1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 3 4 /* 5 * Common bits between hash and Radix page table 6 */ 7 #define _PAGE_BIT_SWAP_TYPE 0 8 9 #define _PAGE_RO 0 10 11 #define _PAGE_EXEC 0x00001 /* execute permission */ 12 #define _PAGE_WRITE 0x00002 /* write access allowed */ 13 #define _PAGE_READ 0x00004 /* read access allowed */ 14 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 15 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) 16 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */ 17 #define _PAGE_SAO 0x00010 /* Strong access order */ 18 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */ 19 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */ 20 #define _PAGE_DIRTY 0x00080 /* C: page changed */ 21 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */ 22 /* 23 * Software bits 24 */ 25 #define _RPAGE_SW0 0x2000000000000000UL 26 #define _RPAGE_SW1 0x00800 27 #define _RPAGE_SW2 0x00400 28 #define _RPAGE_SW3 0x00200 29 #define _RPAGE_RSV1 0x1000000000000000UL 30 #define _RPAGE_RSV2 0x0800000000000000UL 31 #define _RPAGE_RSV3 0x0400000000000000UL 32 #define _RPAGE_RSV4 0x0200000000000000UL 33 34 #ifdef CONFIG_MEM_SOFT_DIRTY 35 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */ 36 #else 37 #define _PAGE_SOFT_DIRTY 0x00000 38 #endif 39 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */ 40 41 /* 42 * For P9 DD1 only, we need to track whether the pte's huge. 43 */ 44 #define _PAGE_LARGE _RPAGE_RSV1 45 46 47 #define _PAGE_PTE (1ul << 62) /* distinguishes PTEs from pointers */ 48 #define _PAGE_PRESENT (1ul << 63) /* pte contains a translation */ 49 /* 50 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE 51 * Instead of fixing all of them, add an alternate define which 52 * maps CI pte mapping. 53 */ 54 #define _PAGE_NO_CACHE _PAGE_TOLERANT 55 /* 56 * We support 57 bit real address in pte. Clear everything above 57, and 57 * every thing below PAGE_SHIFT; 58 */ 59 #define PTE_RPN_MASK (((1UL << 57) - 1) & (PAGE_MASK)) 60 /* 61 * set of bits not changed in pmd_modify. Even though we have hash specific bits 62 * in here, on radix we expect them to be zero. 63 */ 64 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 65 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \ 66 _PAGE_SOFT_DIRTY) 67 /* 68 * user access blocked by key 69 */ 70 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY) 71 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ) 72 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \ 73 _PAGE_RW | _PAGE_EXEC) 74 /* 75 * No page size encoding in the linux PTE 76 */ 77 #define _PAGE_PSIZE 0 78 /* 79 * _PAGE_CHG_MASK masks of bits that are to be preserved across 80 * pgprot changes 81 */ 82 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 83 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \ 84 _PAGE_SOFT_DIRTY) 85 /* 86 * Mask of bits returned by pte_pgprot() 87 */ 88 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \ 89 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \ 90 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \ 91 _PAGE_SOFT_DIRTY) 92 /* 93 * We define 2 sets of base prot bits, one for basic pages (ie, 94 * cacheable kernel and user pages) and one for non cacheable 95 * pages. We always set _PAGE_COHERENT when SMP is enabled or 96 * the processor might need it for DMA coherency. 97 */ 98 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE) 99 #define _PAGE_BASE (_PAGE_BASE_NC) 100 101 /* Permission masks used to generate the __P and __S table, 102 * 103 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h 104 * 105 * Write permissions imply read permissions for now (we could make write-only 106 * pages on BookE but we don't bother for now). Execute permission control is 107 * possible on platforms that define _PAGE_EXEC 108 * 109 * Note due to the way vm flags are laid out, the bits are XWR 110 */ 111 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED) 112 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW) 113 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC) 114 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ) 115 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 116 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ) 117 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 118 119 #define __P000 PAGE_NONE 120 #define __P001 PAGE_READONLY 121 #define __P010 PAGE_COPY 122 #define __P011 PAGE_COPY 123 #define __P100 PAGE_READONLY_X 124 #define __P101 PAGE_READONLY_X 125 #define __P110 PAGE_COPY_X 126 #define __P111 PAGE_COPY_X 127 128 #define __S000 PAGE_NONE 129 #define __S001 PAGE_READONLY 130 #define __S010 PAGE_SHARED 131 #define __S011 PAGE_SHARED 132 #define __S100 PAGE_READONLY_X 