1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 4 5 #include <asm-generic/pgtable-nop4d.h> 6 7 #ifndef __ASSEMBLY__ 8 #include <linux/mmdebug.h> 9 #include <linux/bug.h> 10 #include <linux/sizes.h> 11 #endif 12 13 /* 14 * Common bits between hash and Radix page table 15 */ 16 17 #define _PAGE_EXEC 0x00001 /* execute permission */ 18 #define _PAGE_WRITE 0x00002 /* write access allowed */ 19 #define _PAGE_READ 0x00004 /* read access allowed */ 20 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 21 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) 22 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */ 23 #define _PAGE_SAO 0x00010 /* Strong access order */ 24 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */ 25 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */ 26 #define _PAGE_DIRTY 0x00080 /* C: page changed */ 27 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */ 28 /* 29 * Software bits 30 */ 31 #define _RPAGE_SW0 0x2000000000000000UL 32 #define _RPAGE_SW1 0x00800 33 #define _RPAGE_SW2 0x00400 34 #define _RPAGE_SW3 0x00200 35 #define _RPAGE_RSV1 0x00040UL 36 37 #define _RPAGE_PKEY_BIT4 0x1000000000000000UL 38 #define _RPAGE_PKEY_BIT3 0x0800000000000000UL 39 #define _RPAGE_PKEY_BIT2 0x0400000000000000UL 40 #define _RPAGE_PKEY_BIT1 0x0200000000000000UL 41 #define _RPAGE_PKEY_BIT0 0x0100000000000000UL 42 43 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */ 44 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */ 45 /* 46 * We need to mark a pmd pte invalid while splitting. We can do that by clearing 47 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to 48 * differentiate between two use a SW field when invalidating. 49 * 50 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags 51 * 52 * This is used only when _PAGE_PRESENT is cleared. 53 */ 54 #define _PAGE_INVALID _RPAGE_SW0 55 56 /* 57 * Top and bottom bits of RPN which can be used by hash 58 * translation mode, because we expect them to be zero 59 * otherwise. 60 */ 61 #define _RPAGE_RPN0 0x01000 62 #define _RPAGE_RPN1 0x02000 63 #define _RPAGE_RPN43 0x0080000000000000UL 64 #define _RPAGE_RPN42 0x0040000000000000UL 65 #define _RPAGE_RPN41 0x0020000000000000UL 66 67 /* Max physical address bit as per radix table */ 68 #define _RPAGE_PA_MAX 56 69 70 /* 71 * Max physical address bit we will use for now. 72 * 73 * This is mostly a hardware limitation and for now Power9 has 74 * a 51 bit limit. 75 * 76 * This is different from the number of physical bit required to address 77 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS. 78 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum 79 * number of sections we can support (SECTIONS_SHIFT). 80 * 81 * This is different from Radix page table limitation above and 82 * should always be less than that. The limit is done such that 83 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX 84 * for hash linux page table specific bits. 85 * 86 * In order to be compatible with future hardware generations we keep 87 * some offsets and limit this for now to 53 88 */ 89 #define _PAGE_PA_MAX 53 90 91 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */ 92 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */ 93 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */ 94 95 /* 96 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE 97 * Instead of fixing all of them, add an alternate define which 98 * maps CI pte mapping. 99 */ 100 #define _PAGE_NO_CACHE _PAGE_TOLERANT 101 /* 102 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side 103 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX 104 * and every thing below PAGE_SHIFT; 105 */ 106 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK)) 107 /* 108 * set of bits not changed in pmd_modify. Even though we have hash specific bits 109 * in here, on radix we expect them to be zero. 110 */ 111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 112 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \ 113 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) 114 /* 115 * user access blocked by key 116 */ 117 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY) 118 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ) 119 #define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC) 120 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \ 121 _PAGE_RW | _PAGE_EXEC) 122 /* 123 * _PAGE_CHG_MASK masks of bits that are to be preserved across 124 * pgprot changes 125 */ 126 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 127 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \ 128 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) 129 130 /* 131 * We define 2 sets of base prot bits, one for basic pages (ie, 132 * cacheable kernel and user pages) and one for non cacheable 133 * pages. We always set _PAGE_COHERENT when SMP is enabled or 134 * the processor might need it for DMA coherency. 135 */ 136 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) 137 #define _PAGE_BASE (_PAGE_BASE_NC) 138 139 /* Permission masks used to generate the __P and __S table, 140 * 141 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h 142 * 143 * Write permissions imply read permissions for now (we could make write-only 144 * pages on BookE but we don't bother for now). Execute permission control is 145 * possible on platforms that define _PAGE_EXEC 146 */ 147 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED) 148 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW) 149 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC) 150 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ) 151 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 152 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ) 153 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 154 155 /* Permission masks used for kernel mappings */ 156 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 157 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 158 _PAGE_TOLERANT) 159 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 160 _PAGE_NON_IDEMPOTENT) 161 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 162 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 163 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 164 165 /* 166 * Protection used for kernel text. We want the debuggers to be able to 167 * set breakpoints anywhere, so don't write protect the kernel text 168 * on platforms where such control is possible. 