1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 
4 /*
5  * Common bits between hash and Radix page table
6  */
7 #define _PAGE_BIT_SWAP_TYPE	0
8 
9 #define _PAGE_RO		0
10 
11 #define _PAGE_EXEC		0x00001 /* execute permission */
12 #define _PAGE_WRITE		0x00002 /* write access allowed */
13 #define _PAGE_READ		0x00004	/* read access allowed */
14 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
15 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
16 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
17 #define _PAGE_SAO		0x00010 /* Strong access order */
18 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
19 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
20 #define _PAGE_DIRTY		0x00080 /* C: page changed */
21 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
22 /*
23  * Software bits
24  */
25 #define _RPAGE_SW0		0x2000000000000000UL
26 #define _RPAGE_SW1		0x00800
27 #define _RPAGE_SW2		0x00400
28 #define _RPAGE_SW3		0x00200
29 #define _RPAGE_RSV1		0x1000000000000000UL
30 #define _RPAGE_RSV2		0x0800000000000000UL
31 #define _RPAGE_RSV3		0x0400000000000000UL
32 #define _RPAGE_RSV4		0x0200000000000000UL
33 
34 #ifdef CONFIG_MEM_SOFT_DIRTY
35 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
36 #else
37 #define _PAGE_SOFT_DIRTY	0x00000
38 #endif
39 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
40 
41 /*
42  * For P9 DD1 only, we need to track whether the pte's huge.
43  */
44 #define _PAGE_LARGE	_RPAGE_RSV1
45 
46 
47 #define _PAGE_PTE		(1ul << 62)	/* distinguishes PTEs from pointers */
48 #define _PAGE_PRESENT		(1ul << 63)	/* pte contains a translation */
49 /*
50  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
51  * Instead of fixing all of them, add an alternate define which
52  * maps CI pte mapping.
53  */
54 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
55 /*
56  * We support 57 bit real address in pte. Clear everything above 57, and
57  * every thing below PAGE_SHIFT;
58  */
59 #define PTE_RPN_MASK	(((1UL << 57) - 1) & (PAGE_MASK))
60 /*
61  * set of bits not changed in pmd_modify. Even though we have hash specific bits
62  * in here, on radix we expect them to be zero.
63  */
64 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
65 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
66 			 _PAGE_SOFT_DIRTY)
67 /*
68  * user access blocked by key
69  */
70 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
71 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
72 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
73 				 _PAGE_RW | _PAGE_EXEC)
74 /*
75  * No page size encoding in the linux PTE
76  */
77 #define _PAGE_PSIZE		0
78 /*
79  * _PAGE_CHG_MASK masks of bits that are to be preserved across
80  * pgprot changes
81  */
82 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
83 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
84 			 _PAGE_SOFT_DIRTY)
85 /*
86  * Mask of bits returned by pte_pgprot()
87  */
88 #define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
89 			 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
90 			 _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
91 			 _PAGE_SOFT_DIRTY)
92 /*
93  * We define 2 sets of base prot bits, one for basic pages (ie,
94  * cacheable kernel and user pages) and one for non cacheable
95  * pages. We always set _PAGE_COHERENT when SMP is enabled or
96  * the processor might need it for DMA coherency.
97  */
98 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
99 #define _PAGE_BASE	(_PAGE_BASE_NC)
100 
101 /* Permission masks used to generate the __P and __S table,
102  *
103  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
104  *
105  * Write permissions imply read permissions for now (we could make write-only
106  * pages on BookE but we don't bother for now). Execute permission control is
107  * possible on platforms that define _PAGE_EXEC
108  *
109  * Note due to the way vm flags are laid out, the bits are XWR
110  */
111 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
112 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
113 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
114 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
115 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
116 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
117 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
118 
119 #define __P000	PAGE_NONE
120 #define __P001	PAGE_READONLY
121 #define __P010	PAGE_COPY
122 #define __P011	PAGE_COPY
123 #define __P100	PAGE_READONLY_X
124 #define __P101	PAGE_READONLY_X
125 #define __P110	PAGE_COPY_X
126 #define __P111	PAGE_COPY_X
127 
128 #define __S000	PAGE_NONE
129 #define __S001	PAGE_READONLY
130 #define __S010	PAGE_SHARED
131 #define __S011	PAGE_SHARED
132 #define __S100	PAGE_READONLY_X
133 #define __S101	PAGE_READONLY_X
134 #define __S110	PAGE_SHARED_X
135 #define __S111	PAGE_SHARED_X
136 
137 /* Permission masks used for kernel mappings */
138 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
139 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
140 				 _PAGE_TOLERANT)
141 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
142 				 _PAGE_NON_IDEMPOTENT)
143 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
144 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
145 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
146 
147 /*
148  * Protection used for kernel text. We want the debuggers to be able to
149  * set breakpoints anywhere, so don't write protect the kernel text
150  * on platforms where such control is possible.
