
134  * pages. We always set _PAGE_COHERENT when SMP is enabled or
135  * the processor might need it for DMA coherency.
136  */
137 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
138 #define _PAGE_BASE	(_PAGE_BASE_NC)
139 
140 /* Permission masks used to generate the __P and __S table,
141  *
142  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
143  *
144  * Write permissions imply read permissions for now (we could make write-only
145  * pages on BookE but we don't bother for now). Execute permission control is
146  * possible on platforms that define _PAGE_EXEC
147  */
148 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
149 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
150 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
151 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
152 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
153 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
154 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
155 
156 /* Permission masks used for kernel mappings */
157 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
158 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
159 				 _PAGE_TOLERANT)
160 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
161 				 _PAGE_NON_IDEMPOTENT)
162 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
163 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
164 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
165 
166 /*
167  * Protection used for kernel text. We want the debuggers to be able to
168  * set breakpoints anywhere, so don't write protect the kernel text
169  * on platforms where such control is possible.
170  */
171 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
172 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
173 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
174 #else
175 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
176 #endif
177 
178 /* Make modules code happy. We don't set RO yet */
179 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
180 #define PAGE_AGP		(PAGE_KERNEL_NC)
181 
182 #ifndef __ASSEMBLY__
183 /*
184  * page table defines
185  */
186 extern unsigned long __pte_index_size;
187 extern unsigned long __pmd_index_size;
188 extern unsigned long __pud_index_size;
189 extern unsigned long __pgd_index_size;
190 extern unsigned long __pud_cache_index;
191 #define PTE_INDEX_SIZE  __pte_index_size
192 #define PMD_INDEX_SIZE  __pmd_index_size
193 #define PUD_INDEX_SIZE  __pud_index_size
194 #define PGD_INDEX_SIZE  __pgd_index_size
195 /* pmd table use page table fragments */
196 #define PMD_CACHE_INDEX  0
197 #define PUD_CACHE_INDEX __pud_cache_index
198 /*
199  * Because of use of pte fragments and THP, size of page table
200  * are not always derived out of index size above.
201  */
202 extern unsigned long __pte_table_size;
203 extern unsigned long __pmd_table_size;
204 extern unsigned long __pud_table_size;
205 extern unsigned long __pgd_table_size;
206 #define PTE_TABLE_SIZE	__pte_table_size
207 #define PMD_TABLE_SIZE	__pmd_table_size
208 #define PUD_TABLE_SIZE	__pud_table_size
209 #define PGD_TABLE_SIZE	__pgd_table_size
210 
211 extern unsigned long __pmd_val_bits;
212 extern unsigned long __pud_val_bits;
213 extern unsigned long __pgd_val_bits;
214 #define PMD_VAL_BITS	__pmd_val_bits
215 #define PUD_VAL_BITS	__pud_val_bits
216 #define PGD_VAL_BITS	__pgd_val_bits
217 
218 extern unsigned long __pte_frag_nr;
219 #define PTE_FRAG_NR __pte_frag_nr
220 extern unsigned long __pte_frag_size_shift;
221 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
222 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
223 
224 extern unsigned long __pmd_frag_nr;
225 #define PMD_FRAG_NR __pmd_frag_nr
226 extern unsigned long __pmd_frag_size_shift;
227 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
228 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
229 
230 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
231 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
232 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
233 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
234 
235 /* PMD_SHIFT determines what a second-level page table entry can map */
236 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
237 #define PMD_SIZE	(1UL << PMD_SHIFT)
