1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x1000000000000000UL
36 #define _RPAGE_RSV2		0x0800000000000000UL
37 #define _RPAGE_RSV3		0x0400000000000000UL
38 #define _RPAGE_RSV4		0x0200000000000000UL
39 #define _RPAGE_RSV5		0x00040UL
40 
41 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43 /*
44  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46  * differentiate between two use a SW field when invalidating.
47  *
48  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49  *
50  * This is used only when _PAGE_PRESENT is cleared.
51  */
52 #define _PAGE_INVALID		_RPAGE_SW0
53 
54 /*
55  * Top and bottom bits of RPN which can be used by hash
56  * translation mode, because we expect them to be zero
57  * otherwise.
58  */
59 #define _RPAGE_RPN0		0x01000
60 #define _RPAGE_RPN1		0x02000
61 #define _RPAGE_RPN44		0x0100000000000000UL
62 #define _RPAGE_RPN43		0x0080000000000000UL
63 #define _RPAGE_RPN42		0x0040000000000000UL
64 #define _RPAGE_RPN41		0x0020000000000000UL
65 
66 /* Max physical address bit as per radix table */
67 #define _RPAGE_PA_MAX		57
68 
69 /*
70  * Max physical address bit we will use for now.
71  *
72  * This is mostly a hardware limitation and for now Power9 has
73  * a 51 bit limit.
74  *
75  * This is different from the number of physical bit required to address
76  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
77  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
78  * number of sections we can support (SECTIONS_SHIFT).
79  *
80  * This is different from Radix page table limitation above and
81  * should always be less than that. The limit is done such that
82  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
83  * for hash linux page table specific bits.
84  *
85  * In order to be compatible with future hardware generations we keep
86  * some offsets and limit this for now to 53
87  */
88 #define _PAGE_PA_MAX		53
89 
90 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
91 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
92 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
93 
94 /*
95  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
96  * Instead of fixing all of them, add an alternate define which
97  * maps CI pte mapping.
98  */
99 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
100 /*
101  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
102  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
103  * and every thing below PAGE_SHIFT;
104  */
105 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
106 /*
107  * set of bits not changed in pmd_modify. Even though we have hash specific bits
108  * in here, on radix we expect them to be zero.
109  */
110 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
111 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
112 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
113 /*
114  * user access blocked by key
115  */
116 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
117 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
118 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
119 				 _PAGE_RW | _PAGE_EXEC)
120 /*
121  * _PAGE_CHG_MASK masks of bits that are to be preserved across
122  * pgprot changes
123  */
124 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
125 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
126 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
127 
128 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
129 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
130 /*
131  * We define 2 sets of base prot bits, one for basic pages (ie,
132  * cacheable kernel and user pages) and one for non cacheable
133  * pages. We always set _PAGE_COHERENT when SMP is enabled or
134  * the processor might need it for DMA coherency.
135  */
136 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
137 #define _PAGE_BASE	(_PAGE_BASE_NC)
138 
139 /* Permission masks used to generate the __P and __S table,
140  *
141  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142  *
143  * Write permissions imply read permissions for now (we could make write-only
144  * pages on BookE but we don't bother for now). Execute permission control is
145  * possible on platforms that define _PAGE_EXEC
146  */
147 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
149 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154 
155 /* Permission masks used for kernel mappings */
156 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
157 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
158 				 _PAGE_TOLERANT)
159 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160 				 _PAGE_NON_IDEMPOTENT)
161 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164 
165 /*
166  * Protection used for kernel text. We want the debuggers to be able to
167  * set breakpoints anywhere, so don't write protect the kernel text
168  * on platforms where such control is possible.
169  */
170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
171 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
172 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
173 #else
174 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
175 #endif
176 
177 /* Make modules code happy. We don't set RO yet */
178 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
179 #define PAGE_AGP		(PAGE_KERNEL_NC)
180 
181 #ifndef __ASSEMBLY__
182 /*
183  * page table defines
184  */
185 extern unsigned long __pte_index_size;
186 extern unsigned long __pmd_index_size;
187 extern unsigned long __pud_index_size;
188 extern unsigned long __pgd_index_size;
189 extern unsigned long __pud_cache_index;
190 #define PTE_INDEX_SIZE  __pte_index_size
191 #define PMD_INDEX_SIZE  __pmd_index_size
192 #define PUD_INDEX_SIZE  __pud_index_size
193 #define PGD_INDEX_SIZE  __pgd_index_size
194 /* pmd table use page table fragments */
195 #define PMD_CACHE_INDEX  0
196 #define PUD_CACHE_INDEX __pud_cache_index
197 /*
198  * Because of use of pte fragments and THP, size of page table
199  * are not always derived out of index size above.