151  */
152 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
153 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
154 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
155 #else
156 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
157 #endif
158 
159 /* Make modules code happy. We don't set RO yet */
160 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
161 #define PAGE_AGP		(PAGE_KERNEL_NC)
162 
163 #ifndef __ASSEMBLY__
164 /*
165  * page table defines
166  */
167 extern unsigned long __pte_index_size;
168 extern unsigned long __pmd_index_size;
169 extern unsigned long __pud_index_size;
170 extern unsigned long __pgd_index_size;
171 extern unsigned long __pmd_cache_index;
172 #define PTE_INDEX_SIZE  __pte_index_size
173 #define PMD_INDEX_SIZE  __pmd_index_size
174 #define PUD_INDEX_SIZE  __pud_index_size
175 #define PGD_INDEX_SIZE  __pgd_index_size
176 #define PMD_CACHE_INDEX __pmd_cache_index
177 /*
178  * Because of use of pte fragments and THP, size of page table
179  * are not always derived out of index size above.
180  */
181 extern unsigned long __pte_table_size;
182 extern unsigned long __pmd_table_size;
183 extern unsigned long __pud_table_size;
184 extern unsigned long __pgd_table_size;
185 #define PTE_TABLE_SIZE	__pte_table_size
186 #define PMD_TABLE_SIZE	__pmd_table_size
187 #define PUD_TABLE_SIZE	__pud_table_size
188 #define PGD_TABLE_SIZE	__pgd_table_size
189 
190 extern unsigned long __pmd_val_bits;
191 extern unsigned long __pud_val_bits;
192 extern unsigned long __pgd_val_bits;
193 #define PMD_VAL_BITS	__pmd_val_bits
194 #define PUD_VAL_BITS	__pud_val_bits
195 #define PGD_VAL_BITS	__pgd_val_bits
196 
197 extern unsigned long __pte_frag_nr;
198 #define PTE_FRAG_NR __pte_frag_nr
199 extern unsigned long __pte_frag_size_shift;
200 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
201 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
202 /*
203  * Pgtable size used by swapper, init in asm code
204  */
205 #define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
206 
207 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
208 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
209 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
210 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
211 
212 /* PMD_SHIFT determines what a second-level page table entry can map */
213 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
214 #define PMD_SIZE	(1UL << PMD_SHIFT)
215 #define PMD_MASK	(~(PMD_SIZE-1))
216 
217 /* PUD_SHIFT determines what a third-level page table entry can map */
218 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
219 #define PUD_SIZE	(1UL << PUD_SHIFT)
220 #define PUD_MASK	(~(PUD_SIZE-1))
221 
222 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
223 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
224 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
225 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
226 
227 /* Bits to mask out from a PMD to get to the PTE page */
228 #define PMD_MASKED_BITS		0xc0000000000000ffUL
229 /* Bits to mask out from a PUD to get to the PMD page */
230 #define PUD_MASKED_BITS		0xc0000000000000ffUL
231 /* Bits to mask out from a PGD to get to the PUD page */
232 #define PGD_MASKED_BITS		0xc0000000000000ffUL
233 
234 extern unsigned long __vmalloc_start;
235 extern unsigned long __vmalloc_end;
236 #define VMALLOC_START	__vmalloc_start
237 #define VMALLOC_END	__vmalloc_end
238 
239 extern unsigned long __kernel_virt_start;
240 extern unsigned long __kernel_virt_size;
241 #define KERN_VIRT_START __kernel_virt_start
242 #define KERN_VIRT_SIZE  __kernel_virt_size
243 extern struct page *vmemmap;
244 extern unsigned long ioremap_bot;
245 extern unsigned long pci_io_base;
246 #endif /* __ASSEMBLY__ */
247 
248 #include <asm/book3s/64/hash.h>
249 #include <asm/book3s/64/radix.h>
250 
251 #ifdef CONFIG_PPC_64K_PAGES
252 #include <asm/book3s/64/pgtable-64k.h>
253 #else
254 #include <asm/book3s/64/pgtable-4k.h>
255 #endif
256 
257 #include <asm/barrier.h>
258 /*
259  * The second half of the kernel virtual space is used for IO mappings,
260  * it's itself carved into the PIO region (ISA and PHB IO space) and
261  * the ioremap space
262  *
263  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
264  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
265  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
266  */
267 #define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
268 #define FULL_IO_SIZE	0x80000000ul
269 #define  ISA_IO_BASE	(KERN_IO_START)
270 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
271 #define  PHB_IO_BASE	(ISA_IO_END)
272 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