133 #define __S101 PAGE_READONLY_X 134 #define __S110 PAGE_SHARED_X 135 #define __S111 PAGE_SHARED_X 136 137 /* Permission masks used for kernel mappings */ 138 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 139 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 140 _PAGE_TOLERANT) 141 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 142 _PAGE_NON_IDEMPOTENT) 143 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 144 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 145 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 146 147 /* 148 * Protection used for kernel text. We want the debuggers to be able to 149 * set breakpoints anywhere, so don't write protect the kernel text 150 * on platforms where such control is possible. 151 */ 152 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \ 153 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) 154 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X 155 #else 156 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX 157 #endif 158 159 /* Make modules code happy. We don't set RO yet */ 160 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X 161 #define PAGE_AGP (PAGE_KERNEL_NC) 162 163 #ifndef __ASSEMBLY__ 164 /* 165 * page table defines 166 */ 167 extern unsigned long __pte_index_size; 168 extern unsigned long __pmd_index_size; 169 extern unsigned long __pud_index_size; 170 extern unsigned long __pgd_index_size; 171 extern unsigned long __pmd_cache_index; 172 #define PTE_INDEX_SIZE __pte_index_size 173 #define PMD_INDEX_SIZE __pmd_index_size 174 #define PUD_INDEX_SIZE __pud_index_size 175 #define PGD_INDEX_SIZE __pgd_index_size 176 #define PMD_CACHE_INDEX __pmd_cache_index 177 /* 178 * Because of use of pte fragments and THP, size of page table 179 * are not always derived out of index size above. 180 */ 181 extern unsigned long __pte_table_size; 182 extern unsigned long __pmd_table_size; 183 extern unsigned long __pud_table_size; 184 extern unsigned long __pgd_table_size; 185 #define PTE_TABLE_SIZE __pte_table_size 186 #define PMD_TABLE_SIZE __pmd_table_size 187 #define PUD_TABLE_SIZE __pud_table_size 188 #define PGD_TABLE_SIZE __pgd_table_size 189 190 extern unsigned long __pmd_val_bits; 191 extern unsigned long __pud_val_bits; 192 extern unsigned long __pgd_val_bits; 193 #define PMD_VAL_BITS __pmd_val_bits 194 #define PUD_VAL_BITS __pud_val_bits 195 #define PGD_VAL_BITS __pgd_val_bits 196 197 extern unsigned long __pte_frag_nr; 198 #define PTE_FRAG_NR __pte_frag_nr 199 extern unsigned long __pte_frag_size_shift; 200 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift 201 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) 202 /* 203 * Pgtable size used by swapper, init in asm code 204 */ 205 #define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE) 206 207 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 208 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) 209 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE) 210 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 211 212 /* PMD_SHIFT determines what a second-level page table entry can map */ 213 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 214 #define PMD_SIZE (1UL << PMD_SHIFT) 215 #define PMD_MASK (~(PMD_SIZE-1)) 216 217 /* PUD_SHIFT determines what a third-level page table entry can map */ 218 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) 219 #define PUD_SIZE (1UL << PUD_SHIFT) 220 #define PUD_MASK (~(PUD_SIZE-1)) 221 222 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ 223 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE) 224 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 225 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 226 227 /* Bits to mask out from a PMD to get to the PTE page */ 228 #define PMD_MASKED_BITS 0xc0000000000000ffUL 229 /* Bits to mask out from a PUD to get to the PMD page */ 230 #define PUD_MASKED_BITS 0xc0000000000000ffUL 231 /* Bits to mask out from a PGD to get to the PUD page */ 232 #define PGD_MASKED_BITS 0xc0000000000000ffUL 233 234 extern unsigned long __vmalloc_start; 235 extern unsigned long __vmalloc_end; 236 #define VMALLOC_START __vmalloc_start 237 #define VMALLOC_END __vmalloc_end 238 239 extern unsigned long __kernel_virt_start; 240 extern unsigned long __kernel_virt_size; 241 #define KERN_VIRT_START __kernel_virt_start 242 #define KERN_VIRT_SIZE __kernel_virt_size 243 extern struct page *vmemmap; 244 extern unsigned long ioremap_bot; 245 extern unsigned long pci_io_base; 246 #endif /* __ASSEMBLY__ */ 247 248 #include <asm/book3s/64/hash.h> 249 #include <asm/book3s/64/radix.h> 250 251 #ifdef CONFIG_PPC_64K_PAGES 252 #include <asm/book3s/64/pgtable-64k.h> 253 #else 254 #include <asm/book3s/64/pgtable-4k.h> 255 #endif 256 257 #include <asm/barrier.h> 258 /* 259 * The second half of the kernel virtual space is used for IO mappings, 260 * it's itself carved into the PIO region (ISA and PHB IO space) and 261 * the ioremap space 262 * 263 * ISA_IO_BASE = KERN_IO_START, 64K reserved area 264 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces 265 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE 266 */ 267 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1)) 268 #define FULL_IO_SIZE 0x80000000ul 269 #define ISA_IO_BASE (KERN_IO_START) 270 #define ISA_IO_END (KERN_IO_START + 0x10000ul) 271 #define PHB_IO_BASE (ISA_IO_END) 272 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) 273 #define IOREMAP_BASE (PHB_IO_END) 274 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE) 275 276 /* Advertise special mapping type for AGP */ 277 #define HAVE_PAGE_AGP 278 279 /* Advertise support for _PAGE_SPECIAL */ 280 #define __HAVE_ARCH_PTE_SPECIAL 281 282 #ifndef __ASSEMBLY__ 283 284 /* 285 * This is the default implementation of various PTE accessors, it's 286 * used in all cases except Book3S with 64K pages where we have a 287 * concept of sub-pages 288 */ 289 #ifndef __real_pte 290 291 #define __real_pte(e,p) ((real_pte_t){(e)}) 292 #define __rpte_to_pte(r) ((r).pte) 293 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) 294 295 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ 296 do { \ 297 index = 0; \ 298 shift = mmu_psize_defs[psize].shift; \ 299 300 #define pte_iterate_hashed_end() } while(0) 301 302 /* 303 * We expect this to be called only for user addresses or kernel virtual 304 * addresses other than the linear mapping. 305 */ 306 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K 307 308 #endif /* __real_pte */ 309 310 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, 311 pte_t *ptep, unsigned long clr, 312 unsigned long set, int huge) 313 { 314 if (radix_enabled()) 315 return radix__pte_update(mm, addr, ptep, clr, set, huge); 316 return hash__pte_update(mm, addr, ptep, clr, set, huge); 317 } 318 /* 319 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update. 320 * We currently remove entries from the hashtable regardless of whether 321 * the entry was young or dirty. 322 * 323 * We should be more intelligent about this but for the moment we override 324 * these functions and force a tlb flush unconditionally 325 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same 326 * function for both hash and radix. 327 */ 328 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 329 unsigned long addr, pte_t *ptep) 330 { 331 unsigned long old; 332 333 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 334 return 0; 335 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 336 return (old & _PAGE_ACCESSED) != 0; 337 } 338 339 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 340 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 341 ({ \ 342 int __r; \ 343 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 344 __r; \ 345 }) 346 347 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 348 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 349 pte_t *ptep) 350 { 351 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0) 352 return; 353 354 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); 355 } 356 357 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 358 unsigned long addr, pte_t *ptep) 359 { 360 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0) 361 return; 362 363 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1); 364 } 365 366 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 367 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 368 unsigned long addr, pte_t *ptep) 369 { 370 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); 371 return __pte(old); 372 } 373 374 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 375 pte_t * ptep) 376 { 377 pte_update(mm, addr, ptep, ~0UL, 0, 0); 378 } 379 380 static inline int pte_write(pte_t pte) 381 { 382 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE)); 383 } 384 385 static inline int pte_dirty(pte_t pte) 386 { 387 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY)); 388 } 389 390 static inline int pte_young(pte_t pte) 391 { 392 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED)); 393 } 394 395 static inline int pte_special(pte_t pte) 396 { 397 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL)); 398 } 399 400 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } 401 402 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 403 static inline bool pte_soft_dirty(pte_t pte) 404 { 405 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY)); 406 } 407 408 static inline pte_t pte_mksoft_dirty(pte_t pte) 409 { 410 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY); 411 } 412 413 static inline pte_t pte_clear_soft_dirty(pte_t pte) 414 { 415 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY); 416 } 417 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 418 419 #ifdef CONFIG_NUMA_BALANCING 420 /* 421 * These work without NUMA balancing but the kernel does not care. See the 422 * comment in include/asm-generic/pgtable.h . On powerpc, this will only 423 * work for user pages and always return true for kernel pages. 