200  */
201 extern unsigned long __pte_table_size;
202 extern unsigned long __pmd_table_size;
203 extern unsigned long __pud_table_size;
204 extern unsigned long __pgd_table_size;
205 #define PTE_TABLE_SIZE	__pte_table_size
206 #define PMD_TABLE_SIZE	__pmd_table_size
207 #define PUD_TABLE_SIZE	__pud_table_size
208 #define PGD_TABLE_SIZE	__pgd_table_size
209 
210 extern unsigned long __pmd_val_bits;
211 extern unsigned long __pud_val_bits;
212 extern unsigned long __pgd_val_bits;
213 #define PMD_VAL_BITS	__pmd_val_bits
214 #define PUD_VAL_BITS	__pud_val_bits
215 #define PGD_VAL_BITS	__pgd_val_bits
216 
217 extern unsigned long __pte_frag_nr;
218 #define PTE_FRAG_NR __pte_frag_nr
219 extern unsigned long __pte_frag_size_shift;
220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
222 
223 extern unsigned long __pmd_frag_nr;
224 #define PMD_FRAG_NR __pmd_frag_nr
225 extern unsigned long __pmd_frag_size_shift;
226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
228 
229 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
230 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
231 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
232 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
233 
234 /* PMD_SHIFT determines what a second-level page table entry can map */
235 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
236 #define PMD_SIZE	(1UL << PMD_SHIFT)
237 #define PMD_MASK	(~(PMD_SIZE-1))
238 
239 /* PUD_SHIFT determines what a third-level page table entry can map */
240 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
241 #define PUD_SIZE	(1UL << PUD_SHIFT)
242 #define PUD_MASK	(~(PUD_SIZE-1))
243 
244 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
245 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
246 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
247 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
248 
249 /* Bits to mask out from a PMD to get to the PTE page */
250 #define PMD_MASKED_BITS		0xc0000000000000ffUL
251 /* Bits to mask out from a PUD to get to the PMD page */
252 #define PUD_MASKED_BITS		0xc0000000000000ffUL
253 /* Bits to mask out from a PGD to get to the PUD page */
254 #define P4D_MASKED_BITS		0xc0000000000000ffUL
255 
256 /*
257  * Used as an indicator for rcu callback functions
258  */
259 enum pgtable_index {
260 	PTE_INDEX = 0,
261 	PMD_INDEX,
262 	PUD_INDEX,
263 	PGD_INDEX,
264 	/*
265 	 * Below are used with 4k page size and hugetlb
266 	 */
267 	HTLB_16M_INDEX,
268 	HTLB_16G_INDEX,
269 };
270 
271 extern unsigned long __vmalloc_start;
272 extern unsigned long __vmalloc_end;
273 #define VMALLOC_START	__vmalloc_start
274 #define VMALLOC_END	__vmalloc_end
275 
276 static inline unsigned int ioremap_max_order(void)
277 {
278 	if (radix_enabled())
279 		return PUD_SHIFT;
280 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
281 }
282 #define IOREMAP_MAX_ORDER ioremap_max_order()
283 
284 extern unsigned long __kernel_virt_start;
285 extern unsigned long __kernel_io_start;
286 extern unsigned long __kernel_io_end;
287 #define KERN_VIRT_START __kernel_virt_start
288 #define KERN_IO_START  __kernel_io_start
289 #define KERN_IO_END __kernel_io_end
290 
291 extern struct page *vmemmap;
292 extern unsigned long pci_io_base;
293 #endif /* __ASSEMBLY__ */
294 
295 #include <asm/book3s/64/hash.h>
296 #include <asm/book3s/64/radix.h>
297 
298 #ifdef CONFIG_PPC_64K_PAGES
299 #include <asm/book3s/64/pgtable-64k.h>
300 #else
301 #include <asm/book3s/64/pgtable-4k.h>
302 #endif
303 
304 #include <asm/barrier.h>
305 /*
306  * IO space itself carved into the PIO region (ISA and PHB IO space) and
307  * the ioremap space
308  *
309  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
310  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
311  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
312  */
313 #define FULL_IO_SIZE	0x80000000ul
314 #define  ISA_IO_BASE	(KERN_IO_START)
315 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
316 #define  PHB_IO_BASE	(ISA_IO_END)
317 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
318 #define IOREMAP_BASE	(PHB_IO_END)
319 #define IOREMAP_START	(ioremap_bot)
320 #define IOREMAP_END	(KERN_IO_END)
321 
322 /* Advertise special mapping type for AGP */
323 #define HAVE_PAGE_AGP
324 
325 #ifndef __ASSEMBLY__
326 
327 /*
328  * This is the default implementation of various PTE accessors, it's
329  * used in all cases except Book3S with 64K pages where we have a
330  * concept of sub-pages
331  */
332 #ifndef __real_pte
333 
334 #define __real_pte(e, p, o)		((real_pte_t){(e)})
335 #define __rpte_to_pte(r)	((r).pte)
336 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
337 
338 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
339 	do {							         \
340 		index = 0;					         \
341 		shift = mmu_psize_defs[psize].shift;		         \
342 
343 #define pte_iterate_hashed_end() } while(0)
344 
345 /*
346  * We expect this to be called only for user addresses or kernel virtual
347  * addresses other than the linear mapping.