273 #define IOREMAP_BASE	(PHB_IO_END)
274 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
275 
276 /* Advertise special mapping type for AGP */
277 #define HAVE_PAGE_AGP
278 
279 /* Advertise support for _PAGE_SPECIAL */
280 #define __HAVE_ARCH_PTE_SPECIAL
281 
282 #ifndef __ASSEMBLY__
283 
284 /*
285  * This is the default implementation of various PTE accessors, it's
286  * used in all cases except Book3S with 64K pages where we have a
287  * concept of sub-pages
288  */
289 #ifndef __real_pte
290 
291 #define __real_pte(e,p)		((real_pte_t){(e)})
292 #define __rpte_to_pte(r)	((r).pte)
293 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
294 
295 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
296 	do {							         \
297 		index = 0;					         \
298 		shift = mmu_psize_defs[psize].shift;		         \
299 
300 #define pte_iterate_hashed_end() } while(0)
301 
302 /*
303  * We expect this to be called only for user addresses or kernel virtual
304  * addresses other than the linear mapping.
305  */
306 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
307 
308 #endif /* __real_pte */
309 
310 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
311 				       pte_t *ptep, unsigned long clr,
312 				       unsigned long set, int huge)
313 {
314 	if (radix_enabled())
315 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
316 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
317 }
318 /*
319  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
320  * We currently remove entries from the hashtable regardless of whether
321  * the entry was young or dirty.
322  *
323  * We should be more intelligent about this but for the moment we override
324  * these functions and force a tlb flush unconditionally
325  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
326  * function for both hash and radix.
327  */
328 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
329 					      unsigned long addr, pte_t *ptep)
330 {
331 	unsigned long old;
332 
333 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
334 		return 0;
335 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
336 	return (old & _PAGE_ACCESSED) != 0;
337 }
338 
339 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
340 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
341 ({								\
342 	int __r;						\
343 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
344 	__r;							\
345 })
346 
347 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
348 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
349 				      pte_t *ptep)
350 {
351 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0)
352 		return;
353 
354 	pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
355 }
356 
357 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
358 					   unsigned long addr, pte_t *ptep)
359 {
360 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0)
361 		return;
362 
363 	pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
364 }
365 
366 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
367 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
368 				       unsigned long addr, pte_t *ptep)
369 {
370 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
371 	return __pte(old);
372 }
373 
374 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
375 			     pte_t * ptep)
376 {
377 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
378 }
379 
380 static inline int pte_write(pte_t pte)
381 {
382 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
383 }
384 
385 static inline int pte_dirty(pte_t pte)
386 {
387 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
388 }
389 
390 static inline int pte_young(pte_t pte)
391 {
392 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
393 }
394 
395 static inline int pte_special(pte_t pte)
396 {
397 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
398 }
399 
400 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
401 
402 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
403 static inline bool pte_soft_dirty(pte_t pte)
404 {
405 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
406 }
407 
408 static inline pte_t pte_mksoft_dirty(pte_t pte)
409 {
410 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
411 }
412 
413 static inline pte_t pte_clear_soft_dirty(pte_t pte)
414 {
415 	return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
416 }
417 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
418 
419 #ifdef CONFIG_NUMA_BALANCING
420 /*
421  * These work without NUMA balancing but the kernel does not care. See the
422  * comment in include/asm-generic/pgtable.h . On powerpc, this will only
423  * work for user pages and always return true for kernel pages.
