1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x00040UL
36 
37 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
38 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
39 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
40 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
41 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
42 
43 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
44 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
45 /*
46  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
47  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
48  * differentiate between two use a SW field when invalidating.
49  *
50  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
51  *
52  * This is used only when _PAGE_PRESENT is cleared.
53  */
54 #define _PAGE_INVALID		_RPAGE_SW0
55 
56 /*
57  * Top and bottom bits of RPN which can be used by hash
58  * translation mode, because we expect them to be zero
59  * otherwise.
60  */
61 #define _RPAGE_RPN0		0x01000
62 #define _RPAGE_RPN1		0x02000
63 #define _RPAGE_RPN43		0x0080000000000000UL
64 #define _RPAGE_RPN42		0x0040000000000000UL
65 #define _RPAGE_RPN41		0x0020000000000000UL
66 
67 /* Max physical address bit as per radix table */
68 #define _RPAGE_PA_MAX		56
69 
70 /*
71  * Max physical address bit we will use for now.
72  *
73  * This is mostly a hardware limitation and for now Power9 has
74  * a 51 bit limit.
75  *
76  * This is different from the number of physical bit required to address
77  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
78  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
79  * number of sections we can support (SECTIONS_SHIFT).
80  *
81  * This is different from Radix page table limitation above and
82  * should always be less than that. The limit is done such that
83  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
84  * for hash linux page table specific bits.
85  *
86  * In order to be compatible with future hardware generations we keep
87  * some offsets and limit this for now to 53
88  */
89 #define _PAGE_PA_MAX		53
90 
91 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
92 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
93 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
94 
95 /*
96  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97  * Instead of fixing all of them, add an alternate define which
98  * maps CI pte mapping.
99  */
100 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101 /*
102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104  * and every thing below PAGE_SHIFT;
105  */
106 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 /*
108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
109  * in here, on radix we expect them to be zero.
110  */
111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114 /*
115  * user access blocked by key
116  */
117 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
120 				 _PAGE_RW | _PAGE_EXEC)
121 /*
122  * _PAGE_CHG_MASK masks of bits that are to be preserved across
123  * pgprot changes
124  */
125 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
126 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
127 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
128 
129 /*
130  * We define 2 sets of base prot bits, one for basic pages (ie,
131  * cacheable kernel and user pages) and one for non cacheable
132  * pages. We always set _PAGE_COHERENT when SMP is enabled or
133  * the processor might need it for DMA coherency.
134  */
135 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
136 #define _PAGE_BASE	(_PAGE_BASE_NC)
137 
138 /* Permission masks used to generate the __P and __S table,
139  *
140  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
141  *
142  * Write permissions imply read permissions for now (we could make write-only
143  * pages on BookE but we don't bother for now). Execute permission control is
144  * possible on platforms that define _PAGE_EXEC
145  */
146 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
147 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
148 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
149 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
150 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
151 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
152 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
153 
154 /* Permission masks used for kernel mappings */
155 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
156 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
157 				 _PAGE_TOLERANT)
158 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
159 				 _PAGE_NON_IDEMPOTENT)
160 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
161 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
162 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
163 
164 /*
165  * Protection used for kernel text. We want the debuggers to be able to
166  * set breakpoints anywhere, so don't write protect the kernel text
167  * on platforms where such control is possible.
168  */
169 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
170 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
171 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
172 #else
173 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
174 #endif
175 
176 /* Make modules code happy. We don't set RO yet */
177 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
178 #define PAGE_AGP		(PAGE_KERNEL_NC)
179 
180 #ifndef __ASSEMBLY__
181 /*
182  * page table defines
183  */
184 extern unsigned long __pte_index_size;
185 extern unsigned long __pmd_index_size;
186 extern unsigned long __pud_index_size;
187 extern unsigned long __pgd_index_size;
188 extern unsigned long __pud_cache_index;
189 #define PTE_INDEX_SIZE  __pte_index_size
190 #define PMD_INDEX_SIZE  __pmd_index_size
191 #define PUD_INDEX_SIZE  __pud_index_size
192 #define PGD_INDEX_SIZE  __pgd_index_size
193 /* pmd table use page table fragments */
194 #define PMD_CACHE_INDEX  0
195 #define PUD_CACHE_INDEX __pud_cache_index
196 /*
197  * Because of use of pte fragments and THP, size of page table
198  * are not always derived out of index size above.