348  */
349 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
350 
351 #endif /* __real_pte */
352 
353 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
354 				       pte_t *ptep, unsigned long clr,
355 				       unsigned long set, int huge)
356 {
357 	if (radix_enabled())
358 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
359 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
360 }
361 /*
362  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
363  * We currently remove entries from the hashtable regardless of whether
364  * the entry was young or dirty.
365  *
366  * We should be more intelligent about this but for the moment we override
367  * these functions and force a tlb flush unconditionally
368  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
369  * function for both hash and radix.
370  */
371 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
372 					      unsigned long addr, pte_t *ptep)
373 {
374 	unsigned long old;
375 
376 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
377 		return 0;
378 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
379 	return (old & _PAGE_ACCESSED) != 0;
380 }
381 
382 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
383 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
384 ({								\
385 	int __r;						\
386 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
387 	__r;							\
388 })
389 
390 static inline int __pte_write(pte_t pte)
391 {
392 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
393 }
394 
395 #ifdef CONFIG_NUMA_BALANCING
396 #define pte_savedwrite pte_savedwrite
397 static inline bool pte_savedwrite(pte_t pte)
398 {
399 	/*
400 	 * Saved write ptes are prot none ptes that doesn't have
401 	 * privileged bit sit. We mark prot none as one which has
402 	 * present and pviliged bit set and RWX cleared. To mark
403 	 * protnone which used to have _PAGE_WRITE set we clear
404 	 * the privileged bit.
405 	 */
406 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
407 }
408 #else
409 #define pte_savedwrite pte_savedwrite
410 static inline bool pte_savedwrite(pte_t pte)
411 {
412 	return false;
413 }
414 #endif
415 
416 static inline int pte_write(pte_t pte)
417 {
418 	return __pte_write(pte) || pte_savedwrite(pte);
419 }
420 
421 static inline int pte_read(pte_t pte)
422 {
423 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
424 }
425 
426 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
427 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
428 				      pte_t *ptep)
429 {
430 	if (__pte_write(*ptep))
431 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
432 	else if (unlikely(pte_savedwrite(*ptep)))
433 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
434 }
435 
436 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
437 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
438 					   unsigned long addr, pte_t *ptep)
439 {
440 	/*
441 	 * We should not find protnone for hugetlb, but this complete the
442 	 * interface.
443 	 */
444 	if (__pte_write(*ptep))
445 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
446 	else if (unlikely(pte_savedwrite(*ptep)))
447 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
448 }
449 
450 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
452 				       unsigned long addr, pte_t *ptep)
453 {
454 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
455 	return __pte(old);
456 }
457 
458 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
459 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
460 					    unsigned long addr,
461 					    pte_t *ptep, int full)
462 {
463 	if (full && radix_enabled()) {
464 		/*
465 		 * We know that this is a full mm pte clear and
466 		 * hence can be sure there is no parallel set_pte.