238 #define PMD_MASK	(~(PMD_SIZE-1))
239 
240 /* PUD_SHIFT determines what a third-level page table entry can map */
241 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
242 #define PUD_SIZE	(1UL << PUD_SHIFT)
243 #define PUD_MASK	(~(PUD_SIZE-1))
244 
245 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
246 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
247 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
248 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
249 
250 /* Bits to mask out from a PMD to get to the PTE page */
251 #define PMD_MASKED_BITS		0xc0000000000000ffUL
252 /* Bits to mask out from a PUD to get to the PMD page */
253 #define PUD_MASKED_BITS		0xc0000000000000ffUL
254 /* Bits to mask out from a PGD to get to the PUD page */
255 #define PGD_MASKED_BITS		0xc0000000000000ffUL
256 
257 /*
258  * Used as an indicator for rcu callback functions
259  */
260 enum pgtable_index {
261 	PTE_INDEX = 0,
262 	PMD_INDEX,
263 	PUD_INDEX,
264 	PGD_INDEX,
265 	/*
266 	 * Below are used with 4k page size and hugetlb
267 	 */
268 	HTLB_16M_INDEX,
269 	HTLB_16G_INDEX,
270 };
271 
272 extern unsigned long __vmalloc_start;
273 extern unsigned long __vmalloc_end;
274 #define VMALLOC_START	__vmalloc_start
275 #define VMALLOC_END	__vmalloc_end
276 
277 extern unsigned long __kernel_virt_start;
278 extern unsigned long __kernel_virt_size;
279 extern unsigned long __kernel_io_start;
280 extern unsigned long __kernel_io_end;
281 #define KERN_VIRT_START __kernel_virt_start
282 #define KERN_IO_START  __kernel_io_start
283 #define KERN_IO_END __kernel_io_end
284 
285 extern struct page *vmemmap;
286 extern unsigned long ioremap_bot;
287 extern unsigned long pci_io_base;
288 #endif /* __ASSEMBLY__ */
289 
290 #include <asm/book3s/64/hash.h>
291 #include <asm/book3s/64/radix.h>
292 
293 #ifdef CONFIG_PPC_64K_PAGES
294 #include <asm/book3s/64/pgtable-64k.h>
295 #else
296 #include <asm/book3s/64/pgtable-4k.h>
297 #endif
298 
299 #include <asm/barrier.h>
300 /*
301  * IO space itself carved into the PIO region (ISA and PHB IO space) and
302  * the ioremap space
303  *
304  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
305  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
306  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
307  */
308 #define FULL_IO_SIZE	0x80000000ul
309 #define  ISA_IO_BASE	(KERN_IO_START)
310 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
311 #define  PHB_IO_BASE	(ISA_IO_END)
312 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
313 #define IOREMAP_BASE	(PHB_IO_END)
314 #define IOREMAP_END	(KERN_IO_END)
315 
316 /* Advertise special mapping type for AGP */
317 #define HAVE_PAGE_AGP
318 
319 #ifndef __ASSEMBLY__
320 
321 /*
322  * This is the default implementation of various PTE accessors, it's
323  * used in all cases except Book3S with 64K pages where we have a
324  * concept of sub-pages
325  */
326 #ifndef __real_pte
327 
328 #define __real_pte(e, p, o)		((real_pte_t){(e)})
329 #define __rpte_to_pte(r)	((r).pte)
330 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
331 
332 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
333 	do {							         \
334 		index = 0;					         \
335 		shift = mmu_psize_defs[psize].shift;		         \
336 
337 #define pte_iterate_hashed_end() } while(0)
338 
339 /*
340  * We expect this to be called only for user addresses or kernel virtual
341  * addresses other than the linear mapping.
342  */
343 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
344 
345 #endif /* __real_pte */
346 
347 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
348 				       pte_t *ptep, unsigned long clr,
349 				       unsigned long set, int huge)
350 {
351 	if (radix_enabled())
352 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
353 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
354 }
355 /*
356  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
357  * We currently remove entries from the hashtable regardless of whether
358  * the entry was young or dirty.
359  *
360  * We should be more intelligent about this but for the moment we override
361  * these functions and force a tlb flush unconditionally
362  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
363  * function for both hash and radix.