169 */ 170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \ 171 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) 172 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X 173 #else 174 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX 175 #endif 176 177 /* Make modules code happy. We don't set RO yet */ 178 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X 179 #define PAGE_AGP (PAGE_KERNEL_NC) 180 181 #ifndef __ASSEMBLY__ 182 /* 183 * page table defines 184 */ 185 extern unsigned long __pte_index_size; 186 extern unsigned long __pmd_index_size; 187 extern unsigned long __pud_index_size; 188 extern unsigned long __pgd_index_size; 189 extern unsigned long __pud_cache_index; 190 #define PTE_INDEX_SIZE __pte_index_size 191 #define PMD_INDEX_SIZE __pmd_index_size 192 #define PUD_INDEX_SIZE __pud_index_size 193 #define PGD_INDEX_SIZE __pgd_index_size 194 /* pmd table use page table fragments */ 195 #define PMD_CACHE_INDEX 0 196 #define PUD_CACHE_INDEX __pud_cache_index 197 /* 198 * Because of use of pte fragments and THP, size of page table 199 * are not always derived out of index size above. 200 */ 201 extern unsigned long __pte_table_size; 202 extern unsigned long __pmd_table_size; 203 extern unsigned long __pud_table_size; 204 extern unsigned long __pgd_table_size; 205 #define PTE_TABLE_SIZE __pte_table_size 206 #define PMD_TABLE_SIZE __pmd_table_size 207 #define PUD_TABLE_SIZE __pud_table_size 208 #define PGD_TABLE_SIZE __pgd_table_size 209 210 extern unsigned long __pmd_val_bits; 211 extern unsigned long __pud_val_bits; 212 extern unsigned long __pgd_val_bits; 213 #define PMD_VAL_BITS __pmd_val_bits 214 #define PUD_VAL_BITS __pud_val_bits 215 #define PGD_VAL_BITS __pgd_val_bits 216 217 extern unsigned long __pte_frag_nr; 218 #define PTE_FRAG_NR __pte_frag_nr 219 extern unsigned long __pte_frag_size_shift; 220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift 221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) 222 223 extern unsigned long __pmd_frag_nr; 224 #define PMD_FRAG_NR __pmd_frag_nr 225 extern unsigned long __pmd_frag_size_shift; 226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift 227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT) 228 229 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 230 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) 231 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE) 232 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 233 234 #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE) 235 #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD) 236 #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD) 237 #define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \ 238 H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE)) 239 240 /* PMD_SHIFT determines what a second-level page table entry can map */ 241 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 242 #define PMD_SIZE (1UL << PMD_SHIFT) 243 #define PMD_MASK (~(PMD_SIZE-1)) 244 245 /* PUD_SHIFT determines what a third-level page table entry can map */ 246 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) 247 #define PUD_SIZE (1UL << PUD_SHIFT) 248 #define PUD_MASK (~(PUD_SIZE-1)) 249 250 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ 251 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE) 252 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 253 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 254 255 /* Bits to mask out from a PMD to get to the PTE page */ 256 #define PMD_MASKED_BITS 0xc0000000000000ffUL 257 /* Bits to mask out from a PUD to get to the PMD page */ 258 #define PUD_MASKED_BITS 0xc0000000000000ffUL 259 /* Bits to mask out from a PGD to get to the PUD page */ 260 #define P4D_MASKED_BITS 0xc0000000000000ffUL 261 262 /* 263 * Used as an indicator for rcu callback functions 264 */ 265 enum pgtable_index { 266 PTE_INDEX = 0, 267 PMD_INDEX, 268 PUD_INDEX, 269 PGD_INDEX, 270 /* 271 * Below are used with 4k page size and hugetlb 272 */ 273 HTLB_16M_INDEX, 274 HTLB_16G_INDEX, 275 }; 276 277 extern unsigned long __vmalloc_start; 278 extern unsigned long __vmalloc_end; 279 #define VMALLOC_START __vmalloc_start 280 #define VMALLOC_END __vmalloc_end 281 282 static inline unsigned int ioremap_max_order(void) 283 { 284 if (radix_enabled()) 285 return PUD_SHIFT; 286 return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */ 287 } 288 #define IOREMAP_MAX_ORDER ioremap_max_order() 289 290 extern unsigned long __kernel_virt_start; 291 extern unsigned long __kernel_io_start; 292 extern unsigned long __kernel_io_end; 293 #define KERN_VIRT_START __kernel_virt_start 294 #define KERN_IO_START __kernel_io_start 295 #define KERN_IO_END __kernel_io_end 296 297 extern struct page *vmemmap; 298 extern unsigned long pci_io_base; 299 #endif /* __ASSEMBLY__ */ 300 301 #include <asm/book3s/64/hash.h> 302 #include <asm/book3s/64/radix.h> 303 304 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS 305 #define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS 306 #else 307 #define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS 308 #endif 309 310 311 #ifdef CONFIG_PPC_64K_PAGES 312 #include <asm/book3s/64/pgtable-64k.h> 313 #else 314 #include <asm/book3s/64/pgtable-4k.h> 315 #endif 316 