1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12 
13 /*
14  * Common bits between hash and Radix page table
15  */
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x00040UL
36 
37 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
38 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
39 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
40 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
41 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
42 
43 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
44 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
45 /*
46  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
47  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
48  * differentiate between two use a SW field when invalidating.
49  *
50  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
51  *
52  * This is used only when _PAGE_PRESENT is cleared.
53  */
54 #define _PAGE_INVALID		_RPAGE_SW0
55 
56 /*
57  * Top and bottom bits of RPN which can be used by hash
58  * translation mode, because we expect them to be zero
59  * otherwise.
60  */
61 #define _RPAGE_RPN0		0x01000
62 #define _RPAGE_RPN1		0x02000
63 #define _RPAGE_RPN43		0x0080000000000000UL
64 #define _RPAGE_RPN42		0x0040000000000000UL
65 #define _RPAGE_RPN41		0x0020000000000000UL
66 
67 /* Max physical address bit as per radix table */
68 #define _RPAGE_PA_MAX		56
69 
70 /*
71  * Max physical address bit we will use for now.
72  *
73  * This is mostly a hardware limitation and for now Power9 has
74  * a 51 bit limit.
75  *
76  * This is different from the number of physical bit required to address
77  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
78  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
79  * number of sections we can support (SECTIONS_SHIFT).
80  *
81  * This is different from Radix page table limitation above and
82  * should always be less than that. The limit is done such that
83  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
84  * for hash linux page table specific bits.
85  *
86  * In order to be compatible with future hardware generations we keep
87  * some offsets and limit this for now to 53
88  */
89 #define _PAGE_PA_MAX		53
90 
91 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
92 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
93 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
94 
95 /*
96  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97  * Instead of fixing all of them, add an alternate define which
98  * maps CI pte mapping.
99  */
100 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101 /*
102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104  * and every thing below PAGE_SHIFT;
105  */
106 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 /*
108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
109  * in here, on radix we expect them to be zero.
110  */
111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114 /*
115  * user access blocked by key
116  */
117 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119 #define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
120 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
121 				 _PAGE_RW | _PAGE_EXEC)
122 /*
123  * _PAGE_CHG_MASK masks of bits that are to be preserved across
124  * pgprot changes
125  */
126 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
127 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
128 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
129 
130 /*
131  * We define 2 sets of base prot bits, one for basic pages (ie,
132  * cacheable kernel and user pages) and one for non cacheable
133  * pages. We always set _PAGE_COHERENT when SMP is enabled or
134  * the processor might need it for DMA coherency.
135  */
136 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
137 #define _PAGE_BASE	(_PAGE_BASE_NC)
138 
139 /* Permission masks used to generate the __P and __S table,
140  *
141  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142  *
143  * Write permissions imply read permissions for now (we could make write-only
144  * pages on BookE but we don't bother for now). Execute permission control is
145  * possible on platforms that define _PAGE_EXEC
146  */
147 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
149 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154 
155 /* Permission masks used for kernel mappings */
156 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
157 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
158 				 _PAGE_TOLERANT)
159 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160 				 _PAGE_NON_IDEMPOTENT)
161 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164 
165 /*
166  * Protection used for kernel text. We want the debuggers to be able to
167  * set breakpoints anywhere, so don't write protect the kernel text
168  * on platforms where such control is possible.
169  */
170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
171 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
172 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
173 #else
174 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
175 #endif
176 
177 /* Make modules code happy. We don't set RO yet */
178 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
179 #define PAGE_AGP		(PAGE_KERNEL_NC)
180 
181 #ifndef __ASSEMBLY__
182 /*
183  * page table defines
184  */
185 extern unsigned long __pte_index_size;
186 extern unsigned long __pmd_index_size;
187 extern unsigned long __pud_index_size;
188 extern unsigned long __pgd_index_size;
189 extern unsigned long __pud_cache_index;
190 #define PTE_INDEX_SIZE  __pte_index_size
191 #define PMD_INDEX_SIZE  __pmd_index_size
192 #define PUD_INDEX_SIZE  __pud_index_size
193 #define PGD_INDEX_SIZE  __pgd_index_size
194 /* pmd table use page table fragments */
195 #define PMD_CACHE_INDEX  0
196 #define PUD_CACHE_INDEX __pud_cache_index
197 /*
198  * Because of use of pte fragments and THP, size of page table
199  * are not always derived out of index size above.