424 */ 425 static inline int pte_protnone(pte_t pte) 426 { 427 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED)) == 428 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED); 429 } 430 #endif /* CONFIG_NUMA_BALANCING */ 431 432 static inline int pte_present(pte_t pte) 433 { 434 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT)); 435 } 436 /* 437 * Conversion functions: convert a page and protection to a page entry, 438 * and a page entry and page directory to the page they refer to. 439 * 440 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 441 * long for now. 442 */ 443 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 444 { 445 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) | 446 pgprot_val(pgprot)); 447 } 448 449 static inline unsigned long pte_pfn(pte_t pte) 450 { 451 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT; 452 } 453 454 /* Generic modifiers for PTE bits */ 455 static inline pte_t pte_wrprotect(pte_t pte) 456 { 457 return __pte(pte_val(pte) & ~_PAGE_WRITE); 458 } 459 460 static inline pte_t pte_mkclean(pte_t pte) 461 { 462 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 463 } 464 465 static inline pte_t pte_mkold(pte_t pte) 466 { 467 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 468 } 469 470 static inline pte_t pte_mkwrite(pte_t pte) 471 { 472 /* 473 * write implies read, hence set both 474 */ 475 return __pte(pte_val(pte) | _PAGE_RW); 476 } 477 478 static inline pte_t pte_mkdirty(pte_t pte) 479 { 480 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 481 } 482 483 static inline pte_t pte_mkyoung(pte_t pte) 484 { 485 return __pte(pte_val(pte) | _PAGE_ACCESSED); 486 } 487 488 static inline pte_t pte_mkspecial(pte_t pte) 489 { 490 return __pte(pte_val(pte) | _PAGE_SPECIAL); 491 } 492 493 static inline pte_t pte_mkhuge(pte_t pte) 494 { 495 return pte; 496 } 497 498 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 499 { 500 /* FIXME!! check whether this need to be a conditional */ 501 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 502 } 503 504 static inline bool pte_user(pte_t pte) 505 { 506 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED)); 507 } 508 509 /* Encode and de-code a swap entry */ 510 #define MAX_SWAPFILES_CHECK() do { \ 511 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ 512 /* \ 513 * Don't have overlapping bits with _PAGE_HPTEFLAGS \ 514 * We filter HPTEFLAGS on set_pte. \ 515 */ \ 516 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \ 517 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \ 518 } while (0) 519 /* 520 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT; 521 */ 522 #define SWP_TYPE_BITS 5 523 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ 524 & ((1UL << SWP_TYPE_BITS) - 1)) 525 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT) 526 #define __swp_entry(type, offset) ((swp_entry_t) { \ 527 ((type) << _PAGE_BIT_SWAP_TYPE) \ 528 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)}) 529 /* 530 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from 531 * swap type and offset we get from swap and convert that to pte to find a 532 * matching pte in linux page table. 533 * Clear bits not found in swap entries here. 534 */ 535 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE }) 536 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE) 537 538 #ifdef CONFIG_MEM_SOFT_DIRTY 539 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE)) 540 #else 541 #define _PAGE_SWP_SOFT_DIRTY 0UL 542 #endif /* CONFIG_MEM_SOFT_DIRTY */ 543 544 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 545 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 546 { 547 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY); 548 } 549 550 static inline bool pte_swp_soft_dirty(pte_t pte) 551 { 552 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); 553 } 554 555 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 556 { 557 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY); 558 } 559 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 560 561 static inline bool check_pte_access(unsigned long