364  */
365 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
366 					      unsigned long addr, pte_t *ptep)
367 {
368 	unsigned long old;
369 
370 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
371 		return 0;
372 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
373 	return (old & _PAGE_ACCESSED) != 0;
374 }
375 
376 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
377 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
378 ({								\
379 	int __r;						\
380 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
381 	__r;							\
382 })
383 
384 static inline int __pte_write(pte_t pte)
385 {
386 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
387 }
388 
389 #ifdef CONFIG_NUMA_BALANCING
390 #define pte_savedwrite pte_savedwrite
391 static inline bool pte_savedwrite(pte_t pte)
392 {
393 	/*
394 	 * Saved write ptes are prot none ptes that doesn't have
395 	 * privileged bit sit. We mark prot none as one which has
396 	 * present and pviliged bit set and RWX cleared. To mark
397 	 * protnone which used to have _PAGE_WRITE set we clear
398 	 * the privileged bit.
399 	 */
400 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
401 }
402 #else
403 #define pte_savedwrite pte_savedwrite
404 static inline bool pte_savedwrite(pte_t pte)
405 {
406 	return false;
407 }
408 #endif
409 
410 static inline int pte_write(pte_t pte)
411 {
412 	return __pte_write(pte) || pte_savedwrite(pte);
413 }
414 
415 static inline int pte_read(pte_t pte)
416 {
417 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
418 }
419 
420 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
421 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
422 				      pte_t *ptep)
423 {
424 	if (__pte_write(*ptep))
425 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
426 	else if (unlikely(pte_savedwrite(*ptep)))
427 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
428 }
429 
430 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
431 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
432 					   unsigned long addr, pte_t *ptep)
433 {
434 	/*
435 	 * We should not find protnone for hugetlb, but this complete the
436 	 * interface.
437 	 */
438 	if (__pte_write(*ptep))
439 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
440 	else if (unlikely(pte_savedwrite(*ptep)))
441 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
442 }
443 
444 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
445 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
446 				       unsigned long addr, pte_t *ptep)
447 {
448 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
449 	return __pte(old);
450 }
451 
452 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
453 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
454 					    unsigned long addr,
455 					    pte_t *ptep, int full)
456 {
457 	if (full && radix_enabled()) {
458 		/*
459 		 * We know that this is a full mm pte clear and
460 		 * hence can be sure there is no parallel set_pte.
461 		 */
462 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
463 	}
464 	return ptep_get_and_clear(mm, addr, ptep);
465 }
466 
467 
468 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
469 			     pte_t * ptep)
470 {
471 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
472 }
473 
474 static inline int pte_dirty(pte_t pte)
475 {
476 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
477 }
478 
479 static inline int pte_young(pte_t pte)
480 {
481 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
482 }
483 
484 static inline int pte_special(pte_t pte)
485 {
486 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
487 }
488 
489 static inline bool pte_exec(pte_t pte)
490 {
491 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
492 }
493 
494 
495 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
496 static inline bool pte_soft_dirty(pte_t pte)
497 {
498 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
499 }
500 
501 static inline pte_t pte_mksoft_dirty(pte_t pte)
502 {
503 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
504 }
505 
506 static inline pte_t pte_clear_soft_dirty(pte_t pte)
507 {
508 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
509 }
510 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
511 
512 #ifdef CONFIG_NUMA_BALANCING
513 static inline int pte_protnone(pte_t pte)
514 {
515 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
516 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
517 }
518 
519 #define pte_mk_savedwrite pte_mk_savedwrite
520 static inline pte_t pte_mk_savedwrite(pte_t pte)
521 {
522 	/*
523 	 * Used by Autonuma subsystem to preserve the write bit
524 	 * while marking the pte PROT_NONE. Only allow this
525 	 * on PROT_NONE pte
526 	 */
527 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
528 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
529 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
530 }
531 
532 #define pte_clear_savedwrite pte_clear_savedwrite
533 static inline pte_t pte_clear_savedwrite(pte_t pte)
534 {
535 	/*
536 	 * Used by KSM subsystem to make a protnone pte readonly.