200  */
201 extern unsigned long __pte_table_size;
202 extern unsigned long __pmd_table_size;
203 extern unsigned long __pud_table_size;
204 extern unsigned long __pgd_table_size;
205 #define PTE_TABLE_SIZE	__pte_table_size
206 #define PMD_TABLE_SIZE	__pmd_table_size
207 #define PUD_TABLE_SIZE	__pud_table_size
208 #define PGD_TABLE_SIZE	__pgd_table_size
209 
210 extern unsigned long __pmd_val_bits;
211 extern unsigned long __pud_val_bits;
212 extern unsigned long __pgd_val_bits;
213 #define PMD_VAL_BITS	__pmd_val_bits
214 #define PUD_VAL_BITS	__pud_val_bits
215 #define PGD_VAL_BITS	__pgd_val_bits
216 
217 extern unsigned long __pte_frag_nr;
218 #define PTE_FRAG_NR __pte_frag_nr
219 extern unsigned long __pte_frag_size_shift;
220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
222 
223 extern unsigned long __pmd_frag_nr;
224 #define PMD_FRAG_NR __pmd_frag_nr
225 extern unsigned long __pmd_frag_size_shift;
226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
228 
229 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
230 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
231 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
232 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
233 
234 #define MAX_PTRS_PER_PGD	(1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
235 				       H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
236 
237 /* PMD_SHIFT determines what a second-level page table entry can map */
238 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
239 #define PMD_SIZE	(1UL << PMD_SHIFT)
240 #define PMD_MASK	(~(PMD_SIZE-1))
241 
242 /* PUD_SHIFT determines what a third-level page table entry can map */
243 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
244 #define PUD_SIZE	(1UL << PUD_SHIFT)
245 #define PUD_MASK	(~(PUD_SIZE-1))
246 
247 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
248 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
249 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
250 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
251 
252 /* Bits to mask out from a PMD to get to the PTE page */
253 #define PMD_MASKED_BITS		0xc0000000000000ffUL
254 /* Bits to mask out from a PUD to get to the PMD page */
255 #define PUD_MASKED_BITS		0xc0000000000000ffUL
256 /* Bits to mask out from a PGD to get to the PUD page */
257 #define P4D_MASKED_BITS		0xc0000000000000ffUL
258 
259 /*
260  * Used as an indicator for rcu callback functions
261  */
262 enum pgtable_index {
263 	PTE_INDEX = 0,
264 	PMD_INDEX,
265 	PUD_INDEX,
266 	PGD_INDEX,
267 	/*
268 	 * Below are used with 4k page size and hugetlb
269 	 */
270 	HTLB_16M_INDEX,
271 	HTLB_16G_INDEX,
272 };
273 
274 extern unsigned long __vmalloc_start;
275 extern unsigned long __vmalloc_end;
276 #define VMALLOC_START	__vmalloc_start
277 #define VMALLOC_END	__vmalloc_end
278 
279 static inline unsigned int ioremap_max_order(void)
280 {
281 	if (radix_enabled())
282 		return PUD_SHIFT;
283 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
284 }
285 #define IOREMAP_MAX_ORDER ioremap_max_order()
286 
287 extern unsigned long __kernel_virt_start;
288 extern unsigned long __kernel_io_start;
289 extern unsigned long __kernel_io_end;
290 #define KERN_VIRT_START __kernel_virt_start
291 #define KERN_IO_START  __kernel_io_start
292 #define KERN_IO_END __kernel_io_end
293 
294 extern struct page *vmemmap;
295 extern unsigned long pci_io_base;
296 #endif /* __ASSEMBLY__ */
297 
298 #include <asm/book3s/64/hash.h>
299 #include <asm/book3s/64/radix.h>
300 
301 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
302 #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
303 #else
304 #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
305 #endif
306 
307 
308 #ifdef CONFIG_PPC_64K_PAGES
309 #include <asm/book3s/64/pgtable-64k.h>
310 #else
311 #include <asm/book3s/64/pgtable-4k.h>
312 #endif
313 
314 #include <asm/barrier.h>
315 /*
316  * IO space itself carved into the PIO region (ISA and PHB IO space) and
317  * the ioremap space
318  *
319  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
320  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
321  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
322  */
323 #define FULL_IO_SIZE	0x80000000ul
324 #define  ISA_IO_BASE	(KERN_IO_START)
325 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
326 #define  PHB_IO_BASE	(ISA_IO_END)
327 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
328 #define IOREMAP_BASE	(PHB_IO_END)
329 #define IOREMAP_START	(ioremap_bot)
330 #define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
331 #define FIXADDR_SIZE	SZ_32M
332 
333 /* Advertise special mapping type for AGP */
334 #define HAVE_PAGE_AGP
335 
336 #ifndef __ASSEMBLY__
337 
338 /*
339  * This is the default implementation of various PTE accessors, it's
340  * used in all cases except Book3S with 64K pages where we have a
341  * concept of sub-pages
342  */
343 #ifndef __real_pte
344 
345 #define __real_pte(e, p, o)		((real_pte_t){(e)})
346 #define __rpte_to_pte(r)	((r).pte)
347 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
348 
349 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
350 	do {							         \
351 		index = 0;					         \
352 		shift = mmu_psize_defs[psize].shift;		         \
353 
354 #define pte_iterate_hashed_end() } while(0)
355 
356 /*
357  * We expect this to be called only for user addresses or kernel virtual
358  * addresses other than the linear mapping.