424  */
425 static inline int pte_protnone(pte_t pte)
426 {
427 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED)) ==
428 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED);
429 }
430 #endif /* CONFIG_NUMA_BALANCING */
431 
432 static inline int pte_present(pte_t pte)
433 {
434 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
435 }
436 /*
437  * Conversion functions: convert a page and protection to a page entry,
438  * and a page entry and page directory to the page they refer to.
439  *
440  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
441  * long for now.
442  */
443 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
444 {
445 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
446 		     pgprot_val(pgprot));
447 }
448 
449 static inline unsigned long pte_pfn(pte_t pte)
450 {
451 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
452 }
453 
454 /* Generic modifiers for PTE bits */
455 static inline pte_t pte_wrprotect(pte_t pte)
456 {
457 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
458 }
459 
460 static inline pte_t pte_mkclean(pte_t pte)
461 {
462 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
463 }
464 
465 static inline pte_t pte_mkold(pte_t pte)
466 {
467 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
468 }
469 
470 static inline pte_t pte_mkwrite(pte_t pte)
471 {
472 	/*
473 	 * write implies read, hence set both
474 	 */
475 	return __pte(pte_val(pte) | _PAGE_RW);
476 }
477 
478 static inline pte_t pte_mkdirty(pte_t pte)
479 {
480 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
481 }
482 
483 static inline pte_t pte_mkyoung(pte_t pte)
484 {
485 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
486 }
487 
488 static inline pte_t pte_mkspecial(pte_t pte)
489 {
490 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
491 }
492 
493 static inline pte_t pte_mkhuge(pte_t pte)
494 {
495 	return pte;
496 }
497 
498 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
499 {
500 	/* FIXME!! check whether this need to be a conditional */
501 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
502 }
503 
504 static inline bool pte_user(pte_t pte)
505 {
506 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
507 }
508 
509 /* Encode and de-code a swap entry */
510 #define MAX_SWAPFILES_CHECK() do { \
511 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
512 	/*							\
513 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
514 	 * We filter HPTEFLAGS on set_pte.			\
515 	 */							\
516 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
517 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
518 	} while (0)
519 /*
520  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
521  */
522 #define SWP_TYPE_BITS 5
523 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
524 				& ((1UL << SWP_TYPE_BITS) - 1))
525 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
526 #define __swp_entry(type, offset)	((swp_entry_t) { \
527 				((type) << _PAGE_BIT_SWAP_TYPE) \
528 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
529 /*
530  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
531  * swap type and offset we get from swap and convert that to pte to find a
532  * matching pte in linux page table.
533  * Clear bits not found in swap entries here.