199  */
200 extern unsigned long __pte_table_size;
201 extern unsigned long __pmd_table_size;
202 extern unsigned long __pud_table_size;
203 extern unsigned long __pgd_table_size;
204 #define PTE_TABLE_SIZE	__pte_table_size
205 #define PMD_TABLE_SIZE	__pmd_table_size
206 #define PUD_TABLE_SIZE	__pud_table_size
207 #define PGD_TABLE_SIZE	__pgd_table_size
208 
209 extern unsigned long __pmd_val_bits;
210 extern unsigned long __pud_val_bits;
211 extern unsigned long __pgd_val_bits;
212 #define PMD_VAL_BITS	__pmd_val_bits
213 #define PUD_VAL_BITS	__pud_val_bits
214 #define PGD_VAL_BITS	__pgd_val_bits
215 
216 extern unsigned long __pte_frag_nr;
217 #define PTE_FRAG_NR __pte_frag_nr
218 extern unsigned long __pte_frag_size_shift;
219 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
220 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
221 
222 extern unsigned long __pmd_frag_nr;
223 #define PMD_FRAG_NR __pmd_frag_nr
224 extern unsigned long __pmd_frag_size_shift;
225 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
226 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
227 
228 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
229 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
230 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
231 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
232 
233 /* PMD_SHIFT determines what a second-level page table entry can map */
234 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
235 #define PMD_SIZE	(1UL << PMD_SHIFT)
236 #define PMD_MASK	(~(PMD_SIZE-1))
237 
238 /* PUD_SHIFT determines what a third-level page table entry can map */
239 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
240 #define PUD_SIZE	(1UL << PUD_SHIFT)
241 #define PUD_MASK	(~(PUD_SIZE-1))
242 
243 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
244 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
245 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
246 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
247 
248 /* Bits to mask out from a PMD to get to the PTE page */
249 #define PMD_MASKED_BITS		0xc0000000000000ffUL
250 /* Bits to mask out from a PUD to get to the PMD page */
251 #define PUD_MASKED_BITS		0xc0000000000000ffUL
252 /* Bits to mask out from a PGD to get to the PUD page */
253 #define P4D_MASKED_BITS		0xc0000000000000ffUL
254 
255 /*
256  * Used as an indicator for rcu callback functions
257  */
258 enum pgtable_index {
259 	PTE_INDEX = 0,
260 	PMD_INDEX,
261 	PUD_INDEX,
262 	PGD_INDEX,
263 	/*
264 	 * Below are used with 4k page size and hugetlb
265 	 */
266 	HTLB_16M_INDEX,
267 	HTLB_16G_INDEX,
268 };
269 
270 extern unsigned long __vmalloc_start;
271 extern unsigned long __vmalloc_end;
272 #define VMALLOC_START	__vmalloc_start
273 #define VMALLOC_END	__vmalloc_end
274 
275 static inline unsigned int ioremap_max_order(void)
276 {
277 	if (radix_enabled())
278 		return PUD_SHIFT;
279 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
280 }
281 #define IOREMAP_MAX_ORDER ioremap_max_order()
282 
283 extern unsigned long __kernel_virt_start;
284 extern unsigned long __kernel_io_start;
285 extern unsigned long __kernel_io_end;
286 #define KERN_VIRT_START __kernel_virt_start
287 #define KERN_IO_START  __kernel_io_start
288 #define KERN_IO_END __kernel_io_end
289 
290 extern struct page *vmemmap;
291 extern unsigned long pci_io_base;
292 #endif /* __ASSEMBLY__ */
293 
294 #include <asm/book3s/64/hash.h>
295 #include <asm/book3s/64/radix.h>
296 
297 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
298 #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
299 #else
300 #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
301 #endif
302 
303 
304 #ifdef CONFIG_PPC_64K_PAGES
305 #include <asm/book3s/64/pgtable-64k.h>
306 #else
307 #include <asm/book3s/64/pgtable-4k.h>
308 #endif
309 
310 #include <asm/barrier.h>
311 /*
312  * IO space itself carved into the PIO region (ISA and PHB IO space) and
313  * the ioremap space
314  *
315  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
316  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
317  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
318  */
319 #define FULL_IO_SIZE	0x80000000ul
320 #define  ISA_IO_BASE	(KERN_IO_START)
321 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
322 #define  PHB_IO_BASE	(ISA_IO_END)
323 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
324 #define IOREMAP_BASE	(PHB_IO_END)
325 #define IOREMAP_START	(ioremap_bot)
326 #define IOREMAP_END	(KERN_IO_END)
327 
328 /* Advertise special mapping type for AGP */
329 #define HAVE_PAGE_AGP
330 
331 #ifndef __ASSEMBLY__
332 
333 /*
334  * This is the default implementation of various PTE accessors, it's
335  * used in all cases except Book3S with 64K pages where we have a
336  * concept of sub-pages
337  */
338 #ifndef __real_pte
339 
340 #define __real_pte(e, p, o)		((real_pte_t){(e)})
341 #define __rpte_to_pte(r)	((r).pte)
342 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
343 
344 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
345 	do {							         \
346 		index = 0;					         \
347 		shift = mmu_psize_defs[psize].shift;		         \
348 
349 #define pte_iterate_hashed_end() } while(0)
350 
351 /*
352  * We expect this to be called only for user addresses or kernel virtual
353  * addresses other than the linear mapping.