467 		 */
468 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
469 	}
470 	return ptep_get_and_clear(mm, addr, ptep);
471 }
472 
473 
474 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
475 			     pte_t * ptep)
476 {
477 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
478 }
479 
480 static inline int pte_dirty(pte_t pte)
481 {
482 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
483 }
484 
485 static inline int pte_young(pte_t pte)
486 {
487 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
488 }
489 
490 static inline int pte_special(pte_t pte)
491 {
492 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
493 }
494 
495 static inline bool pte_exec(pte_t pte)
496 {
497 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
498 }
499 
500 
501 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
502 static inline bool pte_soft_dirty(pte_t pte)
503 {
504 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
505 }
506 
507 static inline pte_t pte_mksoft_dirty(pte_t pte)
508 {
509 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
510 }
511 
512 static inline pte_t pte_clear_soft_dirty(pte_t pte)
513 {
514 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
515 }
516 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
517 
518 #ifdef CONFIG_NUMA_BALANCING
519 static inline int pte_protnone(pte_t pte)
520 {
521 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
522 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
523 }
524 
525 #define pte_mk_savedwrite pte_mk_savedwrite
526 static inline pte_t pte_mk_savedwrite(pte_t pte)
527 {
528 	/*
529 	 * Used by Autonuma subsystem to preserve the write bit
530 	 * while marking the pte PROT_NONE. Only allow this
531 	 * on PROT_NONE pte
532 	 */
533 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
534 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
535 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
536 }
537 
538 #define pte_clear_savedwrite pte_clear_savedwrite
539 static inline pte_t pte_clear_savedwrite(pte_t pte)
540 {
541 	/*
542 	 * Used by KSM subsystem to make a protnone pte readonly.
543 	 */
544 	VM_BUG_ON(!pte_protnone(pte));
545 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
546 }
547 #else
548 #define pte_clear_savedwrite pte_clear_savedwrite
549 static inline pte_t pte_clear_savedwrite(pte_t pte)
550 {
551 	VM_WARN_ON(1);
552 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
553 }
554 #endif /* CONFIG_NUMA_BALANCING */
555 
556 static inline bool pte_hw_valid(pte_t pte)
557 {
558 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
559 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
560 }
561 
562 static inline int pte_present(pte_t pte)
563 {
564 	/*
565 	 * A pte is considerent present if _PAGE_PRESENT is set.
566 	 * We also need to consider the pte present which is marked
567 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
568 	 * if we find _PAGE_PRESENT cleared.
569 	 */
570 
571 	if (pte_hw_valid(pte))
572 		return true;
573 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
574 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
575 }
576 
577 #ifdef CONFIG_PPC_MEM_KEYS
578 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
579 #else
580 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
581 {
582 	return true;
583 }
584 #endif /* CONFIG_PPC_MEM_KEYS */
585 
586 static inline bool pte_user(pte_t pte)
587 {
588 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
589 }
590 
591 #define pte_access_permitted pte_access_permitted
592 static inline bool pte_access_permitted(pte_t pte, bool write)
593 {
594 	/*
595 	 * _PAGE_READ is needed for any access and will be
596 	 * cleared for PROT_NONE
597 	 */
598 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
599 		return false;
600 
601 	if (write && !pte_write(pte))
602 		return false;
603 
604 	return arch_pte_access_permitted(pte_val(pte), write, 0);
605 }
606 
607 /*
608  * Conversion functions: convert a page and protection to a page entry,
609  * and a page entry and page directory to the page they refer to.
610  *
611  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
612  * long for now.
613  */
614 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
615 {
616 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
617 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
618 
619 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot));
620 }
621 
622 static inline unsigned long pte_pfn(pte_t pte)
623 {
624 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
625 }
626 
627 /* Generic modifiers for PTE bits */
628 static inline pte_t pte_wrprotect(pte_t pte)
629 {
630 	if (unlikely(pte_savedwrite(pte)))
631 		return pte_clear_savedwrite(pte);
632 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
633 }
634 
635 static inline pte_t pte_exprotect(pte_t pte)
636 {
637 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
638 }
639 
640 static inline pte_t pte_mkclean(pte_t pte)
641 {
642 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
643 }
644 
645 static inline pte_t pte_mkold(pte_t pte)
646 {
647 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
648 }
649 
650 static inline pte_t pte_mkexec(pte_t pte)
651 {
652 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
653 }
654 
655 static inline pte_t pte_mkpte(pte_t pte)
656 {
657 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
658 }
659 
660 static inline pte_t pte_mkwrite(pte_t pte)
661 {
662 	/*
663 	 * write implies read, hence set both
664 	 */
665 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
666 }
667 
668 static inline pte_t pte_mkdirty(pte_t pte)
669 {
670 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
671 }
672 
673 static inline pte_t pte_mkyoung(pte_t pte)
674 {
675 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
676 }
677 
678 static inline pte_t pte_mkspecial(pte_t pte)
679 {
680 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
681 }
682 
683 static inline pte_t pte_mkhuge(pte_t pte)
684 {
685 	return pte;
686 }
687 
688 static inline pte_t pte_mkdevmap(pte_t pte)
689 {
690 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
691 }
692 
693 static inline pte_t pte_mkprivileged(pte_t pte)
694 {
695 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
696 }
697 
698 static inline pte_t pte_mkuser(pte_t pte)
699 {
700 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
701 }
702 
703 /*
704  * This is potentially called with a pmd as the argument, in which case it's not
705  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
706  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
707  * use in page directory entries (ie. non-ptes).