359  */
360 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
361 
362 #endif /* __real_pte */
363 
364 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
365 				       pte_t *ptep, unsigned long clr,
366 				       unsigned long set, int huge)
367 {
368 	if (radix_enabled())
369 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
370 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
371 }
372 /*
373  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
374  * We currently remove entries from the hashtable regardless of whether
375  * the entry was young or dirty.
376  *
377  * We should be more intelligent about this but for the moment we override
378  * these functions and force a tlb flush unconditionally
379  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
380  * function for both hash and radix.
381  */
382 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
383 					      unsigned long addr, pte_t *ptep)
384 {
385 	unsigned long old;
386 
387 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
388 		return 0;
389 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
390 	return (old & _PAGE_ACCESSED) != 0;
391 }
392 
393 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
394 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
395 ({								\
396 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
397 })
398 
399 /*
400  * On Book3S CPUs, clearing the accessed bit without a TLB flush
401  * doesn't cause data corruption. [ It could cause incorrect
402  * page aging and the (mistaken) reclaim of hot pages, but the
403  * chance of that should be relatively low. ]
404  *
405  * So as a performance optimization don't flush the TLB when
406  * clearing the accessed bit, it will eventually be flushed by
407  * a context switch or a VM operation anyway. [ In the rare
408  * event of it not getting flushed for a long time the delay
409  * shouldn't really matter because there's no real memory
410  * pressure for swapout to react to. ]
411  */
412 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
413 #define ptep_clear_flush_young ptep_test_and_clear_young
414 
415 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
416 #define pmdp_clear_flush_young pmdp_test_and_clear_young
417 
418 static inline int __pte_write(pte_t pte)
419 {
420 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
421 }
422 
423 #ifdef CONFIG_NUMA_BALANCING
424 #define pte_savedwrite pte_savedwrite
425 static inline bool pte_savedwrite(pte_t pte)
426 {
427 	/*
428 	 * Saved write ptes are prot none ptes that doesn't have
429 	 * privileged bit sit. We mark prot none as one which has
430 	 * present and pviliged bit set and RWX cleared. To mark
431 	 * protnone which used to have _PAGE_WRITE set we clear
432 	 * the privileged bit.
433 	 */
434 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
435 }
436 #else
437 #define pte_savedwrite pte_savedwrite
438 static inline bool pte_savedwrite(pte_t pte)
439 {
440 	return false;
441 }
442 #endif
443 
444 static inline int pte_write(pte_t pte)
445 {
446 	return __pte_write(pte) || pte_savedwrite(pte);
447 }
448 
449 static inline int pte_read(pte_t pte)
450 {
451 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
452 }
453 
454 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
455 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
456 				      pte_t *ptep)
457 {
458 	if (__pte_write(*ptep))
459 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
460 	else if (unlikely(pte_savedwrite(*ptep)))
461 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
462 }
463 
464 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
465 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
466 					   unsigned long addr, pte_t *ptep)
467 {
468 	/*
469 	 * We should not find protnone for hugetlb, but this complete the
470 	 * interface.