317 #include <asm/barrier.h> 318 /* 319 * IO space itself carved into the PIO region (ISA and PHB IO space) and 320 * the ioremap space 321 * 322 * ISA_IO_BASE = KERN_IO_START, 64K reserved area 323 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces 324 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE 325 */ 326 #define FULL_IO_SIZE 0x80000000ul 327 #define ISA_IO_BASE (KERN_IO_START) 328 #define ISA_IO_END (KERN_IO_START + 0x10000ul) 329 #define PHB_IO_BASE (ISA_IO_END) 330 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) 331 #define IOREMAP_BASE (PHB_IO_END) 332 #define IOREMAP_START (ioremap_bot) 333 #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE) 334 #define FIXADDR_SIZE SZ_32M 335 336 /* Advertise special mapping type for AGP */ 337 #define HAVE_PAGE_AGP 338 339 #ifndef __ASSEMBLY__ 340 341 /* 342 * This is the default implementation of various PTE accessors, it's 343 * used in all cases except Book3S with 64K pages where we have a 344 * concept of sub-pages 345 */ 346 #ifndef __real_pte 347 348 #define __real_pte(e, p, o) ((real_pte_t){(e)}) 349 #define __rpte_to_pte(r) ((r).pte) 350 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) 351 352 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ 353 do { \ 354 index = 0; \ 355 shift = mmu_psize_defs[psize].shift; \ 356 357 #define pte_iterate_hashed_end() } while(0) 358 359 /* 360 * We expect this to be called only for user addresses or kernel virtual 361 * addresses other than the linear mapping. 362 */ 363 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K 364 365 #endif /* __real_pte */ 366 367 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, 368 pte_t *ptep, unsigned long clr, 369 unsigned long set, int huge) 370 { 371 if (radix_enabled()) 372 return radix__pte_update(mm, addr, ptep, clr, set, huge); 373 return hash__pte_update(mm, addr, ptep, clr, set, huge); 374 } 375 /* 376 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update. 377 * We currently remove entries from the hashtable regardless of whether 378 * the entry was young or dirty. 379 * 380 * We should be more intelligent about this but for the moment we override 381 * these functions and force a tlb flush unconditionally 382 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same 383 * function for both hash and radix. 384 */ 385 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 386 unsigned long addr, pte_t *ptep) 387 { 388 unsigned long old; 389 390 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 391 return 0; 392 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 393 return (old & _PAGE_ACCESSED) != 0; 394 } 395 396 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 397 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 398 ({ \ 399 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 400 }) 401 402 /* 403 * On Book3S CPUs, clearing the accessed bit without a TLB flush 404 * doesn't cause data corruption. [ It could cause incorrect 405 * page aging and the (mistaken) reclaim of hot pages, but the 406 * chance of that should be relatively low. ] 407 * 408 * So as a performance optimization don't flush the TLB when 409 * clearing the accessed bit, it will eventually be flushed by 410 * a context switch or a VM operation anyway. [ In the rare 411 * event of it not getting flushed for a long time the delay 412 * shouldn't really matter because there's no real memory 413 * pressure for swapout to react to. ] 414 */ 415 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 416 #define ptep_clear_flush_young ptep_test_and_clear_young 417 418 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 419 #define pmdp_clear_flush_young pmdp_test_and_clear_young 420 421 static inline int __pte_write(pte_t pte) 422 { 423 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE)); 424 } 425 426 #ifdef CONFIG_NUMA_BALANCING 427 #define pte_savedwrite pte_savedwrite 428 static inline bool pte_savedwrite(pte_t pte) 429 { 430 /* 431 * Saved write ptes are prot none ptes that doesn't have 432 * privileged bit sit. We mark prot none as one which has 433 * present and pviliged bit set and RWX cleared. To mark 434 * protnone which used to have _PAGE_WRITE set we clear 435 * the privileged bit. 436 */ 437 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED)); 438 } 439 #else 440 #define pte_savedwrite pte_savedwrite 441 static inline bool pte_savedwrite(pte_t pte) 442 { 443 return false; 444 } 445 #endif 446 447 static inline int pte_write(pte_t pte) 448 { 449 return __pte_write(pte) || pte_savedwrite(pte); 450 } 451 452 static inline int pte_read(pte_t pte) 453 { 454 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ)); 455 } 456 457 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 458 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 459 pte_t *ptep) 460 { 461 if (__pte_write(*ptep)) 462 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); 463 else if (unlikely(pte_savedwrite(*ptep))) 464 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0); 465 } 466 467 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT 468 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 469 unsigned long addr, pte_t *ptep) 470 { 471 /* 472 * We should not find protnone for hugetlb, but this complete the 473 * interface. 