354  */
355 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
356 
357 #endif /* __real_pte */
358 
359 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
360 				       pte_t *ptep, unsigned long clr,
361 				       unsigned long set, int huge)
362 {
363 	if (radix_enabled())
364 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
365 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
366 }
367 /*
368  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
369  * We currently remove entries from the hashtable regardless of whether
370  * the entry was young or dirty.
371  *
372  * We should be more intelligent about this but for the moment we override
373  * these functions and force a tlb flush unconditionally
374  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
375  * function for both hash and radix.
376  */
377 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
378 					      unsigned long addr, pte_t *ptep)
379 {
380 	unsigned long old;
381 
382 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
383 		return 0;
384 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
385 	return (old & _PAGE_ACCESSED) != 0;
386 }
387 
388 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
389 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
390 ({								\
391 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
392 })
393 
394 /*
395  * On Book3S CPUs, clearing the accessed bit without a TLB flush
396  * doesn't cause data corruption. [ It could cause incorrect
397  * page aging and the (mistaken) reclaim of hot pages, but the
398  * chance of that should be relatively low. ]
399  *
400  * So as a performance optimization don't flush the TLB when
401  * clearing the accessed bit, it will eventually be flushed by
402  * a context switch or a VM operation anyway. [ In the rare
403  * event of it not getting flushed for a long time the delay
404  * shouldn't really matter because there's no real memory
405  * pressure for swapout to react to. ]
406  */
407 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
408 #define ptep_clear_flush_young ptep_test_and_clear_young
409 
410 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
411 #define pmdp_clear_flush_young pmdp_test_and_clear_young
412 
413 static inline int __pte_write(pte_t pte)
414 {
415 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
416 }
417 
418 #ifdef CONFIG_NUMA_BALANCING
419 #define pte_savedwrite pte_savedwrite
420 static inline bool pte_savedwrite(pte_t pte)
421 {
422 	/*
423 	 * Saved write ptes are prot none ptes that doesn't have
424 	 * privileged bit sit. We mark prot none as one which has
425 	 * present and pviliged bit set and RWX cleared. To mark
426 	 * protnone which used to have _PAGE_WRITE set we clear
427 	 * the privileged bit.
428 	 */
429 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
430 }
431 #else
432 #define pte_savedwrite pte_savedwrite
433 static inline bool pte_savedwrite(pte_t pte)
434 {
435 	return false;
436 }
437 #endif
438 
439 static inline int pte_write(pte_t pte)
440 {
441 	return __pte_write(pte) || pte_savedwrite(pte);
442 }
443 
444 static inline int pte_read(pte_t pte)
445 {
446 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
447 }
448 
449 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
450 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
451 				      pte_t *ptep)
452 {
453 	if (__pte_write(*ptep))
454 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
455 	else if (unlikely(pte_savedwrite(*ptep)))
456 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
457 }
458 
459 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
460 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
461 					   unsigned long addr, pte_t *ptep)
462 {
463 	/*
464 	 * We should not find protnone for hugetlb, but this complete the
465 	 * interface.
466 	 */
467 	if (__pte_write(*ptep))
468 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
469 	else if (unlikely(pte_savedwrite(*ptep)))
470 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
471 }
472 
473 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
474 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
475 				       unsigned long addr, pte_t *ptep)
476 {
477 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
478 	return __pte(old);
479 }
480 
481 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
482 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
483 					    unsigned long addr,
484 					    pte_t *ptep, int full)
485 {
486 	if (full && radix_enabled()) {
487 		/*
488 		 * We know that this is a full mm pte clear and
489 		 * hence can be sure there is no parallel set_pte.