708  */
709 static inline int pte_devmap(pte_t pte)
710 {
711 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
712 
713 	return (pte_raw(pte) & mask) == mask;
714 }
715 
716 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
717 {
718 	/* FIXME!! check whether this need to be a conditional */
719 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
720 			 cpu_to_be64(pgprot_val(newprot)));
721 }
722 
723 /* Encode and de-code a swap entry */
724 #define MAX_SWAPFILES_CHECK() do { \
725 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
726 	/*							\
727 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
728 	 * We filter HPTEFLAGS on set_pte.			\
729 	 */							\
730 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
731 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
732 	} while (0)
733 
734 #define SWP_TYPE_BITS 5
735 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
736 				& ((1UL << SWP_TYPE_BITS) - 1))
737 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
738 #define __swp_entry(type, offset)	((swp_entry_t) { \
739 				((type) << _PAGE_BIT_SWAP_TYPE) \
740 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
741 /*
742  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
743  * swap type and offset we get from swap and convert that to pte to find a
744  * matching pte in linux page table.
745  * Clear bits not found in swap entries here.
746  */
747 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
748 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
749 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
750 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
751 
752 #ifdef CONFIG_MEM_SOFT_DIRTY
753 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
754 #else
755 #define _PAGE_SWP_SOFT_DIRTY	0UL
756 #endif /* CONFIG_MEM_SOFT_DIRTY */
757 
758 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
759 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
760 {
761 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
762 }
763 
764 static inline bool pte_swp_soft_dirty(pte_t pte)
765 {
766 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
767 }
768 
769 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
770 {
771 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
772 }
773 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
774 
775 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
776 {
777 	/*
778 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
779 	 */
780 	if (access & ~ptev)
781 		return false;
782 	/*
783 	 * This check for access to privilege space
784 	 */
785 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
786 		return false;
787 
788 	return true;
789 }
790 /*
791  * Generic functions with hash/radix callbacks
792  */
793 
794 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
795 					   pte_t *ptep, pte_t entry,
796 					   unsigned long address,
797 					   int psize)
798 {
799 	if (radix_enabled())
800 		return radix__ptep_set_access_flags(vma, ptep, entry,
801 						    address, psize);
802 	return hash__ptep_set_access_flags(ptep, entry);
803 }
804 
805 #define __HAVE_ARCH_PTE_SAME
806 static inline int pte_same(pte_t pte_a, pte_t pte_b)
807 {
808 	if (radix_enabled())
809 		return radix__pte_same(pte_a, pte_b);
810 	return hash__pte_same(pte_a, pte_b);
811 }
812 
813 static inline int pte_none(pte_t pte)
814 {
815 	if (radix_enabled())
816 		return radix__pte_none(pte);
817 	return hash__pte_none(pte);
818 }
819 
820 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
821 				pte_t *ptep, pte_t pte, int percpu)
822 {
823 	if (radix_enabled())
824 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
825 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
826 }
827 
828 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
829 
830 #define pgprot_noncached pgprot_noncached
831 static inline pgprot_t pgprot_noncached(pgprot_t prot)
832 {
833 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
834 			_PAGE_NON_IDEMPOTENT);
835 }
836 
837 #define pgprot_noncached_wc pgprot_noncached_wc
838 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
839 {
840 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
841 			_PAGE_TOLERANT);
842 }
843 
844 #define pgprot_cached pgprot_cached
845 static inline pgprot_t pgprot_cached(pgprot_t prot)
846 {
847 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
848 }
849 
850 #define pgprot_writecombine pgprot_writecombine
851 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
852 {
853 	return pgprot_noncached_wc(prot);
854 }
855 /*
856  * check a pte mapping have cache inhibited property
857  */
858 static inline bool pte_ci(pte_t pte)
859 {
860 	__be64 pte_v = pte_raw(pte);
861 
862 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
863 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
864 		return true;
865 	return false;
866 }
867 
868 static inline void pmd_clear(pmd_t *pmdp)
869 {
870 	*pmdp = __pmd(0);
871 }
872 
873 static inline int pmd_none(pmd_t pmd)
874 {
875 	return !pmd_raw(pmd);
876 }
877 
878 static inline int pmd_present(pmd_t pmd)
879 {
880 	/*
881 	 * A pmd is considerent present if _PAGE_PRESENT is set.