537 	 */
538 	VM_BUG_ON(!pte_protnone(pte));
539 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
540 }
541 #else
542 #define pte_clear_savedwrite pte_clear_savedwrite
543 static inline pte_t pte_clear_savedwrite(pte_t pte)
544 {
545 	VM_WARN_ON(1);
546 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
547 }
548 #endif /* CONFIG_NUMA_BALANCING */
549 
550 static inline int pte_present(pte_t pte)
551 {
552 	/*
553 	 * A pte is considerent present if _PAGE_PRESENT is set.
554 	 * We also need to consider the pte present which is marked
555 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
556 	 * if we find _PAGE_PRESENT cleared.
557 	 */
558 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
559 }
560 
561 static inline bool pte_hw_valid(pte_t pte)
562 {
563 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
564 }
565 
566 #ifdef CONFIG_PPC_MEM_KEYS
567 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
568 #else
569 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
570 {
571 	return true;
572 }
573 #endif /* CONFIG_PPC_MEM_KEYS */
574 
575 static inline bool pte_user(pte_t pte)
576 {
577 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
578 }
579 
580 #define pte_access_permitted pte_access_permitted
581 static inline bool pte_access_permitted(pte_t pte, bool write)
582 {
583 	/*
584 	 * _PAGE_READ is needed for any access and will be
585 	 * cleared for PROT_NONE
586 	 */
587 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
588 		return false;
589 
590 	if (write && !pte_write(pte))
591 		return false;
592 
593 	return arch_pte_access_permitted(pte_val(pte), write, 0);
594 }
595 
596 /*
597  * Conversion functions: convert a page and protection to a page entry,
598  * and a page entry and page directory to the page they refer to.
599  *
600  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
601  * long for now.
602  */
603 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
604 {
605 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
606 		     pgprot_val(pgprot));
607 }
608 
609 static inline unsigned long pte_pfn(pte_t pte)
610 {
611 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
612 }
613 
614 /* Generic modifiers for PTE bits */
615 static inline pte_t pte_wrprotect(pte_t pte)
616 {
617 	if (unlikely(pte_savedwrite(pte)))
618 		return pte_clear_savedwrite(pte);
619 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
620 }
621 
622 static inline pte_t pte_exprotect(pte_t pte)
623 {
624 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
625 }
626 
627 static inline pte_t pte_mkclean(pte_t pte)
628 {
629 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
630 }
631 
632 static inline pte_t pte_mkold(pte_t pte)
633 {
634 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
635 }
636 
637 static inline pte_t pte_mkexec(pte_t pte)
638 {
639 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
640 }
641 
642 static inline pte_t pte_mkpte(pte_t pte)
643 {
644 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
645 }
646 
647 static inline pte_t pte_mkwrite(pte_t pte)
648 {
649 	/*
650 	 * write implies read, hence set both
651 	 */
652 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
653 }
654 
655 static inline pte_t pte_mkdirty(pte_t pte)
656 {
657 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
658 }
659 
660 static inline pte_t pte_mkyoung(pte_t pte)
661 {
662 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
663 }
664 
665 static inline pte_t pte_mkspecial(pte_t pte)
666 {
667 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
668 }
669 
670 static inline pte_t pte_mkhuge(pte_t pte)
671 {
672 	return pte;
673 }
674 
675 static inline pte_t pte_mkdevmap(pte_t pte)
676 {
677 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
678 }
679 
680 static inline pte_t pte_mkprivileged(pte_t pte)
681 {
682 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
683 }
684 
685 static inline pte_t pte_mkuser(pte_t pte)
686 {
687 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
688 }
689 
690 /*
691  * This is potentially called with a pmd as the argument, in which case it's not
692  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
693  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
694  * use in page directory entries (ie. non-ptes).