490 		 */
491 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
492 	}
493 	return ptep_get_and_clear(mm, addr, ptep);
494 }
495 
496 
497 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
498 			     pte_t * ptep)
499 {
500 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
501 }
502 
503 static inline int pte_dirty(pte_t pte)
504 {
505 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
506 }
507 
508 static inline int pte_young(pte_t pte)
509 {
510 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
511 }
512 
513 static inline int pte_special(pte_t pte)
514 {
515 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
516 }
517 
518 static inline bool pte_exec(pte_t pte)
519 {
520 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
521 }
522 
523 
524 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
525 static inline bool pte_soft_dirty(pte_t pte)
526 {
527 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
528 }
529 
530 static inline pte_t pte_mksoft_dirty(pte_t pte)
531 {
532 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
533 }
534 
535 static inline pte_t pte_clear_soft_dirty(pte_t pte)
536 {
537 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
538 }
539 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
540 
541 #ifdef CONFIG_NUMA_BALANCING
542 static inline int pte_protnone(pte_t pte)
543 {
544 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
545 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
546 }
547 
548 #define pte_mk_savedwrite pte_mk_savedwrite
549 static inline pte_t pte_mk_savedwrite(pte_t pte)
550 {
551 	/*
552 	 * Used by Autonuma subsystem to preserve the write bit
553 	 * while marking the pte PROT_NONE. Only allow this
554 	 * on PROT_NONE pte
555 	 */
556 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
557 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
558 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
559 }
560 
561 #define pte_clear_savedwrite pte_clear_savedwrite
562 static inline pte_t pte_clear_savedwrite(pte_t pte)
563 {
564 	/*
565 	 * Used by KSM subsystem to make a protnone pte readonly.
566 	 */
567 	VM_BUG_ON(!pte_protnone(pte));
568 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
569 }
570 #else
571 #define pte_clear_savedwrite pte_clear_savedwrite
572 static inline pte_t pte_clear_savedwrite(pte_t pte)
573 {
574 	VM_WARN_ON(1);
575 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
576 }
577 #endif /* CONFIG_NUMA_BALANCING */
578 
579 static inline bool pte_hw_valid(pte_t pte)
580 {
581 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
582 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
583 }
584 
585 static inline int pte_present(pte_t pte)
586 {
587 	/*
588 	 * A pte is considerent present if _PAGE_PRESENT is set.
589 	 * We also need to consider the pte present which is marked
590 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
591 	 * if we find _PAGE_PRESENT cleared.
592 	 */
593 
594 	if (pte_hw_valid(pte))
595 		return true;
596 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
597 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
598 }
599 
600 #ifdef CONFIG_PPC_MEM_KEYS
601 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
602 #else
603 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
604 {
605 	return true;
606 }
607 #endif /* CONFIG_PPC_MEM_KEYS */
608 
609 static inline bool pte_user(pte_t pte)
610 {
611 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
612 }
613 
614 #define pte_access_permitted pte_access_permitted
615 static inline bool pte_access_permitted(pte_t pte, bool write)
616 {
617 	/*
618 	 * _PAGE_READ is needed for any access and will be
619 	 * cleared for PROT_NONE
620 	 */
621 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
622 		return false;
623 
624 	if (write && !pte_write(pte))
625 		return false;
626 
627 	return arch_pte_access_permitted(pte_val(pte), write, 0);
628 }
629 
630 /*
631  * Conversion functions: convert a page and protection to a page entry,
632  * and a page entry and page directory to the page they refer to.
633  *
634  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
635  * long for now.
636  */
637 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
638 {
639 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
640 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
641 
642 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
643 }
644 
645 static inline unsigned long pte_pfn(pte_t pte)
646 {
647 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
648 }
649 
650 /* Generic modifiers for PTE bits */
651 static inline pte_t pte_wrprotect(pte_t pte)
652 {
653 	if (unlikely(pte_savedwrite(pte)))
654 		return pte_clear_savedwrite(pte);
655 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
656 }
657 
658 static inline pte_t pte_exprotect(pte_t pte)
659 {
660 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
661 }
662 
663 static inline pte_t pte_mkclean(pte_t pte)
664 {
665 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
666 }
667 
668 static inline pte_t pte_mkold(pte_t pte)
669 {
670 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
671 }
672 
673 static inline pte_t pte_mkexec(pte_t pte)
674 {
675 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
676 }
677 
678 static inline pte_t pte_mkwrite(pte_t pte)
679 {
680 	/*
681 	 * write implies read, hence set both
682 	 */
683 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
684 }
685 
686 static inline pte_t pte_mkdirty(pte_t pte)
687 {
688 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
689 }
690 
691 static inline pte_t pte_mkyoung(pte_t pte)
692 {
693 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
694 }
695 
696 static inline pte_t pte_mkspecial(pte_t pte)
697 {
698 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
699 }
700 
701 static inline pte_t pte_mkhuge(pte_t pte)
702 {
703 	return pte;
704 }
705 
706 static inline pte_t pte_mkdevmap(pte_t pte)
707 {
708 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
709 }
710 
711 static inline pte_t pte_mkprivileged(pte_t pte)
712 {
713 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
714 }
715 
716 static inline pte_t pte_mkuser(pte_t pte)
717 {
718 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
719 }
720 
721 /*
722  * This is potentially called with a pmd as the argument, in which case it's not
723  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
724  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
725  * use in page directory entries (ie. non-ptes).