471 	 */
472 	if (__pte_write(*ptep))
473 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
474 	else if (unlikely(pte_savedwrite(*ptep)))
475 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
476 }
477 
478 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
479 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
480 				       unsigned long addr, pte_t *ptep)
481 {
482 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
483 	return __pte(old);
484 }
485 
486 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
487 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
488 					    unsigned long addr,
489 					    pte_t *ptep, int full)
490 {
491 	if (full && radix_enabled()) {
492 		/*
493 		 * We know that this is a full mm pte clear and
494 		 * hence can be sure there is no parallel set_pte.
495 		 */
496 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
497 	}
498 	return ptep_get_and_clear(mm, addr, ptep);
499 }
500 
501 
502 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
503 			     pte_t * ptep)
504 {
505 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
506 }
507 
508 static inline int pte_dirty(pte_t pte)
509 {
510 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
511 }
512 
513 static inline int pte_young(pte_t pte)
514 {
515 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
516 }
517 
518 static inline int pte_special(pte_t pte)
519 {
520 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
521 }
522 
523 static inline bool pte_exec(pte_t pte)
524 {
525 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
526 }
527 
528 
529 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
530 static inline bool pte_soft_dirty(pte_t pte)
531 {
532 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
533 }
534 
535 static inline pte_t pte_mksoft_dirty(pte_t pte)
536 {
537 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
538 }
539 
540 static inline pte_t pte_clear_soft_dirty(pte_t pte)
541 {
542 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
543 }
544 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
545 
546 #ifdef CONFIG_NUMA_BALANCING
547 static inline int pte_protnone(pte_t pte)
548 {
549 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
550 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
551 }
552 
553 #define pte_mk_savedwrite pte_mk_savedwrite
554 static inline pte_t pte_mk_savedwrite(pte_t pte)
555 {
556 	/*
557 	 * Used by Autonuma subsystem to preserve the write bit
558 	 * while marking the pte PROT_NONE. Only allow this
559 	 * on PROT_NONE pte
560 	 */
561 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
562 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
563 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
564 }
565 
566 #define pte_clear_savedwrite pte_clear_savedwrite
567 static inline pte_t pte_clear_savedwrite(pte_t pte)
568 {
569 	/*
570 	 * Used by KSM subsystem to make a protnone pte readonly.
571 	 */
572 	VM_BUG_ON(!pte_protnone(pte));
573 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
574 }
575 #else
576 #define pte_clear_savedwrite pte_clear_savedwrite
577 static inline pte_t pte_clear_savedwrite(pte_t pte)
578 {
579 	VM_WARN_ON(1);
580 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
581 }
582 #endif /* CONFIG_NUMA_BALANCING */
583 
584 static inline bool pte_hw_valid(pte_t pte)
585 {
586 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
587 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
588 }
589 
590 static inline int pte_present(pte_t pte)
591 {
592 	/*
593 	 * A pte is considerent present if _PAGE_PRESENT is set.
594 	 * We also need to consider the pte present which is marked
595 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
596 	 * if we find _PAGE_PRESENT cleared.
597 	 */
598 
599 	if (pte_hw_valid(pte))
600 		return true;
601 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
602 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
603 }
604 
605 #ifdef CONFIG_PPC_MEM_KEYS
606 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
607 #else
608 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
609 {
610 	return true;
611 }
612 #endif /* CONFIG_PPC_MEM_KEYS */
613 
614 static inline bool pte_user(pte_t pte)
615 {
616 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
617 }
618 
619 #define pte_access_permitted pte_access_permitted
620 static inline bool pte_access_permitted(pte_t pte, bool write)
621 {
622 	/*
623 	 * _PAGE_READ is needed for any access and will be
624 	 * cleared for PROT_NONE
625 	 */
626 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
627 		return false;
628 
629 	if (write && !pte_write(pte))
630 		return false;
631 
632 	return arch_pte_access_permitted(pte_val(pte), write, 0);
633 }
634 
635 /*
636  * Conversion functions: convert a page and protection to a page entry,
637  * and a page entry and page directory to the page they refer to.
638  *
639  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
640  * long for now.