474 */ 475 if (__pte_write(*ptep)) 476 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1); 477 else if (unlikely(pte_savedwrite(*ptep))) 478 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1); 479 } 480 481 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 482 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 483 unsigned long addr, pte_t *ptep) 484 { 485 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); 486 return __pte(old); 487 } 488 489 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 490 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 491 unsigned long addr, 492 pte_t *ptep, int full) 493 { 494 if (full && radix_enabled()) { 495 /* 496 * We know that this is a full mm pte clear and 497 * hence can be sure there is no parallel set_pte. 498 */ 499 return radix__ptep_get_and_clear_full(mm, addr, ptep, full); 500 } 501 return ptep_get_and_clear(mm, addr, ptep); 502 } 503 504 505 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 506 pte_t * ptep) 507 { 508 pte_update(mm, addr, ptep, ~0UL, 0, 0); 509 } 510 511 static inline int pte_dirty(pte_t pte) 512 { 513 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY)); 514 } 515 516 static inline int pte_young(pte_t pte) 517 { 518 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED)); 519 } 520 521 static inline int pte_special(pte_t pte) 522 { 523 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL)); 524 } 525 526 static inline bool pte_exec(pte_t pte) 527 { 528 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC)); 529 } 530 531 532 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 533 static inline bool pte_soft_dirty(pte_t pte) 534 { 535 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY)); 536 } 537 538 static inline pte_t pte_mksoft_dirty(pte_t pte) 539 { 540 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY)); 541 } 542 543 static inline pte_t pte_clear_soft_dirty(pte_t pte) 544 { 545 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY)); 546 } 547 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 548 549 #ifdef CONFIG_NUMA_BALANCING 550 static inline int pte_protnone(pte_t pte) 551 { 552 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) == 553 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); 554 } 555 556 #define pte_mk_savedwrite pte_mk_savedwrite 557 static inline pte_t pte_mk_savedwrite(pte_t pte) 558 { 559 /* 560 * Used by Autonuma subsystem to preserve the write bit 561 * while marking the pte PROT_NONE. Only allow this 562 * on PROT_NONE pte 563 */ 564 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) != 565 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED)); 566 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED)); 567 } 568 569 #define pte_clear_savedwrite pte_clear_savedwrite 570 static inline pte_t pte_clear_savedwrite(pte_t pte) 571 { 572 /* 573 * Used by KSM subsystem to make a protnone pte readonly. 574 */ 575 VM_BUG_ON(!pte_protnone(pte)); 576 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED)); 577 } 578 #else 579 #define pte_clear_savedwrite pte_clear_savedwrite 580 static inline pte_t pte_clear_savedwrite(pte_t pte) 581 { 582 VM_WARN_ON(1); 583 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE)); 584 } 585 #endif /* CONFIG_NUMA_BALANCING */ 586 587 static inline bool pte_hw_valid(pte_t pte) 588 { 589 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) == 590 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); 591 } 592 593 static inline int pte_present(pte_t pte) 594 { 595 /* 596 * A pte is considerent present if _PAGE_PRESENT is set. 597 * We also need to consider the pte present which is marked 598 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID 599 * if we find _PAGE_PRESENT cleared. 600 */ 601 602 if (pte_hw_valid(pte)) 603 return true; 604 return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) == 605 cpu_to_be64(_PAGE_INVALID | _PAGE_PTE); 606 } 607 608 #ifdef CONFIG_PPC_MEM_KEYS 609 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute); 610 #else 611 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute) 612 { 613 return true; 614 } 615 #endif /* CONFIG_PPC_MEM_KEYS */ 616 617 static inline bool pte_user(pte_t pte) 618 { 619 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED)); 620 } 621 622 #define pte_access_permitted pte_access_permitted 623 static inline bool pte_access_permitted(pte_t pte, bool write) 624 { 625 /* 626 * _PAGE_READ is needed for any access and will be 627 * cleared for PROT_NONE 628 */ 629 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) 630 return false; 631 632 if (write && !pte_write(pte)) 633 return false; 634 635 return arch_pte_access_permitted(pte_val(pte), write, 0); 636 } 637 638 /* 639 * Conversion functions: convert a page and protection to a page entry, 640 * and a page entry and page directory to the page they refer to. 641 * 642 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 643 * long for now. 644 */ 645 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 646 { 647 VM_BUG_ON(pfn >> (64 - PAGE_SHIFT)); 648 VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK); 649 650 return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE); 651 } 652 653 static inline unsigned long pte_pfn(pte_t pte) 654 { 655 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT; 656 } 657 658 /* Generic modifiers for PTE bits */ 659 static inline pte_t pte_wrprotect(pte_t pte) 660 { 661 if (unlikely(pte_savedwrite(pte))) 662 return pte_clear_savedwrite(pte); 663 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE)); 664 } 665 666 static inline pte_t pte_exprotect(pte_t pte) 667 { 668 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC)); 669 } 670 671 static inline pte_t pte_mkclean(pte_t pte) 672 { 673 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY)); 674 } 675 676 static inline pte_t pte_mkold(pte_t pte) 677 { 678 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED)); 679 } 680 681 static inline pte_t pte_mkexec(pte_t pte) 682 { 683 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC)); 684 } 685 686 static inline pte_t pte_mkwrite(pte_t pte) 687 { 688 /* 689 * write implies read, hence set both 690 */ 691 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW)); 692 } 693 694 static inline pte_t pte_mkdirty(pte_t pte) 695 { 696 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); 697 } 698 699 static inline pte_t pte_mkyoung(pte_t