534  */
535 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
536 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
537 
538 #ifdef CONFIG_MEM_SOFT_DIRTY
539 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
540 #else
541 #define _PAGE_SWP_SOFT_DIRTY	0UL
542 #endif /* CONFIG_MEM_SOFT_DIRTY */
543 
544 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
545 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
546 {
547 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
548 }
549 
550 static inline bool pte_swp_soft_dirty(pte_t pte)
551 {
552 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
553 }
554 
555 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
556 {
557 	return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
558 }
559 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
560 
561 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
562 {
563 	/*
564 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
565 	 */
566 	if (access & ~ptev)
567 		return false;
568 	/*
569 	 * This check for access to privilege space
570 	 */
571 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
572 		return false;
573 
574 	return true;
575 }
576 /*
577  * Generic functions with hash/radix callbacks
578  */
579 
580 static inline void __ptep_set_access_flags(struct mm_struct *mm,
581 					   pte_t *ptep, pte_t entry,
582 					   unsigned long address)
583 {
584 	if (radix_enabled())
585 		return radix__ptep_set_access_flags(mm, ptep, entry, address);
586 	return hash__ptep_set_access_flags(ptep, entry);
587 }
588 
589 #define __HAVE_ARCH_PTE_SAME
590 static inline int pte_same(pte_t pte_a, pte_t pte_b)
591 {
592 	if (radix_enabled())
593 		return radix__pte_same(pte_a, pte_b);
594 	return hash__pte_same(pte_a, pte_b);
595 }
596 
597 static inline int pte_none(pte_t pte)
598 {
599 	if (radix_enabled())
600 		return radix__pte_none(pte);
601 	return hash__pte_none(pte);
602 }
603 
604 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
605 				pte_t *ptep, pte_t pte, int percpu)
606 {
607 	if (radix_enabled())
608 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
609 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
610 }
611 
612 #define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
613 
614 #define pgprot_noncached pgprot_noncached
615 static inline pgprot_t pgprot_noncached(pgprot_t prot)
616 {
617 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
618 			_PAGE_NON_IDEMPOTENT);
619 }
620 
621 #define pgprot_noncached_wc pgprot_noncached_wc
622 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
623 {
624 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
625 			_PAGE_TOLERANT);
626 }
627 
628 #define pgprot_cached pgprot_cached
629 static inline pgprot_t pgprot_cached(pgprot_t prot)
630 {
631 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
632 }
633 
634 #define pgprot_writecombine pgprot_writecombine
635 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
636 {
637 	return pgprot_noncached_wc(prot);
638 }
639 /*
640  * check a pte mapping have cache inhibited property
641  */
642 static inline bool pte_ci(pte_t pte)
643 {
644 	unsigned long pte_v = pte_val(pte);
645 
646 	if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
647 	    ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
648 		return true;
649 	return false;
650 }
651 
652 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
653 {
654 	*pmdp = __pmd(val);
655 }
656 
657 static inline void pmd_clear(pmd_t *pmdp)
658 {
659 	*pmdp = __pmd(0);
660 }
661 
662 static inline int pmd_none(pmd_t pmd)
663 {
664 	return !pmd_raw(pmd);
665 }
666 
667 static inline int pmd_present(pmd_t pmd)
668 {
669 
670 	return !pmd_none(pmd);
671 }
672 
673 static inline int pmd_bad(pmd_t pmd)
674 {
675 	if (radix_enabled())
676 		return radix__pmd_bad(pmd);
677 	return hash__pmd_bad(pmd);
678 }
679 
680 static inline void pud_set(pud_t *pudp, unsigned long val)
681 {
682 	*pudp = __pud(val);
683 }
684 
685 static inline void pud_clear(pud_t *pudp)
686 {
687 	*pudp = __pud(0);
688 }
689 
690 static inline int pud_none(pud_t pud)
691 {
692 	return !pud_raw(pud);
693 }
694 
695 static inline int pud_present(pud_t pud)
696 {
697 	return !pud_none(pud);
698 }
699 
700 extern struct page *pud_page(pud_t pud);
701 extern struct page *pmd_page(pmd_t pmd);
702 static inline pte_t pud_pte(pud_t pud)
703 {
704 	return __pte_raw(pud_raw(pud));
705 }
706 
707 static inline pud_t pte_pud(pte_t pte)
708 {
709 	return __pud_raw(pte_raw(pte));
710 }
711 #define pud_write(pud)		pte_write(pud_pte(pud))
712 
713 static inline int pud_bad(pud_t pud)
714 {
715 	if (radix_enabled())
716 		return radix__pud_bad(pud);
717 	return hash__pud_bad(pud);
718 }
719 
720 
721 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
722 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
723 {
724 	*pgdp = __pgd(val);
725 }
726 
727 static inline void pgd_clear(pgd_t *pgdp)
728 {
729 	*pgdp = __pgd(0);
730 }
731 
732 static inline int pgd_none(pgd_t pgd)
733 {
734 	return !pgd_raw(pgd);
735 }
736 
737 static inline int pgd_present(pgd_t pgd)
738 {
739 	return !pgd_none(pgd);
740 }
741 
742 static inline pte_t pgd_pte(pgd_t pgd)
743 {
744 	return __pte_raw(pgd_raw(pgd));
745 }
746 
747 static inline pgd_t pte_pgd(pte_t pte)
748 {
749 	return __pgd_raw(pte_raw(pte));
750 }
751 
752 static inline int pgd_bad(pgd_t pgd)
753 {
754 	if (radix_enabled())
755 		return radix__pgd_bad(pgd);
756 	return hash__pgd_bad(pgd);
757 }
758 
759 extern struct page *pgd_page(pgd_t pgd);
760 
761 /* Pointers in the page table tree are physical addresses */
762 #define __pgtable_ptr_val(ptr)	__pa(ptr)
763 
764 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
765 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
766 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
767 
768 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
769 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
770 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
771 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
772 
773 /*
774  * Find an entry in a page-table-directory.  We combine the address region
775  * (the high order N bits) and the pgd portion of the address.