726  */
727 static inline int pte_devmap(pte_t pte)
728 {
729 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
730 
731 	return (pte_raw(pte) & mask) == mask;
732 }
733 
734 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
735 {
736 	/* FIXME!! check whether this need to be a conditional */
737 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
738 			 cpu_to_be64(pgprot_val(newprot)));
739 }
740 
741 /* Encode and de-code a swap entry */
742 #define MAX_SWAPFILES_CHECK() do { \
743 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
744 	/*							\
745 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
746 	 * We filter HPTEFLAGS on set_pte.			\
747 	 */							\
748 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
749 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
750 	} while (0)
751 
752 #define SWP_TYPE_BITS 5
753 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
754 				& ((1UL << SWP_TYPE_BITS) - 1))
755 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
756 #define __swp_entry(type, offset)	((swp_entry_t) { \
757 				((type) << _PAGE_BIT_SWAP_TYPE) \
758 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
759 /*
760  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
761  * swap type and offset we get from swap and convert that to pte to find a
762  * matching pte in linux page table.
763  * Clear bits not found in swap entries here.
764  */
765 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
766 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
767 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
768 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
769 
770 #ifdef CONFIG_MEM_SOFT_DIRTY
771 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
772 #else
773 #define _PAGE_SWP_SOFT_DIRTY	0UL
774 #endif /* CONFIG_MEM_SOFT_DIRTY */
775 
776 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
777 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
778 {
779 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
780 }
781 
782 static inline bool pte_swp_soft_dirty(pte_t pte)
783 {
784 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
785 }
786 
787 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
788 {
789 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
790 }
791 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
792 
793 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
794 {
795 	/*
796 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
797 	 */
798 	if (access & ~ptev)
799 		return false;
800 	/*
801 	 * This check for access to privilege space
802 	 */
803 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
804 		return false;
805 
806 	return true;
807 }
808 /*
809  * Generic functions with hash/radix callbacks
810  */
811 
812 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
813 					   pte_t *ptep, pte_t entry,
814 					   unsigned long address,
815 					   int psize)
816 {
817 	if (radix_enabled())
818 		return radix__ptep_set_access_flags(vma, ptep, entry,
819 						    address, psize);
820 	return hash__ptep_set_access_flags(ptep, entry);
821 }
822 
823 #define __HAVE_ARCH_PTE_SAME
824 static inline int pte_same(pte_t pte_a, pte_t pte_b)
825 {
826 	if (radix_enabled())
827 		return radix__pte_same(pte_a, pte_b);
828 	return hash__pte_same(pte_a, pte_b);
829 }
830 
831 static inline int pte_none(pte_t pte)
832 {
833 	if (radix_enabled())
834 		return radix__pte_none(pte);
835 	return hash__pte_none(pte);
836 }
837 
838 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
839 				pte_t *ptep, pte_t pte, int percpu)
840 {
841 
842 	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
843 	/*
844 	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
845 	 * in all the callers.
846 	 */
847 	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
848 
849 	if (radix_enabled())
850 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
851 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
852 }
853 
854 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
855 
856 #define pgprot_noncached pgprot_noncached
857 static inline pgprot_t pgprot_noncached(pgprot_t prot)
858 {
859 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
860 			_PAGE_NON_IDEMPOTENT);
861 }
862 
863 #define pgprot_noncached_wc pgprot_noncached_wc
864 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
865 {
866 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
867 			_PAGE_TOLERANT);
868 }
869 
870 #define pgprot_cached pgprot_cached
871 static inline pgprot_t pgprot_cached(pgprot_t prot)
872 {
873 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
874 }
875 
876 #define pgprot_writecombine pgprot_writecombine
877 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
878 {
879 	return pgprot_noncached_wc(prot);
880 }
881 /*
882  * check a pte mapping have cache inhibited property
883  */
884 static inline bool pte_ci(pte_t pte)
885 {
886 	__be64 pte_v = pte_raw(pte);
887 
888 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
889 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
890 		return true;
891 	return false;
892 }
893 
894 static inline void pmd_clear(pmd_t *pmdp)
895 {
896 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
897 		/*
898 		 * Don't use this if we can possibly have a hash page table
899 		 * entry mapping this.
900 		 */
901 		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
902 	}
903 	*pmdp = __pmd(0);
904 }
905 
906 static inline int pmd_none(pmd_t pmd)
907 {
908 	return !pmd_raw(pmd);
909 }
910 
911 static inline int pmd_present(pmd_t pmd)
912 {
913 	/*
914 	 * A pmd is considerent present if _PAGE_PRESENT is set.