pte) 700 { 701 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED)); 702 } 703 704 static inline pte_t pte_mkspecial(pte_t pte) 705 { 706 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL)); 707 } 708 709 static inline pte_t pte_mkhuge(pte_t pte) 710 { 711 return pte; 712 } 713 714 static inline pte_t pte_mkdevmap(pte_t pte) 715 { 716 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP)); 717 } 718 719 static inline pte_t pte_mkprivileged(pte_t pte) 720 { 721 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED)); 722 } 723 724 static inline pte_t pte_mkuser(pte_t pte) 725 { 726 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED)); 727 } 728 729 /* 730 * This is potentially called with a pmd as the argument, in which case it's not 731 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set. 732 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software 733 * use in page directory entries (ie. non-ptes). 734 */ 735 static inline int pte_devmap(pte_t pte) 736 { 737 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE); 738 739 return (pte_raw(pte) & mask) == mask; 740 } 741 742 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 743 { 744 /* FIXME!! check whether this need to be a conditional */ 745 return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) | 746 cpu_to_be64(pgprot_val(newprot))); 747 } 748 749 /* Encode and de-code a swap entry */ 750 #define MAX_SWAPFILES_CHECK() do { \ 751 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ 752 /* \ 753 * Don't have overlapping bits with _PAGE_HPTEFLAGS \ 754 * We filter HPTEFLAGS on set_pte. \ 755 */ \ 756 BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \ 757 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \ 758 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE); \ 759 } while (0) 760 761 #define SWP_TYPE_BITS 5 762 #define SWP_TYPE_MASK ((1UL << SWP_TYPE_BITS) - 1) 763 #define __swp_type(x) ((x).val & SWP_TYPE_MASK) 764 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT) 765 #define __swp_entry(type, offset) ((swp_entry_t) { \ 766 (type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)}) 767 /* 768 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from 769 * swap type and offset we get from swap and convert that to pte to find a 770 * matching pte in linux page table. 771 * Clear bits not found in swap entries here. 772 */ 773 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE }) 774 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE) 775 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd))) 776 #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x))) 777 778 #ifdef CONFIG_MEM_SOFT_DIRTY 779 #define _PAGE_SWP_SOFT_DIRTY _PAGE_SOFT_DIRTY 780 #else 781 #define _PAGE_SWP_SOFT_DIRTY 0UL 782 #endif /* CONFIG_MEM_SOFT_DIRTY */ 783 784 #define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT 785 786 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 787 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 788 { 789 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); 790 } 791 792 static inline bool pte_swp_soft_dirty(pte_t pte) 793 { 794 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); 795 } 796 797 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 798 { 799 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY)); 800 } 801 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 802 803 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE 804 static inline pte_t pte_swp_mkexclusive(pte_t pte) 805 { 806 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE)); 807 } 808 809 static inline int pte_swp_exclusive(pte_t pte) 810 { 811 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE)); 812 } 813 814 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 815 { 816 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE)); 817 } 818 819 static inline bool check_pte_access(unsigned long access, unsigned long ptev) 820 { 821 /* 822 * This check for _PAGE_RWX and _PAGE_PRESENT bits 823 */ 824 if (access & ~ptev) 825 return false; 826 /* 827 * This check for access to privilege space 828 */ 829 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED)) 830 return false; 831 832 return true; 833 } 834 /* 835 * Generic functions with hash/radix callbacks 836 */ 837 838 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 839 pte_t *ptep, pte_t entry, 840 unsigned long address, 841 int psize) 842 { 843 if (radix_enabled()) 844 return radix__ptep_set_access_flags(vma, ptep, entry, 845 address, psize); 846 return hash__ptep_set_access_flags(ptep, entry); 847 } 848 849 #define __HAVE_ARCH_PTE_SAME 850 static inline int pte_same(pte_t pte_a, pte_t pte_b) 851 { 852 if (radix_enabled()) 853 return radix__pte_same(pte_a, pte_b); 854 return hash__pte_same(pte_a, pte_b); 855 } 856 857 static inline int pte_none(pte_t pte) 858 { 859 if (radix_enabled()) 860 return radix__pte_none(pte); 861 return hash__pte_none(pte); 862 } 863 864 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 865 pte_t *ptep, pte_t pte, int percpu) 866 { 867 868 VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE))); 869 /* 870 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE 871 * in all the callers. 