access, unsigned long ptev) 562 { 563 /* 564 * This check for _PAGE_RWX and _PAGE_PRESENT bits 565 */ 566 if (access & ~ptev) 567 return false; 568 /* 569 * This check for access to privilege space 570 */ 571 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED)) 572 return false; 573 574 return true; 575 } 576 /* 577 * Generic functions with hash/radix callbacks 578 */ 579 580 static inline void __ptep_set_access_flags(struct mm_struct *mm, 581 pte_t *ptep, pte_t entry, 582 unsigned long address) 583 { 584 if (radix_enabled()) 585 return radix__ptep_set_access_flags(mm, ptep, entry, address); 586 return hash__ptep_set_access_flags(ptep, entry); 587 } 588 589 #define __HAVE_ARCH_PTE_SAME 590 static inline int pte_same(pte_t pte_a, pte_t pte_b) 591 { 592 if (radix_enabled()) 593 return radix__pte_same(pte_a, pte_b); 594 return hash__pte_same(pte_a, pte_b); 595 } 596 597 static inline int pte_none(pte_t pte) 598 { 599 if (radix_enabled()) 600 return radix__pte_none(pte); 601 return hash__pte_none(pte); 602 } 603 604 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 605 pte_t *ptep, pte_t pte, int percpu) 606 { 607 if (radix_enabled()) 608 return radix__set_pte_at(mm, addr, ptep, pte, percpu); 609 return hash__set_pte_at(mm, addr, ptep, pte, percpu); 610 } 611 612 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT) 613 614 #define pgprot_noncached pgprot_noncached 615 static inline pgprot_t pgprot_noncached(pgprot_t prot) 616 { 617 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 618 _PAGE_NON_IDEMPOTENT); 619 } 620 621 #define pgprot_noncached_wc pgprot_noncached_wc 622 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 623 { 624 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 625 _PAGE_TOLERANT); 626 } 627 628 #define pgprot_cached pgprot_cached 629 static inline pgprot_t pgprot_cached(pgprot_t prot) 630 { 631 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL)); 632 } 633 634 #define pgprot_writecombine pgprot_writecombine 635 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 636 { 637 return pgprot_noncached_wc(prot); 638 } 639 /* 640 * check a pte mapping have cache inhibited property 641 */ 642 static inline bool pte_ci(pte_t pte) 643 { 644 unsigned long pte_v = pte_val(pte); 645 646 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) || 647 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)) 648 return true; 649 return false; 650 } 651 652 static inline void pmd_set(pmd_t *pmdp, unsigned long val) 653 { 654 *pmdp = __pmd(val); 655 } 656 657 static inline void pmd_clear(pmd_t *pmdp) 658 { 659 *pmdp = __pmd(0); 660 } 661 662 static inline int pmd_none(pmd_t pmd) 663 { 664 return !pmd_raw(pmd); 665 } 666 667 static inline int pmd_present(pmd_t pmd) 668 { 669 670 return !pmd_none(pmd); 671 } 672 673 static inline int pmd_bad(pmd_t pmd) 674 { 675 if (radix_enabled()) 676 return radix__pmd_bad(pmd); 677 return hash__pmd_bad(pmd); 678 } 679 680 static inline void pud_set(pud_t *pudp, unsigned long val) 681 { 682 *pudp = __pud(val); 683 } 684 685 static inline void pud_clear(pud_t *pudp) 686 { 687 *pudp = __pud(0); 688 } 689 690 static inline int pud_none(pud_t pud) 691 { 692 return !pud_raw(pud); 693 } 694 695 static inline int pud_present(pud_t pud) 696 { 697 return !pud_none(pud); 698 } 699 700 extern struct page *pud_page(pud_t pud); 701 extern struct page *pmd_page(pmd_t pmd); 702 static inline pte_t pud_pte(pud_t pud) 703 { 704 return __pte_raw(pud_raw(pud)); 705 } 706 707 static inline pud_t pte_pud(pte_t pte) 708 { 709 return __pud_raw(pte_raw(pte)); 710 } 711 #define pud_write(pud) pte_write(pud_pte(pud)) 712 713 static inline int pud_bad(pud_t pud) 714 { 715 if (radix_enabled()) 716 return radix__pud_bad(pud); 717 return hash__pud_bad(pud); 718 } 719 720 721 #define pgd_write(pgd) pte_write(pgd_pte(pgd)) 722 static inline void pgd_set(pgd_t *pgdp, unsigned long val) 723 { 724 *pgdp = __pgd(val); 725 } 726 727 static inline void pgd_clear(pgd_t *pgdp) 728 { 729 *pgdp = __pgd(0); 730 } 731 732 static inline int pgd_none(pgd_t pgd) 733 { 734 return !pgd_raw(pgd); 735 } 736 737 static inline int pgd_present(pgd_t pgd) 738 { 739 return !pgd_none(pgd); 740 } 741 742 static inline pte_t pgd_pte(pgd_t pgd) 743 { 744 return __pte_raw(pgd_raw(pgd)); 745 } 746 747 static inline pgd_t pte_pgd(pte_t pte) 748 { 749 return __pgd_raw(pte_raw(pte)); 750 } 751 752 static inline int pgd_bad(pgd_t pgd) 753 { 754 if (radix_enabled()) 755 return radix__pgd_bad(pgd); 756 return hash__pgd_bad(pgd); 757 } 758 759 extern struct page *pgd_page(pgd_t pgd); 760 761 /* Pointers in the page table tree are physical addresses */ 762 #define __pgtable_ptr_val(ptr) __pa(ptr) 763 764 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS) 765 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS) 766 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS) 767 768 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1)) 769 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1)) 770 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1)) 771 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1)) 772 773 /* 774 * Find an entry in a page-table-directory. We combine the address region 775 * (the high order N bits) and the pgd portion of the address. 