695  */
696 static inline int pte_devmap(pte_t pte)
697 {
698 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
699 
700 	return (pte_raw(pte) & mask) == mask;
701 }
702 
703 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
704 {
705 	/* FIXME!! check whether this need to be a conditional */
706 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
707 			 cpu_to_be64(pgprot_val(newprot)));
708 }
709 
710 /* Encode and de-code a swap entry */
711 #define MAX_SWAPFILES_CHECK() do { \
712 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
713 	/*							\
714 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
715 	 * We filter HPTEFLAGS on set_pte.			\
716 	 */							\
717 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
718 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
719 	} while (0)
720 
721 #define SWP_TYPE_BITS 5
722 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
723 				& ((1UL << SWP_TYPE_BITS) - 1))
724 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
725 #define __swp_entry(type, offset)	((swp_entry_t) { \
726 				((type) << _PAGE_BIT_SWAP_TYPE) \
727 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
728 /*
729  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
730  * swap type and offset we get from swap and convert that to pte to find a
731  * matching pte in linux page table.
732  * Clear bits not found in swap entries here.
733  */
734 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
735 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
736 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
737 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
738 
739 #ifdef CONFIG_MEM_SOFT_DIRTY
740 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
741 #else
742 #define _PAGE_SWP_SOFT_DIRTY	0UL
743 #endif /* CONFIG_MEM_SOFT_DIRTY */
744 
745 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
746 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
747 {
748 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
749 }
750 
751 static inline bool pte_swp_soft_dirty(pte_t pte)
752 {
753 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
754 }
755 
756 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
757 {
758 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
759 }
760 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
761 
762 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
763 {
764 	/*
765 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
766 	 */
767 	if (access & ~ptev)
768 		return false;
769 	/*
770 	 * This check for access to privilege space
771 	 */
772 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
773 		return false;
774 
775 	return true;
776 }
777 /*
778  * Generic functions with hash/radix callbacks
779  */
780 
781 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
782 					   pte_t *ptep, pte_t entry,
783 					   unsigned long address,
784 					   int psize)
785 {
786 	if (radix_enabled())
787 		return radix__ptep_set_access_flags(vma, ptep, entry,
788 						    address, psize);
789 	return hash__ptep_set_access_flags(ptep, entry);
790 }
791 
792 #define __HAVE_ARCH_PTE_SAME
793 static inline int pte_same(pte_t pte_a, pte_t pte_b)
794 {
795 	if (radix_enabled())
796 		return radix__pte_same(pte_a, pte_b);
797 	return hash__pte_same(pte_a, pte_b);
798 }
799 
800 static inline int pte_none(pte_t pte)
801 {
802 	if (radix_enabled())
803 		return radix__pte_none(pte);
804 	return hash__pte_none(pte);
805 }
806 
807 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
808 				pte_t *ptep, pte_t pte, int percpu)
809 {
810 	if (radix_enabled())
811 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
812 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
813 }
814 
815 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
816 
817 #define pgprot_noncached pgprot_noncached
818 static inline pgprot_t pgprot_noncached(pgprot_t prot)
819 {
820 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
821 			_PAGE_NON_IDEMPOTENT);
822 }
823 
824 #define pgprot_noncached_wc pgprot_noncached_wc
825 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
826 {
827 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
828 			_PAGE_TOLERANT);
829 }
830 
831 #define pgprot_cached pgprot_cached
832 static inline pgprot_t pgprot_cached(pgprot_t prot)
833 {
834 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
835 }
836 
837 #define pgprot_writecombine pgprot_writecombine
838 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
839 {
840 	return pgprot_noncached_wc(prot);
841 }
842 /*
843  * check a pte mapping have cache inhibited property
844  */
845 static inline bool pte_ci(pte_t pte)
846 {
847 	__be64 pte_v = pte_raw(pte);
848 
849 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
850 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
851 		return true;
852 	return false;
853 }
854 
855 static inline void pmd_clear(pmd_t *pmdp)
856 {
857 	*pmdp = __pmd(0);
858 }
859 
860 static inline int pmd_none(pmd_t pmd)
861 {
862 	return !pmd_raw(pmd);
863 }
864 
865 static inline int pmd_present(pmd_t pmd)
866 {
867 	/*
868 	 * A pmd is considerent present if _PAGE_PRESENT is set.