776  */
777 
778 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
779 
780 #define pud_offset(pgdp, addr)	\
781 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
782 #define pmd_offset(pudp,addr) \
783 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
784 #define pte_offset_kernel(dir,addr) \
785 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
786 
787 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
788 #define pte_unmap(pte)			do { } while(0)
789 
790 /* to find an entry in a kernel page-table-directory */
791 /* This now only contains the vmalloc pages */
792 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
793 
794 #define pte_ERROR(e) \
795 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
796 #define pmd_ERROR(e) \
797 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
798 #define pud_ERROR(e) \
799 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
800 #define pgd_ERROR(e) \
801 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
802 
803 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
804 				  unsigned long flags)
805 {
806 	if (radix_enabled()) {
807 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
808 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
809 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
810 #endif
811 		return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
812 	}
813 	return hash__map_kernel_page(ea, pa, flags);
814 }
815 
816 static inline int __meminit vmemmap_create_mapping(unsigned long start,
817 						   unsigned long page_size,
818 						   unsigned long phys)
819 {
820 	if (radix_enabled())
821 		return radix__vmemmap_create_mapping(start, page_size, phys);
822 	return hash__vmemmap_create_mapping(start, page_size, phys);
823 }
824 
825 #ifdef CONFIG_MEMORY_HOTPLUG
826 static inline void vmemmap_remove_mapping(unsigned long start,
827 					  unsigned long page_size)
828 {
829 	if (radix_enabled())
830 		return radix__vmemmap_remove_mapping(start, page_size);
831 	return hash__vmemmap_remove_mapping(start, page_size);
832 }
833 #endif
834 struct page *realmode_pfn_to_page(unsigned long pfn);
835 
836 static inline pte_t pmd_pte(pmd_t pmd)
837 {
838 	return __pte_raw(pmd_raw(pmd));
839 }
840 
841 static inline pmd_t pte_pmd(pte_t pte)
842 {
843 	return __pmd_raw(pte_raw(pte));
844 }
845 
846 static inline pte_t *pmdp_ptep(pmd_t *pmd)
847 {
848 	return (pte_t *)pmd;
849 }
850 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
851 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
852 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
853 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
854 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
855 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
856 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
857 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
858 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
859 
860 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
861 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
862 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
863 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
864 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
865 
866 #ifdef CONFIG_NUMA_BALANCING
867 static inline int pmd_protnone(pmd_t pmd)
868 {
869 	return pte_protnone(pmd_pte(pmd));
870 }
871 #endif /* CONFIG_NUMA_BALANCING */
872 
873 #define __HAVE_ARCH_PMD_WRITE
874 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
875 
876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
877 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
878 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
879 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
880 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
881 		       pmd_t *pmdp, pmd_t pmd);
882 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
883 				 pmd_t *pmd);
884 extern int hash__has_transparent_hugepage(void);
885 static inline int has_transparent_hugepage(void)
886 {
887 	if (radix_enabled())
888 		return radix__has_transparent_hugepage();
889 	return hash__has_transparent_hugepage();
890 }
891 #define has_transparent_hugepage has_transparent_hugepage
892 
893 static inline unsigned long
894 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
895 		    unsigned long clr, unsigned long set)
896 {
897 	if (radix_enabled())
898 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
899 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