882 	 * We also need to consider the pmd present which is marked
883 	 * invalid during a split. Hence we look for _PAGE_INVALID
884 	 * if we find _PAGE_PRESENT cleared.
885 	 */
886 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
887 		return true;
888 
889 	return false;
890 }
891 
892 static inline int pmd_is_serializing(pmd_t pmd)
893 {
894 	/*
895 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
896 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
897 	 *
898 	 * This condition may also occur when flushing a pmd while flushing
899 	 * it (see ptep_modify_prot_start), so callers must ensure this
900 	 * case is fine as well.
901 	 */
902 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
903 						cpu_to_be64(_PAGE_INVALID))
904 		return true;
905 
906 	return false;
907 }
908 
909 static inline int pmd_bad(pmd_t pmd)
910 {
911 	if (radix_enabled())
912 		return radix__pmd_bad(pmd);
913 	return hash__pmd_bad(pmd);
914 }
915 
916 static inline void pud_clear(pud_t *pudp)
917 {
918 	*pudp = __pud(0);
919 }
920 
921 static inline int pud_none(pud_t pud)
922 {
923 	return !pud_raw(pud);
924 }
925 
926 static inline int pud_present(pud_t pud)
927 {
928 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
929 }
930 
931 extern struct page *pud_page(pud_t pud);
932 extern struct page *pmd_page(pmd_t pmd);
933 static inline pte_t pud_pte(pud_t pud)
934 {
935 	return __pte_raw(pud_raw(pud));
936 }
937 
938 static inline pud_t pte_pud(pte_t pte)
939 {
940 	return __pud_raw(pte_raw(pte));
941 }
942 #define pud_write(pud)		pte_write(pud_pte(pud))
943 
944 static inline int pud_bad(pud_t pud)
945 {
946 	if (radix_enabled())
947 		return radix__pud_bad(pud);
948 	return hash__pud_bad(pud);
949 }
950 
951 #define pud_access_permitted pud_access_permitted
952 static inline bool pud_access_permitted(pud_t pud, bool write)
953 {
954 	return pte_access_permitted(pud_pte(pud), write);
955 }
956 
957 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
958 static inline __be64 p4d_raw(p4d_t x)
959 {
960 	return pgd_raw(x.pgd);
961 }
962 
963 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
964 
965 static inline void p4d_clear(p4d_t *p4dp)
966 {
967 	*p4dp = __p4d(0);
968 }
969 
970 static inline int p4d_none(p4d_t p4d)
971 {
972 	return !p4d_raw(p4d);
973 }
974 
975 static inline int p4d_present(p4d_t p4d)
976 {
977 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
978 }
979 
980 static inline pte_t p4d_pte(p4d_t p4d)
981 {
982 	return __pte_raw(p4d_raw(p4d));
983 }
984 
985 static inline p4d_t pte_p4d(pte_t pte)
986 {
987 	return __p4d_raw(pte_raw(pte));
988 }
989 
990 static inline int p4d_bad(p4d_t p4d)
991 {
992 	if (radix_enabled())
993 		return radix__p4d_bad(p4d);
994 	return hash__p4d_bad(p4d);
995 }
996 
997 #define p4d_access_permitted p4d_access_permitted
998 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
999 {
1000 	return pte_access_permitted(p4d_pte(p4d), write);
1001 }
1002 
1003 extern struct page *p4d_page(p4d_t p4d);
1004 
1005 /* Pointers in the page table tree are physical addresses */
1006 #define __pgtable_ptr_val(ptr)	__pa(ptr)
1007 
1008 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
1009 #define p4d_page_vaddr(p4d)	__va(p4d_val(p4d) & ~P4D_MASKED_BITS)
1010 
1011 #define pte_ERROR(e) \
1012 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1013 #define pmd_ERROR(e) \
1014 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1015 #define pud_ERROR(e) \
1016 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1017 #define pgd_ERROR(e) \
1018 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1019 
1020 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1021 {
1022 	if (radix_enabled()) {
1023 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1024 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1025 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1026 #endif
1027 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1028 	}
1029 	return hash__map_kernel_page(ea, pa, prot);
1030 }
1031 
1032 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1033 						   unsigned long page_size,
1034 						   unsigned long phys)
1035 {
1036 	if (radix_enabled())
1037 		return radix__vmemmap_create_mapping(start, page_size, phys);
1038 	return hash__vmemmap_create_mapping(start, page_size, phys);
1039 }
1040 
1041 #ifdef CONFIG_MEMORY_HOTPLUG
1042 static inline void vmemmap_remove_mapping(unsigned long start,
1043 					  unsigned long page_size)
1044 {
1045 	if (radix_enabled())
1046 		return radix__vmemmap_remove_mapping(start, page_size);
1047 	return hash__vmemmap_remove_mapping(start, page_size);
1048 }
1049 #endif
1050 
1051 static inline pte_t pmd_pte(pmd_t pmd)
1052 {
1053 	return __pte_raw(pmd_raw(pmd));
1054 }
1055 
1056 static inline pmd_t pte_pmd(pte_t pte)
1057 {
1058 	return __pmd_raw(pte_raw(pte));