869 	 * We also need to consider the pmd present which is marked
870 	 * invalid during a split. Hence we look for _PAGE_INVALID
871 	 * if we find _PAGE_PRESENT cleared.
872 	 */
873 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
874 		return true;
875 
876 	return false;
877 }
878 
879 static inline int pmd_bad(pmd_t pmd)
880 {
881 	if (radix_enabled())
882 		return radix__pmd_bad(pmd);
883 	return hash__pmd_bad(pmd);
884 }
885 
886 static inline void pud_clear(pud_t *pudp)
887 {
888 	*pudp = __pud(0);
889 }
890 
891 static inline int pud_none(pud_t pud)
892 {
893 	return !pud_raw(pud);
894 }
895 
896 static inline int pud_present(pud_t pud)
897 {
898 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
899 }
900 
901 extern struct page *pud_page(pud_t pud);
902 extern struct page *pmd_page(pmd_t pmd);
903 static inline pte_t pud_pte(pud_t pud)
904 {
905 	return __pte_raw(pud_raw(pud));
906 }
907 
908 static inline pud_t pte_pud(pte_t pte)
909 {
910 	return __pud_raw(pte_raw(pte));
911 }
912 #define pud_write(pud)		pte_write(pud_pte(pud))
913 
914 static inline int pud_bad(pud_t pud)
915 {
916 	if (radix_enabled())
917 		return radix__pud_bad(pud);
918 	return hash__pud_bad(pud);
919 }
920 
921 #define pud_access_permitted pud_access_permitted
922 static inline bool pud_access_permitted(pud_t pud, bool write)
923 {
924 	return pte_access_permitted(pud_pte(pud), write);
925 }
926 
927 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
928 
929 static inline void pgd_clear(pgd_t *pgdp)
930 {
931 	*pgdp = __pgd(0);
932 }
933 
934 static inline int pgd_none(pgd_t pgd)
935 {
936 	return !pgd_raw(pgd);
937 }
938 
939 static inline int pgd_present(pgd_t pgd)
940 {
941 	return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
942 }
943 
944 static inline pte_t pgd_pte(pgd_t pgd)
945 {
946 	return __pte_raw(pgd_raw(pgd));
947 }
948 
949 static inline pgd_t pte_pgd(pte_t pte)
950 {
951 	return __pgd_raw(pte_raw(pte));
952 }
953 
954 static inline int pgd_bad(pgd_t pgd)
955 {
956 	if (radix_enabled())
957 		return radix__pgd_bad(pgd);
958 	return hash__pgd_bad(pgd);
959 }
960 
961 #define pgd_access_permitted pgd_access_permitted
962 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
963 {
964 	return pte_access_permitted(pgd_pte(pgd), write);
965 }
966 
967 extern struct page *pgd_page(pgd_t pgd);
968 
969 /* Pointers in the page table tree are physical addresses */
970 #define __pgtable_ptr_val(ptr)	__pa(ptr)
971 
972 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
973 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
974 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
975 
976 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
977 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
978 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
979 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
980 
981 /*
982  * Find an entry in a page-table-directory.  We combine the address region
983  * (the high order N bits) and the pgd portion of the address.