776 */ 777 778 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 779 780 #define pud_offset(pgdp, addr) \ 781 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr)) 782 #define pmd_offset(pudp,addr) \ 783 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr)) 784 #define pte_offset_kernel(dir,addr) \ 785 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr)) 786 787 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) 788 #define pte_unmap(pte) do { } while(0) 789 790 /* to find an entry in a kernel page-table-directory */ 791 /* This now only contains the vmalloc pages */ 792 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 793 794 #define pte_ERROR(e) \ 795 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 796 #define pmd_ERROR(e) \ 797 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 798 #define pud_ERROR(e) \ 799 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e)) 800 #define pgd_ERROR(e) \ 801 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 802 803 static inline int map_kernel_page(unsigned long ea, unsigned long pa, 804 unsigned long flags) 805 { 806 if (radix_enabled()) { 807 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM) 808 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift; 809 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE"); 810 #endif 811 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE); 812 } 813 return hash__map_kernel_page(ea, pa, flags); 814 } 815 816 static inline int __meminit vmemmap_create_mapping(unsigned long start, 817 unsigned long page_size, 818 unsigned long phys) 819 { 820 if (radix_enabled()) 821 return radix__vmemmap_create_mapping(start, page_size, phys); 822 return hash__vmemmap_create_mapping(start, page_size, phys); 823 } 824 825 #ifdef CONFIG_MEMORY_HOTPLUG 826 static inline void vmemmap_remove_mapping(unsigned long start, 827 unsigned long page_size) 828 { 829 if (radix_enabled()) 830 return radix__vmemmap_remove_mapping(start, page_size); 831 return hash__vmemmap_remove_mapping(start, page_size); 832 } 833 #endif 834 struct page *realmode_pfn_to_page(unsigned long pfn); 835 836 static inline pte_t pmd_pte(pmd_t pmd) 837 { 838 return __pte_raw(pmd_raw(pmd)); 839 } 840 841 static inline pmd_t pte_pmd(pte_t pte) 842 { 843 return __pmd_raw(pte_raw(pte)); 844 } 845 846 static inline pte_t *pmdp_ptep(pmd_t *pmd) 847 { 848 return (pte_t *)pmd; 849 } 850 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) 851 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 852 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 853 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 854 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 855 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 856 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 857 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 858 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 859 860 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 861 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd)) 862 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd))) 863 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd))) 864 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 865 866 #ifdef CONFIG_NUMA_BALANCING 867 static inline int pmd_protnone(pmd_t pmd) 868 { 869 return pte_protnone(pmd_pte(pmd)); 870 } 871 #endif /* CONFIG_NUMA_BALANCING */ 872 873 #define __HAVE_ARCH_PMD_WRITE 874 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 875 876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 877 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); 878 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); 879 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); 880 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, 881 pmd_t *pmdp, pmd_t pmd); 882 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 883 pmd_t *pmd); 884 extern int hash__has_transparent_hugepage(void); 885 static inline int has_transparent_hugepage(void) 886 { 887 if (radix_enabled()) 888 return radix__has_transparent_hugepage(); 889 return hash__has_transparent_hugepage(); 890 } 891 #define