641  */
642 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
643 {
644 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
645 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
646 
647 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
648 }
649 
650 static inline unsigned long pte_pfn(pte_t pte)
651 {
652 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
653 }
654 
655 /* Generic modifiers for PTE bits */
656 static inline pte_t pte_wrprotect(pte_t pte)
657 {
658 	if (unlikely(pte_savedwrite(pte)))
659 		return pte_clear_savedwrite(pte);
660 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
661 }
662 
663 static inline pte_t pte_exprotect(pte_t pte)
664 {
665 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
666 }
667 
668 static inline pte_t pte_mkclean(pte_t pte)
669 {
670 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
671 }
672 
673 static inline pte_t pte_mkold(pte_t pte)
674 {
675 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
676 }
677 
678 static inline pte_t pte_mkexec(pte_t pte)
679 {
680 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
681 }
682 
683 static inline pte_t pte_mkwrite(pte_t pte)
684 {
685 	/*
686 	 * write implies read, hence set both
687 	 */
688 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
689 }
690 
691 static inline pte_t pte_mkdirty(pte_t pte)
692 {
693 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
694 }
695 
696 static inline pte_t pte_mkyoung(pte_t pte)
697 {
698 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
699 }
700 
701 static inline pte_t pte_mkspecial(pte_t pte)
702 {
703 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
704 }
705 
706 static inline pte_t pte_mkhuge(pte_t pte)
707 {
708 	return pte;
709 }
710 
711 static inline pte_t pte_mkdevmap(pte_t pte)
712 {
713 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
714 }
715 
716 static inline pte_t pte_mkprivileged(pte_t pte)
717 {
718 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
719 }
720 
721 static inline pte_t pte_mkuser(pte_t pte)
722 {
723 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
724 }
725 
726 /*
727  * This is potentially called with a pmd as the argument, in which case it's not
728  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
729  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
730  * use in page directory entries (ie. non-ptes).
731  */
732 static inline int pte_devmap(pte_t pte)
733 {
734 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
735 
736 	return (pte_raw(pte) & mask) == mask;
737 }
738 
739 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
740 {
741 	/* FIXME!! check whether this need to be a conditional */
742 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
743 			 cpu_to_be64(pgprot_val(newprot)));
744 }
745 
746 /* Encode and de-code a swap entry */
747 #define MAX_SWAPFILES_CHECK() do { \
748 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
749 	/*							\
750 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
751 	 * We filter HPTEFLAGS on set_pte.			\
752 	 */							\
753 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
754 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
755 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE);	\
756 	} while (0)
757 
758 #define SWP_TYPE_BITS 5
759 #define SWP_TYPE_MASK		((1UL << SWP_TYPE_BITS) - 1)
760 #define __swp_type(x)		((x).val & SWP_TYPE_MASK)
761 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
762 #define __swp_entry(type, offset)	((swp_entry_t) { \
763 				(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
764 /*
765  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
766  * swap type and offset we get from swap and convert that to pte to find a
767  * matching pte in linux page table.
768  * Clear bits not found in swap entries here.
769  */
770 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
771 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
772 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
773 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
774 
775 #ifdef CONFIG_MEM_SOFT_DIRTY
776 #define _PAGE_SWP_SOFT_DIRTY	_PAGE_SOFT_DIRTY
777 #else
778 #define _PAGE_SWP_SOFT_DIRTY	0UL
779 #endif /* CONFIG_MEM_SOFT_DIRTY */
780 
781 #define _PAGE_SWP_EXCLUSIVE	_PAGE_NON_IDEMPOTENT
782 
783 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
784 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
785 {
786 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
787 }
788 
789 static inline bool pte_swp_soft_dirty(pte_t pte)
790 {
791 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
792 }
793 
794 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
795 {
796 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
797 }
798 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
799 
800 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
801 static inline pte_t pte_swp_mkexclusive(pte_t pte)
802 {
803 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
804 }
805 
806 static inline int pte_swp_exclusive(pte_t pte)
807 {
808 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
809 }
810 
811 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
812 {
813 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
814 }
815 
816 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
817 {
818 	/*
819 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
820 	 */
821 	if (access & ~ptev)
822 		return false;
823 	/*
824 	 * This check for access to privilege space
825 	 */
826 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
827 		return false;
828 
829 	return true;
830 }
831 /*
832  * Generic functions with hash/radix callbacks
833  */
834 
835 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
836 					   pte_t *ptep, pte_t entry,
837 					   unsigned long address,
838 					   int psize)
839 {
840 	if (radix_enabled())
841 		return radix__ptep_set_access_flags(vma, ptep, entry,
842 						    address, psize);
843 	return hash__ptep_set_access_flags(ptep, entry);
844 }
845 
846 #define __HAVE_ARCH_PTE_SAME
847 static inline int pte_same(pte_t pte_a, pte_t pte_b)
848 {
849 	if (radix_enabled())
850 		return radix__pte_same(pte_a, pte_b);
851 	return hash__pte_same(pte_a, pte_b);
852 }
853 
854 static inline int pte_none(pte_t pte)
855 {
856 	if (radix_enabled())
857 		return radix__pte_none(pte);
858 	return hash__pte_none(pte);
859 }
860 
861 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
862 				pte_t *ptep, pte_t pte, int percpu)
863 {
864 
865 	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
866 	/*
867 	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
868 	 * in all the callers.