984  */
985 
986 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
987 
988 #define pud_offset(pgdp, addr)	\
989 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
990 #define pmd_offset(pudp,addr) \
991 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
992 #define pte_offset_kernel(dir,addr) \
993 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
994 
995 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
996 
997 static inline void pte_unmap(pte_t *pte) { }
998 
999 /* to find an entry in a kernel page-table-directory */
1000 /* This now only contains the vmalloc pages */
1001 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1002 
1003 #define pte_ERROR(e) \
1004 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1005 #define pmd_ERROR(e) \
1006 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1007 #define pud_ERROR(e) \
1008 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1009 #define pgd_ERROR(e) \
1010 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1011 
1012 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1013 {
1014 	if (radix_enabled()) {
1015 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1016 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1017 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1018 #endif
1019 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1020 	}
1021 	return hash__map_kernel_page(ea, pa, prot);
1022 }
1023 
1024 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1025 						   unsigned long page_size,
1026 						   unsigned long phys)
1027 {
1028 	if (radix_enabled())
1029 		return radix__vmemmap_create_mapping(start, page_size, phys);
1030 	return hash__vmemmap_create_mapping(start, page_size, phys);
1031 }
1032 
1033 #ifdef CONFIG_MEMORY_HOTPLUG
1034 static inline void vmemmap_remove_mapping(unsigned long start,
1035 					  unsigned long page_size)
1036 {
1037 	if (radix_enabled())
1038 		return radix__vmemmap_remove_mapping(start, page_size);
1039 	return hash__vmemmap_remove_mapping(start, page_size);
1040 }
1041 #endif
1042 
1043 static inline pte_t pmd_pte(pmd_t pmd)
1044 {
1045 	return __pte_raw(pmd_raw(pmd));
1046 }
1047 
1048 static inline pmd_t pte_pmd(pte_t pte)
1049 {
1050 	return __pmd_raw(pte_raw(pte));
1051 }
1052 
1053 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1054 {
1055 	return (pte_t *)pmd;
1056 }
1057 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1058 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1059 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1060 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1061 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1062 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1063 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1064 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1065 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1066 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1067 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1068 
1069 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1070 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1071 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1072 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1073 
1074 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1075 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1076 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1077 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1078 #endif
1079 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1080 
1081 #ifdef CONFIG_NUMA_BALANCING
1082 static inline int pmd_protnone(pmd_t pmd)
1083 {
1084 	return pte_protnone(pmd_pte(pmd));
1085 }
1086 #endif /* CONFIG_NUMA_BALANCING */
1087 
1088 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1089 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1090 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1091 
1092 #define pmd_access_permitted pmd_access_permitted
1093 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1094 {
1095 	return pte_access_permitted(pmd_pte(pmd), write);
1096 }
1097 
1098 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1099 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1100 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1101 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1102 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1103 		       pmd_t *pmdp, pmd_t pmd);
1104 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1105 				 pmd_t *pmd);
1106 extern int hash__has_transparent_hugepage(void);
1107 static inline int has_transparent_hugepage(void)
1108 {
1109 	if (radix_enabled())
1110 		return radix__has_transparent_hugepage();
1111 	return hash__has_transparent_hugepage();
1112 }
1113 #define has_transparent_hugepage has_transparent_hugepage
1114 
1115 static inline unsigned long
1116 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1117 		    unsigned long clr, unsigned long set)
1118 {
1119 	if (radix_enabled())
1120 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1121 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1122 }
1123 
1124 /*
1125  * returns true for pmd migration entries, THP, devmap, hugetlb
1126  * But compile time dependent on THP config
1127  */
1128 static inline int pmd_large(pmd_t pmd)
1129 {
1130 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1131 }
1132 
1133 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1134 {
1135 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1136 }
1137 /*
1138  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1139  * the below will work for radix too
1140  */
1141 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1142 					      unsigned long addr, pmd_t *pmdp)
1143 {
1144 	unsigned long old;
1145 
1146 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1147 		return 0;
1148 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1149 	return ((old & _PAGE_ACCESSED) != 0);
1150 }
1151 
1152 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1153 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1154 				      pmd_t *pmdp)
1155 {
1156 	if (__pmd_write((*pmdp)))
1157 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1158 	else if (unlikely(pmd_savedwrite(*pmdp)))
1159 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1160 }
1161 
1162 /*
1163  * Only returns true for a THP. False for pmd migration entry.