915 	 * We also need to consider the pmd present which is marked
916 	 * invalid during a split. Hence we look for _PAGE_INVALID
917 	 * if we find _PAGE_PRESENT cleared.
918 	 */
919 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
920 		return true;
921 
922 	return false;
923 }
924 
925 static inline int pmd_is_serializing(pmd_t pmd)
926 {
927 	/*
928 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
929 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
930 	 *
931 	 * This condition may also occur when flushing a pmd while flushing
932 	 * it (see ptep_modify_prot_start), so callers must ensure this
933 	 * case is fine as well.
934 	 */
935 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
936 						cpu_to_be64(_PAGE_INVALID))
937 		return true;
938 
939 	return false;
940 }
941 
942 static inline int pmd_bad(pmd_t pmd)
943 {
944 	if (radix_enabled())
945 		return radix__pmd_bad(pmd);
946 	return hash__pmd_bad(pmd);
947 }
948 
949 static inline void pud_clear(pud_t *pudp)
950 {
951 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
952 		/*
953 		 * Don't use this if we can possibly have a hash page table
954 		 * entry mapping this.
955 		 */
956 		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
957 	}
958 	*pudp = __pud(0);
959 }
960 
961 static inline int pud_none(pud_t pud)
962 {
963 	return !pud_raw(pud);
964 }
965 
966 static inline int pud_present(pud_t pud)
967 {
968 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
969 }
970 
971 extern struct page *pud_page(pud_t pud);
972 extern struct page *pmd_page(pmd_t pmd);
973 static inline pte_t pud_pte(pud_t pud)
974 {
975 	return __pte_raw(pud_raw(pud));
976 }
977 
978 static inline pud_t pte_pud(pte_t pte)
979 {
980 	return __pud_raw(pte_raw(pte));
981 }
982 #define pud_write(pud)		pte_write(pud_pte(pud))
983 
984 static inline int pud_bad(pud_t pud)
985 {
986 	if (radix_enabled())
987 		return radix__pud_bad(pud);
988 	return hash__pud_bad(pud);
989 }
990 
991 #define pud_access_permitted pud_access_permitted
992 static inline bool pud_access_permitted(pud_t pud, bool write)
993 {
994 	return pte_access_permitted(pud_pte(pud), write);
995 }
996 
997 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
998 static inline __be64 p4d_raw(p4d_t x)
999 {
1000 	return pgd_raw(x.pgd);
1001 }
1002 
1003 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
1004 
1005 static inline void p4d_clear(p4d_t *p4dp)
1006 {
1007 	*p4dp = __p4d(0);
1008 }
1009 
1010 static inline int p4d_none(p4d_t p4d)
1011 {
1012 	return !p4d_raw(p4d);
1013 }
1014 
1015 static inline int p4d_present(p4d_t p4d)
1016 {
1017 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1018 }
1019 
1020 static inline pte_t p4d_pte(p4d_t p4d)
1021 {
1022 	return __pte_raw(p4d_raw(p4d));
1023 }
1024 
1025 static inline p4d_t pte_p4d(pte_t pte)
1026 {
1027 	return __p4d_raw(pte_raw(pte));
1028 }
1029 
1030 static inline int p4d_bad(p4d_t p4d)
1031 {
1032 	if (radix_enabled())
1033 		return radix__p4d_bad(p4d);
1034 	return hash__p4d_bad(p4d);
1035 }
1036 
1037 #define p4d_access_permitted p4d_access_permitted
1038 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1039 {
1040 	return pte_access_permitted(p4d_pte(p4d), write);
1041 }
1042 
1043 extern struct page *p4d_page(p4d_t p4d);
1044 
1045 /* Pointers in the page table tree are physical addresses */
1046 #define __pgtable_ptr_val(ptr)	__pa(ptr)
1047 
1048 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
1049 #define p4d_page_vaddr(p4d)	__va(p4d_val(p4d) & ~P4D_MASKED_BITS)
1050 
1051 #define pte_ERROR(e) \
1052 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1053 #define pmd_ERROR(e) \
1054 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1055 #define pud_ERROR(e) \
1056 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1057 #define pgd_ERROR(e) \
1058 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1059 
1060 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1061 {
1062 	if (radix_enabled()) {
1063 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1064 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1065 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1066 #endif
1067 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1068 	}
1069 	return hash__map_kernel_page(ea, pa, prot);
1070 }
1071 
1072 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1073 						   unsigned long page_size,
1074 						   unsigned long phys)
1075 {
1076 	if (radix_enabled())
1077 		return radix__vmemmap_create_mapping(start, page_size, phys);
1078 	return hash__vmemmap_create_mapping(start, page_size, phys);
1079 }
1080 
1081 #ifdef CONFIG_MEMORY_HOTPLUG
1082 static inline void vmemmap_remove_mapping(unsigned long start,
1083 					  unsigned long page_size)
1084 {
1085 	if (radix_enabled())
1086 		return radix__vmemmap_remove_mapping(start, page_size);
1087 	return hash__vmemmap_remove_mapping(start, page_size);
1088 }
1089 #endif
1090 
1091 static inline pte_t pmd_pte(pmd_t pmd)
1092 {