872 */ 873 pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE)); 874 875 if (radix_enabled()) 876 return radix__set_pte_at(mm, addr, ptep, pte, percpu); 877 return hash__set_pte_at(mm, addr, ptep, pte, percpu); 878 } 879 880 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT) 881 882 #define pgprot_noncached pgprot_noncached 883 static inline pgprot_t pgprot_noncached(pgprot_t prot) 884 { 885 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 886 _PAGE_NON_IDEMPOTENT); 887 } 888 889 #define pgprot_noncached_wc pgprot_noncached_wc 890 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 891 { 892 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 893 _PAGE_TOLERANT); 894 } 895 896 #define pgprot_cached pgprot_cached 897 static inline pgprot_t pgprot_cached(pgprot_t prot) 898 { 899 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL)); 900 } 901 902 #define pgprot_writecombine pgprot_writecombine 903 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 904 { 905 return pgprot_noncached_wc(prot); 906 } 907 /* 908 * check a pte mapping have cache inhibited property 909 */ 910 static inline bool pte_ci(pte_t pte) 911 { 912 __be64 pte_v = pte_raw(pte); 913 914 if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) || 915 ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT))) 916 return true; 917 return false; 918 } 919 920 static inline void pmd_clear(pmd_t *pmdp) 921 { 922 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) { 923 /* 924 * Don't use this if we can possibly have a hash page table 925 * entry mapping this. 926 */ 927 WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE)); 928 } 929 *pmdp = __pmd(0); 930 } 931 932 static inline int pmd_none(pmd_t pmd) 933 { 934 return !pmd_raw(pmd); 935 } 936 937 static inline int pmd_present(pmd_t pmd) 938 { 939 /* 940 * A pmd is considerent present if _PAGE_PRESENT is set. 941 * We also need to consider the pmd present which is marked 942 * invalid during a split. Hence we look for _PAGE_INVALID 943 * if we find _PAGE_PRESENT cleared. 944 */ 945 if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) 946 return true; 947 948 return false; 949 } 950 951 static inline int pmd_is_serializing(pmd_t pmd) 952 { 953 /* 954 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear 955 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate). 956 * 957 * This condition may also occur when flushing a pmd while flushing 958 * it (see ptep_modify_prot_start), so callers must ensure this 959 * case is fine as well. 960 */ 961 if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) == 962 cpu_to_be64(_PAGE_INVALID)) 963 return true; 964 965 return false; 966 } 967 968 static inline int pmd_bad(pmd_t pmd) 969 { 970 if (radix_enabled()) 971 return radix__pmd_bad(pmd); 972 return hash__pmd_bad(pmd); 973 } 974 975 static inline void pud_clear(pud_t *pudp) 976 { 977 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) { 978 /* 979 * Don't use this if we can possibly have a hash page table 980 * entry mapping this. 981 */ 982 WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE)); 983 } 984 *pudp = __pud(0); 985 } 986 987 static inline int pud_none(pud_t pud) 988 { 989 return !pud_raw(pud); 990 } 991 992 static inline int pud_present(pud_t pud) 993 { 994 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT)); 995 } 996 997 extern struct page *pud_page(pud_t pud); 998 extern struct page *pmd_page(pmd_t pmd); 999 static inline pte_t pud_pte(pud_t pud) 1000 { 1001 return __pte_raw(pud_raw(pud)); 1002 } 1003 1004 static inline pud_t pte_pud(pte_t pte) 1005 { 1006 return __pud_raw(pte_raw(pte)); 1007 } 1008 #define pud_write(pud) pte_write(pud_pte(pud)) 1009 1010 static inline int pud_bad(pud_t pud) 1011 { 1012 if (radix_enabled()) 1013 return radix__pud_bad(pud); 1014 return hash__pud_bad(pud); 1015 } 1016 1017 #define pud_access_permitted pud_access_permitted 1018 static inline bool pud_access_permitted(pud_t pud, bool write) 1019 { 1020 return pte_access_permitted(pud_pte(pud), write); 1021 } 1022 1023 #define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) }) 1024 static inline __be64 p4d_raw(p4d_t x) 1025 { 1026 return pgd_raw(x.pgd); 1027 } 1028 1029 #define p4d_write(p4d) pte_write(p4d_pte(p4d)) 1030 1031 static inline void p4d_clear(p4d_t *p4dp) 1032 { 1033 *p4dp = __p4d(0); 1034 } 1035 1036 static inline int p4d_none(p4d_t p4d) 1037 { 1038 return !p4d_raw(p4d); 1039 } 1040 1041 static inline int p4d_present(p4d_t p4d) 1042 { 1043 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT)); 1044 } 1045 1046 static inline pte_t p4d_pte(p4d_t p4d) 1047 { 1048 return __pte_raw(p4d_raw(p4d)); 1049 } 1050 1051 static inline p4d_t pte_p4d(pte_t pte) 1052 { 1053 return __p4d_raw(pte_raw(pte)); 1054 } 1055 1056 static inline int p4d_bad(p4d_t p4d) 1057 { 1058 if (radix_enabled()) 1059 return radix__p4d_bad(p4d); 1060 return hash__p4d_bad(p4d); 1061 } 1062 1063 #define p4d_access_permitted p4d_access_permitted 1064 static inline bool p4d_access_permitted(p4d_t p4d, bool write) 1065 { 1066 return pte_access_permitted(p4d_pte(p4d), write); 1067 } 1068 1069 extern struct page *p4d_page(p4d_t p4d); 1070 1071 /* Pointers in the page table tree are physical addresses */ 1072 #define __pgtable_ptr_val(ptr) __pa(ptr) 1073 1074 static inline pud_t *p4d_pgtable(p4d_t p4d) 1075 { 1076 return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS); 1077 } 1078 1079 static inline pmd_t *pud_pgtable(pud_t pud) 1080 { 1081 return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS); 1082 } 1083 1084 #define pte_ERROR(e) \ 1085 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 1086 #define pmd_ERROR(e) \ 1087 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 1088 #define pud_ERROR(e) \ 1089 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e)) 1090 #define pgd_ERROR(e) \ 1091 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 1092 1093 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot) 1094 { 1095 if (radix_enabled()) { 1096 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM) 1097 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift; 1098 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE"); 1099 #endif 1100 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE); 1101 } 1102 return hash__map_kernel_page(ea, pa, prot); 1103 } 1104 1105 void unmap_kernel_page(unsigned long va); 1106 1107 static inline int __meminit vmemmap_create_mapping(unsigned long start, 1108 unsigned long page_size, 1109 