1164  * We also need to return true when we come across a pte that
1165  * in between a thp split. While splitting THP, we mark the pmd
1166  * invalid (pmdp_invalidate()) before we set it with pte page
1167  * address. A pmd_trans_huge() check against a pmd entry during that time
1168  * should return true.
1169  * We should not call this on a hugetlb entry. We should check for HugeTLB
1170  * entry using vma->vm_flags
1171  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1172  */
1173 static inline int pmd_trans_huge(pmd_t pmd)
1174 {
1175 	if (!pmd_present(pmd))
1176 		return false;
1177 
1178 	if (radix_enabled())
1179 		return radix__pmd_trans_huge(pmd);
1180 	return hash__pmd_trans_huge(pmd);
1181 }
1182 
1183 #define __HAVE_ARCH_PMD_SAME
1184 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1185 {
1186 	if (radix_enabled())
1187 		return radix__pmd_same(pmd_a, pmd_b);
1188 	return hash__pmd_same(pmd_a, pmd_b);
1189 }
1190 
1191 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1192 {
1193 	if (radix_enabled())
1194 		return radix__pmd_mkhuge(pmd);
1195 	return hash__pmd_mkhuge(pmd);
1196 }
1197 
1198 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1199 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1200 				 unsigned long address, pmd_t *pmdp,
1201 				 pmd_t entry, int dirty);
1202 
1203 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1204 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1205 				     unsigned long address, pmd_t *pmdp);
1206 
1207 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1208 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1209 					    unsigned long addr, pmd_t *pmdp)
1210 {
1211 	if (radix_enabled())
1212 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1213 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1214 }
1215 
1216 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1217 					unsigned long address, pmd_t *pmdp)
1218 {
1219 	if (radix_enabled())
1220 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1221 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1222 }
1223 #define pmdp_collapse_flush pmdp_collapse_flush
1224 
1225 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1226 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1227 					      pmd_t *pmdp, pgtable_t pgtable)
1228 {
1229 	if (radix_enabled())
1230 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1231 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1232 }
1233 
1234 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1235 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1236 						    pmd_t *pmdp)
1237 {
1238 	if (radix_enabled())
1239 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1240 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1241 }
1242 
1243 #define __HAVE_ARCH_PMDP_INVALIDATE
1244 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1245 			     pmd_t *pmdp);
1246 
1247 #define pmd_move_must_withdraw pmd_move_must_withdraw
1248 struct spinlock;
1249 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1250 				  struct spinlock *old_pmd_ptl,
1251 				  struct vm_area_struct *vma);
1252 /*
1253  * Hash translation mode use the deposited table to store hash pte
1254  * slot information.
1255  */
1256 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1257 static inline bool arch_needs_pgtable_deposit(void)
1258 {
1259 	if (radix_enabled())
1260 		return false;
1261 	return true;
1262 }
1263 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1264 
1265 
1266 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1267 {
1268 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1269 }
1270 
1271 static inline int pmd_devmap(pmd_t pmd)
1272 {
1273 	return pte_devmap(pmd_pte(pmd));
1274 }
1275 
1276 static inline int pud_devmap(pud_t pud)
1277 {
1278 	return 0;
1279 }
1280 
1281 static inline int pgd_devmap(pgd_t pgd)
1282 {
1283 	return 0;
1284 }
1285 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1286 
1287 static inline int pud_pfn(pud_t pud)
1288 {
1289 	/*
1290 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1291 	 * check so this should never be used. If it grows another user we
1292 	 * want to know about it.
1293 	 */
1294 	BUILD_BUG();
1295 	return 0;
1296 }
1297 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1298 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1299 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1300 			     pte_t *, pte_t, pte_t);
1301 
1302 /*
1303  * Returns true for a R -> RW upgrade of pte
1304  */
1305 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1306 {
1307 	if (!(old_val & _PAGE_READ))
1308 		return false;
1309 
1310 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1311 		return true;
1312 
1313 	return false;
1314 }
1315 
1316 #endif /* __ASSEMBLY__ */
1317 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1318