900 }
901 
902 static inline int pmd_large(pmd_t pmd)
903 {
904 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
905 }
906 
907 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
908 {
909 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
910 }
911 /*
912  * For radix we should always find H_PAGE_HASHPTE zero. Hence
913  * the below will work for radix too
914  */
915 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
916 					      unsigned long addr, pmd_t *pmdp)
917 {
918 	unsigned long old;
919 
920 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
921 		return 0;
922 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
923 	return ((old & _PAGE_ACCESSED) != 0);
924 }
925 
926 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
927 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
928 				      pmd_t *pmdp)
929 {
930 
931 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_WRITE)) == 0)
932 		return;
933 
934 	pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
935 }
936 
937 static inline int pmd_trans_huge(pmd_t pmd)
938 {
939 	if (radix_enabled())
940 		return radix__pmd_trans_huge(pmd);
941 	return hash__pmd_trans_huge(pmd);
942 }
943 
944 #define __HAVE_ARCH_PMD_SAME
945 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
946 {
947 	if (radix_enabled())
948 		return radix__pmd_same(pmd_a, pmd_b);
949 	return hash__pmd_same(pmd_a, pmd_b);
950 }
951 
952 static inline pmd_t pmd_mkhuge(pmd_t pmd)
953 {
954 	if (radix_enabled())
955 		return radix__pmd_mkhuge(pmd);
956 	return hash__pmd_mkhuge(pmd);
957 }
958 
959 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
960 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
961 				 unsigned long address, pmd_t *pmdp,
962 				 pmd_t entry, int dirty);
963 
964 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
965 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
966 				     unsigned long address, pmd_t *pmdp);
967 
968 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
969 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
970 					    unsigned long addr, pmd_t *pmdp)
971 {
972 	if (radix_enabled())
973 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
974 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
975 }
976 
977 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
978 					unsigned long address, pmd_t *pmdp)
979 {
980 	if (radix_enabled())
981 		return radix__pmdp_collapse_flush(vma, address, pmdp);
982 	return hash__pmdp_collapse_flush(vma, address, pmdp);
983 }
984 #define pmdp_collapse_flush pmdp_collapse_flush
985 
986 #define __HAVE_ARCH_PGTABLE_DEPOSIT
987 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
988 					      pmd_t *pmdp, pgtable_t pgtable)
989 {
990 	if (radix_enabled())
991 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
992 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
993 }
994 
995 #define __HAVE_ARCH_PGTABLE_WITHDRAW
996 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
997 						    pmd_t *pmdp)
998 {
999 	if (radix_enabled())
1000 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1001 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1002 }
1003 
1004 #define __HAVE_ARCH_PMDP_INVALIDATE
1005 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1006 			    pmd_t *pmdp);
1007 
1008 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1009 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1010 					   unsigned long address, pmd_t *pmdp)
1011 {
1012 	if (radix_enabled())
1013 		return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1014 	return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1015 }
1016 
1017 #define pmd_move_must_withdraw pmd_move_must_withdraw
1018 struct spinlock;
1019 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1020 					 struct spinlock *old_pmd_ptl,
1021 					 struct vm_area_struct *vma)
1022 {
1023 	if (radix_enabled())
1024 		return false;
1025 	/*
1026 	 * Archs like ppc64 use pgtable to store per pmd
1027 	 * specific information. So when we switch the pmd,
1028 	 * we should also withdraw and deposit the pgtable
1029 	 */
1030 	return true;
1031 }
1032 
1033 
1034 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1035 static inline bool arch_needs_pgtable_deposit(void)
1036 {
1037 	if (radix_enabled())
1038 		return false;
1039 	return true;
1040 }
1041 
1042 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1043 #endif /* __ASSEMBLY__ */
1044 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1045