unsigned long phys) 1110 { 1111 if (radix_enabled()) 1112 return radix__vmemmap_create_mapping(start, page_size, phys); 1113 return hash__vmemmap_create_mapping(start, page_size, phys); 1114 } 1115 1116 #ifdef CONFIG_MEMORY_HOTPLUG 1117 static inline void vmemmap_remove_mapping(unsigned long start, 1118 unsigned long page_size) 1119 { 1120 if (radix_enabled()) 1121 return radix__vmemmap_remove_mapping(start, page_size); 1122 return hash__vmemmap_remove_mapping(start, page_size); 1123 } 1124 #endif 1125 1126 #ifdef CONFIG_DEBUG_PAGEALLOC 1127 static inline void __kernel_map_pages(struct page *page, int numpages, int enable) 1128 { 1129 if (radix_enabled()) 1130 radix__kernel_map_pages(page, numpages, enable); 1131 else 1132 hash__kernel_map_pages(page, numpages, enable); 1133 } 1134 #endif 1135 1136 static inline pte_t pmd_pte(pmd_t pmd) 1137 { 1138 return __pte_raw(pmd_raw(pmd)); 1139 } 1140 1141 static inline pmd_t pte_pmd(pte_t pte) 1142 { 1143 return __pmd_raw(pte_raw(pte)); 1144 } 1145 1146 static inline pte_t *pmdp_ptep(pmd_t *pmd) 1147 { 1148 return (pte_t *)pmd; 1149 } 1150 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) 1151 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 1152 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 1153 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 1154 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 1155 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 1156 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 1157 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 1158 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 1159 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd))) 1160 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd))) 1161 1162 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1163 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd)) 1164 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd))) 1165 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd))) 1166 1167 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1168 #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd))) 1169 #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd)) 1170 #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd))) 1171 #endif 1172 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1173 1174 #ifdef CONFIG_NUMA_BALANCING 1175 static inline int pmd_protnone(pmd_t pmd) 1176 { 1177 return pte_protnone(pmd_pte(pmd)); 1178 } 1179 #endif /* CONFIG_NUMA_BALANCING */ 1180 1181 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 1182 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd)) 1183 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd)) 1184 1185 #define pmd_access_permitted pmd_access_permitted 1186 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1187 { 1188 /* 1189 * pmdp_invalidate sets this combination (which is not caught by 1190 * !pte_present() check in pte_access_permitted), to prevent 1191 * lock-free lookups, as part of the serialize_against_pte_lookup() 1192 * synchronisation. 1193 * 1194 * This also catches the case where the PTE's hardware PRESENT bit is 1195 * cleared while TLB is flushed, which is suboptimal but should not 1196 * be frequent. 1197 */ 1198 if (pmd_is_serializing(pmd)) 1199 return false; 1200 1201 return pte_access_permitted(pmd_pte(pmd), write); 1202 } 1203 1204 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1205 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); 1206 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); 1207 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); 1208 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1209 pmd_t *pmdp, pmd_t pmd); 1210 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1211 unsigned long addr, pmd_t *pmd) 1212 { 1213 } 1214 1215 extern int hash__has_transparent_hugepage(void); 1216 static inline int has_transparent_hugepage(void) 1217 { 1218 if (radix_enabled()) 1219 return radix__has_transparent_hugepage(); 1220 return hash__has_transparent_hugepage(); 1221 } 1222 #define has_transparent_hugepage has_transparent_hugepage 1223 1224 static inline unsigned long 1225 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, 1226 unsigned long clr, unsigned long set) 1227 { 1228 if (radix_enabled()) 1229 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set); 1230 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set); 1231 } 1232 1233 /* 1234 * returns true for pmd migration entries, THP, devmap, hugetlb 1235 * But compile time dependent on THP config 1236 */ 1237 static inline int pmd_large(pmd_t pmd) 1238 { 1239 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); 1240 } 1241 1242 /* 1243 * For radix we should always find H_PAGE_HASHPTE zero. Hence 1244 * the below will work for radix too 1245 */ 1246 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, 1247 unsigned long addr, pmd_t *pmdp) 1248 { 1249 unsigned long old; 1250 1251 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 1252 return 0; 1253 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); 1254 return ((old & _PAGE_ACCESSED) != 0); 1255 } 1256 1257 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1258 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, 1259 pmd_t *pmdp) 1260 { 1261 if (__pmd_write((*pmdp))) 1262 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0); 1263 else if (unlikely(pmd_savedwrite(*pmdp))) 1264 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED); 1265 } 1266 1267 /* 1268 * Only returns true for a THP. False for pmd migration entry. 