1093 	return __pte_raw(pmd_raw(pmd));
1094 }
1095 
1096 static inline pmd_t pte_pmd(pte_t pte)
1097 {
1098 	return __pmd_raw(pte_raw(pte));
1099 }
1100 
1101 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1102 {
1103 	return (pte_t *)pmd;
1104 }
1105 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1106 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1107 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1108 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1109 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1110 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1111 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1112 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1113 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1114 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1115 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1116 
1117 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1118 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1119 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1120 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1121 
1122 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1123 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1124 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1125 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1126 #endif
1127 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1128 
1129 #ifdef CONFIG_NUMA_BALANCING
1130 static inline int pmd_protnone(pmd_t pmd)
1131 {
1132 	return pte_protnone(pmd_pte(pmd));
1133 }
1134 #endif /* CONFIG_NUMA_BALANCING */
1135 
1136 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1137 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1138 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1139 
1140 #define pmd_access_permitted pmd_access_permitted
1141 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1142 {
1143 	/*
1144 	 * pmdp_invalidate sets this combination (which is not caught by
1145 	 * !pte_present() check in pte_access_permitted), to prevent
1146 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1147 	 * synchronisation.
1148 	 *
1149 	 * This also catches the case where the PTE's hardware PRESENT bit is
1150 	 * cleared while TLB is flushed, which is suboptimal but should not
1151 	 * be frequent.
1152 	 */
1153 	if (pmd_is_serializing(pmd))
1154 		return false;
1155 
1156 	return pte_access_permitted(pmd_pte(pmd), write);
1157 }
1158 
1159 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1160 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1161 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1162 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1163 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1164 		       pmd_t *pmdp, pmd_t pmd);
1165 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1166 					unsigned long addr, pmd_t *pmd)
1167 {
1168 }
1169 
1170 extern int hash__has_transparent_hugepage(void);
1171 static inline int has_transparent_hugepage(void)
1172 {
1173 	if (radix_enabled())
1174 		return radix__has_transparent_hugepage();
1175 	return hash__has_transparent_hugepage();
1176 }
1177 #define has_transparent_hugepage has_transparent_hugepage
1178 
1179 static inline unsigned long
1180 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1181 		    unsigned long clr, unsigned long set)
1182 {
1183 	if (radix_enabled())
1184 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1185 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1186 }
1187 
1188 /*
1189  * returns true for pmd migration entries, THP, devmap, hugetlb
1190  * But compile time dependent on THP config
1191  */
1192 static inline int pmd_large(pmd_t pmd)
1193 {
1194 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1195 }
1196 
1197 /*
1198  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1199  * the below will work for radix too
1200  */
1201 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1202 					      unsigned long addr, pmd_t *pmdp)
1203 {
1204 	unsigned long old;
1205 
1206 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1207 		return 0;
1208 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1209 	return ((old & _PAGE_ACCESSED) != 0);
1210 }
1211 
1212 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1213 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1214 				      pmd_t *pmdp)
1215 {
1216 	if (__pmd_write((*pmdp)))
1217 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1218 	else if (unlikely(pmd_savedwrite(*pmdp)))
1219 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1220 }
1221 
1222 /*
1223  * Only returns true for a THP. False for pmd migration entry.
1224  * We also need to return true when we come across a pte that
1225  * in between a thp split. While splitting THP, we mark the pmd
1226  * invalid (pmdp_invalidate()) before we set it with pte page
1227  * address. A pmd_trans_huge() check against a pmd entry during that time
1228  * should return true.