869 	 */
870 	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
871 
872 	if (radix_enabled())
873 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
874 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
875 }
876 
877 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
878 
879 #define pgprot_noncached pgprot_noncached
880 static inline pgprot_t pgprot_noncached(pgprot_t prot)
881 {
882 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
883 			_PAGE_NON_IDEMPOTENT);
884 }
885 
886 #define pgprot_noncached_wc pgprot_noncached_wc
887 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
888 {
889 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
890 			_PAGE_TOLERANT);
891 }
892 
893 #define pgprot_cached pgprot_cached
894 static inline pgprot_t pgprot_cached(pgprot_t prot)
895 {
896 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
897 }
898 
899 #define pgprot_writecombine pgprot_writecombine
900 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
901 {
902 	return pgprot_noncached_wc(prot);
903 }
904 /*
905  * check a pte mapping have cache inhibited property
906  */
907 static inline bool pte_ci(pte_t pte)
908 {
909 	__be64 pte_v = pte_raw(pte);
910 
911 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
912 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
913 		return true;
914 	return false;
915 }
916 
917 static inline void pmd_clear(pmd_t *pmdp)
918 {
919 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
920 		/*
921 		 * Don't use this if we can possibly have a hash page table
922 		 * entry mapping this.
923 		 */
924 		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
925 	}
926 	*pmdp = __pmd(0);
927 }
928 
929 static inline int pmd_none(pmd_t pmd)
930 {
931 	return !pmd_raw(pmd);
932 }
933 
934 static inline int pmd_present(pmd_t pmd)
935 {
936 	/*
937 	 * A pmd is considerent present if _PAGE_PRESENT is set.
938 	 * We also need to consider the pmd present which is marked
939 	 * invalid during a split. Hence we look for _PAGE_INVALID
940 	 * if we find _PAGE_PRESENT cleared.
941 	 */
942 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
943 		return true;
944 
945 	return false;
946 }
947 
948 static inline int pmd_is_serializing(pmd_t pmd)
949 {
950 	/*
951 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
952 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
953 	 *
954 	 * This condition may also occur when flushing a pmd while flushing
955 	 * it (see ptep_modify_prot_start), so callers must ensure this
956 	 * case is fine as well.
957 	 */
958 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
959 						cpu_to_be64(_PAGE_INVALID))
960 		return true;
961 
962 	return false;
963 }
964 
965 static inline int pmd_bad(pmd_t pmd)
966 {
967 	if (radix_enabled())
968 		return radix__pmd_bad(pmd);
969 	return hash__pmd_bad(pmd);
970 }
971 
972 static inline void pud_clear(pud_t *pudp)
973 {
974 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
975 		/*
976 		 * Don't use this if we can possibly have a hash page table
977 		 * entry mapping this.