1059 }
1060 
1061 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1062 {
1063 	return (pte_t *)pmd;
1064 }
1065 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1066 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1067 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1068 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1069 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1070 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1071 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1072 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1073 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1074 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1075 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1076 
1077 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1078 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1079 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1080 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1081 
1082 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1083 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1084 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1085 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1086 #endif
1087 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1088 
1089 #ifdef CONFIG_NUMA_BALANCING
1090 static inline int pmd_protnone(pmd_t pmd)
1091 {
1092 	return pte_protnone(pmd_pte(pmd));
1093 }
1094 #endif /* CONFIG_NUMA_BALANCING */
1095 
1096 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1097 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1098 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1099 
1100 #define pmd_access_permitted pmd_access_permitted
1101 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1102 {
1103 	/*
1104 	 * pmdp_invalidate sets this combination (which is not caught by
1105 	 * !pte_present() check in pte_access_permitted), to prevent
1106 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1107 	 * synchronisation.
1108 	 *
1109 	 * This also catches the case where the PTE's hardware PRESENT bit is
1110 	 * cleared while TLB is flushed, which is suboptimal but should not
1111 	 * be frequent.
1112 	 */
1113 	if (pmd_is_serializing(pmd))
1114 		return false;
1115 
1116 	return pte_access_permitted(pmd_pte(pmd), write);
1117 }
1118 
1119 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1120 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1121 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1122 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1123 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1124 		       pmd_t *pmdp, pmd_t pmd);
1125 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1126 					unsigned long addr, pmd_t *pmd)
1127 {
1128 }
1129 
1130 extern int hash__has_transparent_hugepage(void);
1131 static inline int has_transparent_hugepage(void)
1132 {
1133 	if (radix_enabled())
1134 		return radix__has_transparent_hugepage();
1135 	return hash__has_transparent_hugepage();
1136 }
1137 #define has_transparent_hugepage has_transparent_hugepage
1138 
1139 static inline unsigned long
1140 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1141 		    unsigned long clr, unsigned long set)
1142 {
1143 	if (radix_enabled())
1144 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1145 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1146 }
1147 
1148 /*
1149  * returns true for pmd migration entries, THP, devmap, hugetlb
1150  * But compile time dependent on THP config
1151  */
1152 static inline int pmd_large(pmd_t pmd)
1153 {
1154 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1155 }
1156 
1157 /*
1158  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1159  * the below will work for radix too
1160  */
1161 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1162 					      unsigned long addr, pmd_t *pmdp)
1163 {
1164 	unsigned long old;
1165 
1166 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1167 		return 0;
1168 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1169 	return ((old & _PAGE_ACCESSED) != 0);
1170 }
1171 
1172 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1173 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1174 				      pmd_t *pmdp)
1175 {
1176 	if (__pmd_write((*pmdp)))
1177 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1178 	else if (unlikely(pmd_savedwrite(*pmdp)))
1179 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1180 }
1181 
1182 /*
1183  * Only returns true for a THP. False for pmd migration entry.
1184  * We also need to return true when we come across a pte that
1185  * in between a thp split. While splitting THP, we mark the pmd
1186  * invalid (pmdp_invalidate()) before we set it with pte page
1187  * address. A pmd_trans_huge() check against a pmd entry during that time
1188  * should return true.