1229  * We should not call this on a hugetlb entry. We should check for HugeTLB
1230  * entry using vma->vm_flags
1231  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1232  */
1233 static inline int pmd_trans_huge(pmd_t pmd)
1234 {
1235 	if (!pmd_present(pmd))
1236 		return false;
1237 
1238 	if (radix_enabled())
1239 		return radix__pmd_trans_huge(pmd);
1240 	return hash__pmd_trans_huge(pmd);
1241 }
1242 
1243 #define __HAVE_ARCH_PMD_SAME
1244 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1245 {
1246 	if (radix_enabled())
1247 		return radix__pmd_same(pmd_a, pmd_b);
1248 	return hash__pmd_same(pmd_a, pmd_b);
1249 }
1250 
1251 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1252 {
1253 	if (radix_enabled())
1254 		return radix__pmd_mkhuge(pmd);
1255 	return hash__pmd_mkhuge(pmd);
1256 }
1257 
1258 /*
1259  * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1260  */
1261 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1262 {
1263 #ifdef CONFIG_DEBUG_VM
1264 	if (radix_enabled())
1265 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1266 	else
1267 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1268 			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1269 #endif
1270 	return pmd;
1271 }
1272 
1273 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1274 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1275 				 unsigned long address, pmd_t *pmdp,
1276 				 pmd_t entry, int dirty);
1277 
1278 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1279 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1280 				     unsigned long address, pmd_t *pmdp);
1281 
1282 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1283 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1284 					    unsigned long addr, pmd_t *pmdp)
1285 {
1286 	if (radix_enabled())
1287 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1288 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1289 }
1290 
1291 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1292 					unsigned long address, pmd_t *pmdp)
1293 {
1294 	if (radix_enabled())
1295 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1296 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1297 }
1298 #define pmdp_collapse_flush pmdp_collapse_flush
1299 
1300 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1301 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1302 				   unsigned long addr,
1303 				   pmd_t *pmdp, int full);
1304 
1305 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1306 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1307 					      pmd_t *pmdp, pgtable_t pgtable)
1308 {
1309 	if (radix_enabled())
1310 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1311 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1312 }
1313 
1314 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1315 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1316 						    pmd_t *pmdp)
1317 {
1318 	if (radix_enabled())
1319 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1320 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1321 }
1322 
1323 #define __HAVE_ARCH_PMDP_INVALIDATE
1324 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1325 			     pmd_t *pmdp);
1326 
1327 #define pmd_move_must_withdraw pmd_move_must_withdraw
1328 struct spinlock;
1329 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1330 				  struct spinlock *old_pmd_ptl,
1331 				  struct vm_area_struct *vma);
1332 /*
1333  * Hash translation mode use the deposited table to store hash pte
1334  * slot information.
1335  */
1336 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1337 static inline bool arch_needs_pgtable_deposit(void)
1338 {
1339 	if (radix_enabled())
1340 		return false;
1341 	return true;
1342 }
1343 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1344 
1345 
1346 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1347 {
1348 	if (radix_enabled())
1349 		return radix__pmd_mkdevmap(pmd);
1350 	return hash__pmd_mkdevmap(pmd);
1351 }
1352 
1353 static inline int pmd_devmap(pmd_t pmd)
1354 {
1355 	return pte_devmap(pmd_pte(pmd));
1356 }
1357 
1358 static inline int pud_devmap(pud_t pud)
1359 {
1360 	return 0;
1361 }
1362 
1363 static inline int pgd_devmap(pgd_t pgd)
1364 {
1365 	return 0;
1366 }
1367 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1368 
1369 static inline int pud_pfn(pud_t pud)
1370 {
1371 	/*
1372 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1373 	 * check so this should never be used. If it grows another user we
1374 	 * want to know about it.
1375 	 */
1376 	BUILD_BUG();
1377 	return 0;
1378 }
1379 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1380 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1381 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1382 			     pte_t *, pte_t, pte_t);
1383 
1384 /*
1385  * Returns true for a R -> RW upgrade of pte
1386  */
1387 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1388 {
1389 	if (!(old_val & _PAGE_READ))
1390 		return false;
1391 
1392 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1393 		return true;
1394 
1395 	return false;
1396 }
1397 
1398 /*
1399  * Like pmd_huge() and pmd_large(), but works regardless of config options
1400  */
1401 #define pmd_is_leaf pmd_is_leaf
1402 #define pmd_leaf pmd_is_leaf
1403 static inline bool pmd_is_leaf(pmd_t pmd)
1404 {
1405 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1406 }
1407 
1408 #define pud_is_leaf pud_is_leaf
1409 #define pud_leaf pud_is_leaf
1410 static inline bool pud_is_leaf(pud_t pud)
1411 {
1412 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1413 }
1414 
1415 #define p4d_is_leaf p4d_is_leaf
1416 #define p4d_leaf p4d_is_leaf
1417 static inline bool p4d_is_leaf(p4d_t p4d)
1418 {
1419 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1420 }
1421 
1422 #endif /* __ASSEMBLY__ */
1423 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1424