978 		 */
979 		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
980 	}
981 	*pudp = __pud(0);
982 }
983 
984 static inline int pud_none(pud_t pud)
985 {
986 	return !pud_raw(pud);
987 }
988 
989 static inline int pud_present(pud_t pud)
990 {
991 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
992 }
993 
994 extern struct page *pud_page(pud_t pud);
995 extern struct page *pmd_page(pmd_t pmd);
996 static inline pte_t pud_pte(pud_t pud)
997 {
998 	return __pte_raw(pud_raw(pud));
999 }
1000 
1001 static inline pud_t pte_pud(pte_t pte)
1002 {
1003 	return __pud_raw(pte_raw(pte));
1004 }
1005 #define pud_write(pud)		pte_write(pud_pte(pud))
1006 
1007 static inline int pud_bad(pud_t pud)
1008 {
1009 	if (radix_enabled())
1010 		return radix__pud_bad(pud);
1011 	return hash__pud_bad(pud);
1012 }
1013 
1014 #define pud_access_permitted pud_access_permitted
1015 static inline bool pud_access_permitted(pud_t pud, bool write)
1016 {
1017 	return pte_access_permitted(pud_pte(pud), write);
1018 }
1019 
1020 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
1021 static inline __be64 p4d_raw(p4d_t x)
1022 {
1023 	return pgd_raw(x.pgd);
1024 }
1025 
1026 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
1027 
1028 static inline void p4d_clear(p4d_t *p4dp)
1029 {
1030 	*p4dp = __p4d(0);
1031 }
1032 
1033 static inline int p4d_none(p4d_t p4d)
1034 {
1035 	return !p4d_raw(p4d);
1036 }
1037 
1038 static inline int p4d_present(p4d_t p4d)
1039 {
1040 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1041 }
1042 
1043 static inline pte_t p4d_pte(p4d_t p4d)
1044 {
1045 	return __pte_raw(p4d_raw(p4d));
1046 }
1047 
1048 static inline p4d_t pte_p4d(pte_t pte)
1049 {
1050 	return __p4d_raw(pte_raw(pte));
1051 }
1052 
1053 static inline int p4d_bad(p4d_t p4d)
1054 {
1055 	if (radix_enabled())
1056 		return radix__p4d_bad(p4d);
1057 	return hash__p4d_bad(p4d);
1058 }
1059 
1060 #define p4d_access_permitted p4d_access_permitted
1061 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1062 {
1063 	return pte_access_permitted(p4d_pte(p4d), write);
1064 }
1065 
1066 extern struct page *p4d_page(p4d_t p4d);
1067 
1068 /* Pointers in the page table tree are physical addresses */
1069 #define __pgtable_ptr_val(ptr)	__pa(ptr)
1070 
1071 static inline pud_t *p4d_pgtable(p4d_t p4d)
1072 {
1073 	return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
1074 }
1075 
1076 static inline pmd_t *pud_pgtable(pud_t pud)
1077 {
1078 	return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
1079 }
1080 
1081 #define pte_ERROR(e) \
1082 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1083 #define pmd_ERROR(e) \
1084 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1085 #define pud_ERROR(e) \
1086 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1087 #define pgd_ERROR(e) \
1088 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1089 
1090 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1091 {
1092 	if (radix_enabled()) {
1093 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1094 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1095 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1096 #endif
1097 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1098 	}
1099 	return hash__map_kernel_page(ea, pa, prot);
1100 }
1101 
1102 void unmap_kernel_page(unsigned long va);
1103 
1104 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1105 						   unsigned long page_size,
1106 						   unsigned long phys)
1107 {
1108 	if (radix_enabled())
1109 		return radix__vmemmap_create_mapping(start, page_size, phys);
1110 	return hash__vmemmap_create_mapping(start, page_size, phys);
1111 }
1112 
1113 #ifdef CONFIG_MEMORY_HOTPLUG
1114 static inline void vmemmap_remove_mapping(unsigned long start,
1115 					  unsigned long page_size)
1116 {
1117 	if (radix_enabled())
1118 		return radix__vmemmap_remove_mapping(start, page_size);
1119 	return hash__vmemmap_remove_mapping(start, page_size);
1120 }
1121 #endif
1122 
1123 #ifdef CONFIG_DEBUG_PAGEALLOC
1124 static inline void __kernel_map_pages(struct page *page, int numpages, int enable)
1125 {
1126 	if (radix_enabled())
1127 		radix__kernel_map_pages(page, numpages, enable);
1128 	else
1129 		hash__kernel_map_pages(page, numpages, enable);
1130 }
1131 #endif
1132 
1133 static inline pte_t pmd_pte(pmd_t pmd)
1134 {
1135 	return __pte_raw(pmd_raw(pmd));
1136 }
1137 
1138 static inline pmd_t pte_pmd(pte_t pte)
1139 {
1140 	return __pmd_raw(pte_raw(pte));
1141 }
1142 
1143 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1144 {
1145 	return (pte_t *)pmd;
1146 }
1147 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1148 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1149 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1150 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1151 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1152 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1153 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1154 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1155 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1156 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1157 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1158 
1159 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1160 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1161 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1162 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1163 
1164 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1165 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1166 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1167 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1168 #endif
1169 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1170 
1171 #ifdef CONFIG_NUMA_BALANCING
1172 static inline int pmd_protnone(pmd_t pmd)
1173 {
1174 	return pte_protnone(pmd_pte(pmd));
1175 }
1176 #endif /* CONFIG_NUMA_BALANCING */
1177 
1178 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1179 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1180 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1181 
1182 #define pmd_access_permitted pmd_access_permitted
1183 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1184 {
1185 	/*
1186 	 * pmdp_invalidate sets this combination (which is not caught by
1187 	 * !pte_present() check in pte_access_permitted), to prevent
1188 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1189 	 * synchronisation.