1269 * We also need to return true when we come across a pte that 1270 * in between a thp split. While splitting THP, we mark the pmd 1271 * invalid (pmdp_invalidate()) before we set it with pte page 1272 * address. A pmd_trans_huge() check against a pmd entry during that time 1273 * should return true. 1274 * We should not call this on a hugetlb entry. We should check for HugeTLB 1275 * entry using vma->vm_flags 1276 * The page table walk rule is explained in Documentation/mm/transhuge.rst 1277 */ 1278 static inline int pmd_trans_huge(pmd_t pmd) 1279 { 1280 if (!pmd_present(pmd)) 1281 return false; 1282 1283 if (radix_enabled()) 1284 return radix__pmd_trans_huge(pmd); 1285 return hash__pmd_trans_huge(pmd); 1286 } 1287 1288 #define __HAVE_ARCH_PMD_SAME 1289 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1290 { 1291 if (radix_enabled()) 1292 return radix__pmd_same(pmd_a, pmd_b); 1293 return hash__pmd_same(pmd_a, pmd_b); 1294 } 1295 1296 static inline pmd_t __pmd_mkhuge(pmd_t pmd) 1297 { 1298 if (radix_enabled()) 1299 return radix__pmd_mkhuge(pmd); 1300 return hash__pmd_mkhuge(pmd); 1301 } 1302 1303 /* 1304 * pfn_pmd return a pmd_t that can be used as pmd pte entry. 1305 */ 1306 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1307 { 1308 #ifdef CONFIG_DEBUG_VM 1309 if (radix_enabled()) 1310 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0); 1311 else 1312 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) != 1313 cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)); 1314 #endif 1315 return pmd; 1316 } 1317 1318 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1319 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1320 unsigned long address, pmd_t *pmdp, 1321 pmd_t entry, int dirty); 1322 1323 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1324 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1325 unsigned long address, pmd_t *pmdp); 1326 1327 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1328 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1329 unsigned long addr, pmd_t *pmdp) 1330 { 1331 if (radix_enabled()) 1332 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp); 1333 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp); 1334 } 1335 1336 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1337 unsigned long address, pmd_t *pmdp) 1338 { 1339 if (radix_enabled()) 1340 return radix__pmdp_collapse_flush(vma, address, pmdp); 1341 return hash__pmdp_collapse_flush(vma, address, pmdp); 1342 } 1343 #define pmdp_collapse_flush pmdp_collapse_flush 1344 1345 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1346 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 1347 unsigned long addr, 1348 pmd_t *pmdp, int full); 1349 1350 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1351 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm, 1352 pmd_t *pmdp, pgtable_t pgtable) 1353 { 1354 if (radix_enabled()) 1355 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 1356 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 1357 } 1358 1359 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1360 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, 1361 pmd_t *pmdp) 1362 { 1363 if (radix_enabled()) 1364 return radix__pgtable_trans_huge_withdraw(mm, pmdp); 1365 return hash__pgtable_trans_huge_withdraw(mm, pmdp); 1366 } 1367 1368 #define __HAVE_ARCH_PMDP_INVALIDATE 1369 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 1370 pmd_t *pmdp); 1371 1372 #define pmd_move_must_withdraw pmd_move_must_withdraw 1373 struct spinlock; 1374 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 1375 struct spinlock *old_pmd_ptl, 1376 struct vm_area_struct *vma); 1377 /* 1378 * Hash translation mode use the deposited table to store hash pte 1379 * slot information. 1380 */ 1381 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit 1382 static inline bool arch_needs_pgtable_deposit(void) 1383 { 1384 if (radix_enabled()) 1385 return false; 1386 return true; 1387 } 1388 extern void serialize_against_pte_lookup(struct mm_struct *mm); 1389 1390 1391 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 1392 { 1393 if (radix_enabled()) 1394 return radix__pmd_mkdevmap(pmd); 1395 return hash__pmd_mkdevmap(pmd); 1396 } 1397 1398 static inline int pmd_devmap(pmd_t pmd) 1399 { 1400 return pte_devmap(pmd_pte(pmd)); 1401 } 1402 1403 static inline int pud_devmap(pud_t pud) 1404 { 1405 return 0; 1406 } 1407 1408 static inline int pgd_devmap(pgd_t pgd) 1409 { 1410 return 0; 1411 } 1412 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1413 1414 static inline int pud_pfn(pud_t pud) 1415 { 1416 /* 1417 * Currently all calls to pud_pfn() are gated around a pud_devmap() 1418 * check so this should never be used. If it grows another user we 1419 * want to know about it. 1420 */ 1421 BUILD_BUG(); 1422 return 0; 1423 } 1424 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1425 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1426 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1427 pte_t *, pte_t, pte_t); 1428 1429 /* 1430 * Returns true for a R -> RW upgrade of pte 1431 */ 1432 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val) 1433 { 1434 if (!(old_val & _PAGE_READ)) 1435 return false; 1436 1437 if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE)) 1438 return true; 1439 1440 return false; 1441 } 1442 1443 /* 1444 * Like pmd_huge() and pmd_large(), but works regardless of config options 1445 */ 1446 #define pmd_is_leaf pmd_is_leaf 1447 #define pmd_leaf pmd_is_leaf 1448 static inline bool pmd_is_leaf(pmd_t pmd) 1449 { 1450 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); 1451 } 1452 1453 #define pud_is_leaf pud_is_leaf 1454 #define pud_leaf pud_is_leaf 1455 static inline bool pud_is_leaf(pud_t pud) 1456 { 1457 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE)); 1458 } 1459 1460 #define p4d_is_leaf p4d_is_leaf 1461 #define p4d_leaf p4d_is_leaf 1462 static inline bool p4d_is_leaf(p4d_t p4d) 1463 { 1464 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE)); 1465 } 1466 1467 #endif /* __ASSEMBLY__ */ 1468 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */ 1469