has_transparent_hugepage has_transparent_hugepage 892 893 static inline unsigned long 894 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, 895 unsigned long clr, unsigned long set) 896 { 897 if (radix_enabled()) 898 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set); 899 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set); 900 } 901 902 static inline int pmd_large(pmd_t pmd) 903 { 904 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); 905 } 906 907 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 908 { 909 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT); 910 } 911 /* 912 * For radix we should always find H_PAGE_HASHPTE zero. Hence 913 * the below will work for radix too 914 */ 915 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, 916 unsigned long addr, pmd_t *pmdp) 917 { 918 unsigned long old; 919 920 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 921 return 0; 922 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); 923 return ((old & _PAGE_ACCESSED) != 0); 924 } 925 926 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 927 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, 928 pmd_t *pmdp) 929 { 930 931 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_WRITE)) == 0) 932 return; 933 934 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0); 935 } 936 937 static inline int pmd_trans_huge(pmd_t pmd) 938 { 939 if (radix_enabled()) 940 return radix__pmd_trans_huge(pmd); 941 return hash__pmd_trans_huge(pmd); 942 } 943 944 #define __HAVE_ARCH_PMD_SAME 945 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 946 { 947 if (radix_enabled()) 948 return radix__pmd_same(pmd_a, pmd_b); 949 return hash__pmd_same(pmd_a, pmd_b); 950 } 951 952 static inline pmd_t pmd_mkhuge(pmd_t pmd) 953 { 954 if (radix_enabled()) 955 return radix__pmd_mkhuge(pmd); 956 return hash__pmd_mkhuge(pmd); 957 } 958 959 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 960 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 961 unsigned long address, pmd_t *pmdp, 962 pmd_t entry, int dirty); 963 964 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 965 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 966 unsigned long address, pmd_t *pmdp); 967 968 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 969 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 970 unsigned long addr, pmd_t *pmdp) 971 { 972 if (radix_enabled()) 973 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp); 974 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp); 975 } 976 977 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 978 unsigned long address, pmd_t *pmdp) 979 { 980 if (radix_enabled()) 981 return radix__pmdp_collapse_flush(vma, address, pmdp); 982 return hash__pmdp_collapse_flush(vma, address, pmdp); 983 } 984 #define pmdp_collapse_flush pmdp_collapse_flush 985 986 #define __HAVE_ARCH_PGTABLE_DEPOSIT 987 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm, 988 pmd_t *pmdp, pgtable_t pgtable) 989 { 990 if (radix_enabled()) 991 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 992 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 993 } 994 995 #define __HAVE_ARCH_PGTABLE_WITHDRAW 996 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, 997 pmd_t *pmdp) 998 { 999 if (radix_enabled()) 1000 return radix__pgtable_trans_huge_withdraw(mm, pmdp); 1001 return hash__pgtable_trans_huge_withdraw(mm, pmdp); 1002 } 1003 1004 #define __HAVE_ARCH_PMDP_INVALIDATE 1005 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 1006 pmd_t *pmdp); 1007 1008 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE 1009 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma, 1010 unsigned long address, pmd_t *pmdp) 1011 { 1012 if (radix_enabled()) 1013 return radix__pmdp_huge_split_prepare(vma, address, pmdp); 1014 return hash__pmdp_huge_split_prepare(vma, address, pmdp); 1015 } 1016 1017 #define pmd_move_must_withdraw pmd_move_must_withdraw 1018 struct spinlock; 1019 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 1020 struct spinlock *old_pmd_ptl, 1021 struct vm_area_struct *vma) 1022 { 1023 if (radix_enabled()) 1024 return false; 1025 /* 1026 * Archs like ppc64 use pgtable to store per pmd 1027 * specific information. So when we switch the pmd, 1028 * we should also withdraw and deposit the pgtable 1029 */ 1030 return true; 1031 } 1032 1033 1034 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit 1035 static inline bool arch_needs_pgtable_deposit(void) 1036 { 1037 if (radix_enabled()) 1038 return false; 1039 return true; 1040 } 1041 1042 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1043 #endif /* __ASSEMBLY__ */ 1044 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */ 1045