1189  * We should not call this on a hugetlb entry. We should check for HugeTLB
1190  * entry using vma->vm_flags
1191  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1192  */
1193 static inline int pmd_trans_huge(pmd_t pmd)
1194 {
1195 	if (!pmd_present(pmd))
1196 		return false;
1197 
1198 	if (radix_enabled())
1199 		return radix__pmd_trans_huge(pmd);
1200 	return hash__pmd_trans_huge(pmd);
1201 }
1202 
1203 #define __HAVE_ARCH_PMD_SAME
1204 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1205 {
1206 	if (radix_enabled())
1207 		return radix__pmd_same(pmd_a, pmd_b);
1208 	return hash__pmd_same(pmd_a, pmd_b);
1209 }
1210 
1211 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1212 {
1213 	if (radix_enabled())
1214 		return radix__pmd_mkhuge(pmd);
1215 	return hash__pmd_mkhuge(pmd);
1216 }
1217 
1218 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1219 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1220 				 unsigned long address, pmd_t *pmdp,
1221 				 pmd_t entry, int dirty);
1222 
1223 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1224 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1225 				     unsigned long address, pmd_t *pmdp);
1226 
1227 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1228 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1229 					    unsigned long addr, pmd_t *pmdp)
1230 {
1231 	if (radix_enabled())
1232 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1233 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1234 }
1235 
1236 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1237 					unsigned long address, pmd_t *pmdp)
1238 {
1239 	if (radix_enabled())
1240 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1241 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1242 }
1243 #define pmdp_collapse_flush pmdp_collapse_flush
1244 
1245 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1246 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1247 				   unsigned long addr,
1248 				   pmd_t *pmdp, int full);
1249 
1250 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1251 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1252 					      pmd_t *pmdp, pgtable_t pgtable)
1253 {
1254 	if (radix_enabled())
1255 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1256 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1257 }
1258 
1259 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1260 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1261 						    pmd_t *pmdp)
1262 {
1263 	if (radix_enabled())
1264 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1265 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1266 }
1267 
1268 #define __HAVE_ARCH_PMDP_INVALIDATE
1269 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1270 			     pmd_t *pmdp);
1271 
1272 #define pmd_move_must_withdraw pmd_move_must_withdraw
1273 struct spinlock;
1274 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1275 				  struct spinlock *old_pmd_ptl,
1276 				  struct vm_area_struct *vma);
1277 /*
1278  * Hash translation mode use the deposited table to store hash pte
1279  * slot information.
1280  */
1281 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1282 static inline bool arch_needs_pgtable_deposit(void)
1283 {
1284 	if (radix_enabled())
1285 		return false;
1286 	return true;
1287 }
1288 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1289 
1290 
1291 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1292 {
1293 	if (radix_enabled())
1294 		return radix__pmd_mkdevmap(pmd);
1295 	return hash__pmd_mkdevmap(pmd);
1296 }
1297 
1298 static inline int pmd_devmap(pmd_t pmd)
1299 {
1300 	return pte_devmap(pmd_pte(pmd));
1301 }
1302 
1303 static inline int pud_devmap(pud_t pud)
1304 {
1305 	return 0;
1306 }
1307 
1308 static inline int pgd_devmap(pgd_t pgd)
1309 {
1310 	return 0;
1311 }
1312 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1313 
1314 static inline int pud_pfn(pud_t pud)
1315 {
1316 	/*
1317 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1318 	 * check so this should never be used. If it grows another user we
1319 	 * want to know about it.
1320 	 */
1321 	BUILD_BUG();
1322 	return 0;
1323 }
1324 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1325 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1326 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1327 			     pte_t *, pte_t, pte_t);
1328 
1329 /*
1330  * Returns true for a R -> RW upgrade of pte
1331  */
1332 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1333 {
1334 	if (!(old_val & _PAGE_READ))
1335 		return false;
1336 
1337 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1338 		return true;
1339 
1340 	return false;
1341 }
1342 
1343 /*
1344  * Like pmd_huge() and pmd_large(), but works regardless of config options
1345  */
1346 #define pmd_is_leaf pmd_is_leaf
1347 #define pmd_leaf pmd_is_leaf
1348 static inline bool pmd_is_leaf(pmd_t pmd)
1349 {
1350 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1351 }
1352 
1353 #define pud_is_leaf pud_is_leaf
1354 #define pud_leaf pud_is_leaf
1355 static inline bool pud_is_leaf(pud_t pud)
1356 {
1357 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1358 }
1359 
1360 #define p4d_is_leaf p4d_is_leaf
1361 #define p4d_leaf p4d_is_leaf
1362 static inline bool p4d_is_leaf(p4d_t p4d)
1363 {
1364 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1365 }
1366 
1367 #endif /* __ASSEMBLY__ */
1368 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1369