1190 	 *
1191 	 * This also catches the case where the PTE's hardware PRESENT bit is
1192 	 * cleared while TLB is flushed, which is suboptimal but should not
1193 	 * be frequent.
1194 	 */
1195 	if (pmd_is_serializing(pmd))
1196 		return false;
1197 
1198 	return pte_access_permitted(pmd_pte(pmd), write);
1199 }
1200 
1201 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1202 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1203 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1204 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1205 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1206 		       pmd_t *pmdp, pmd_t pmd);
1207 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1208 					unsigned long addr, pmd_t *pmd)
1209 {
1210 }
1211 
1212 extern int hash__has_transparent_hugepage(void);
1213 static inline int has_transparent_hugepage(void)
1214 {
1215 	if (radix_enabled())
1216 		return radix__has_transparent_hugepage();
1217 	return hash__has_transparent_hugepage();
1218 }
1219 #define has_transparent_hugepage has_transparent_hugepage
1220 
1221 static inline unsigned long
1222 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1223 		    unsigned long clr, unsigned long set)
1224 {
1225 	if (radix_enabled())
1226 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1227 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1228 }
1229 
1230 /*
1231  * returns true for pmd migration entries, THP, devmap, hugetlb
1232  * But compile time dependent on THP config
1233  */
1234 static inline int pmd_large(pmd_t pmd)
1235 {
1236 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1237 }
1238 
1239 /*
1240  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1241  * the below will work for radix too
1242  */
1243 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1244 					      unsigned long addr, pmd_t *pmdp)
1245 {
1246 	unsigned long old;
1247 
1248 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1249 		return 0;
1250 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1251 	return ((old & _PAGE_ACCESSED) != 0);
1252 }
1253 
1254 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1255 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1256 				      pmd_t *pmdp)
1257 {
1258 	if (__pmd_write((*pmdp)))
1259 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1260 	else if (unlikely(pmd_savedwrite(*pmdp)))
1261 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1262 }
1263 
1264 /*
1265  * Only returns true for a THP. False for pmd migration entry.
1266  * We also need to return true when we come across a pte that
1267  * in between a thp split. While splitting THP, we mark the pmd
1268  * invalid (pmdp_invalidate()) before we set it with pte page
1269  * address. A pmd_trans_huge() check against a pmd entry during that time
1270  * should return true.
1271  * We should not call this on a hugetlb entry. We should check for HugeTLB
1272  * entry using vma->vm_flags
1273  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1274  */
1275 static inline int pmd_trans_huge(pmd_t pmd)
1276 {
1277 	if (!pmd_present(pmd))
1278 		return false;
1279 
1280 	if (radix_enabled())
1281 		return radix__pmd_trans_huge(pmd);
1282 	return hash__pmd_trans_huge(pmd);
1283 }
1284 
1285 #define __HAVE_ARCH_PMD_SAME
1286 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1287 {
1288 	if (radix_enabled())
1289 		return radix__pmd_same(pmd_a, pmd_b);
1290 	return hash__pmd_same(pmd_a, pmd_b);
1291 }
1292 
1293 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1294 {
1295 	if (radix_enabled())
1296 		return radix__pmd_mkhuge(pmd);
1297 	return hash__pmd_mkhuge(pmd);
1298 }
1299 
1300 /*
1301  * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1302  */
1303 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1304 {
1305 #ifdef CONFIG_DEBUG_VM
1306 	if (radix_enabled())
1307 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1308 	else
1309 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1310 			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1311 #endif
1312 	return pmd;
1313 }
1314 
1315 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1316 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1317 				 unsigned long address, pmd_t *pmdp,
1318 				 pmd_t entry, int dirty);
1319 
1320 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1321 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1322 				     unsigned long address, pmd_t *pmdp);
1323 
1324 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1325 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1326 					    unsigned long addr, pmd_t *pmdp)
1327 {
1328 	if (radix_enabled())
1329 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1330 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1331 }
1332 
1333 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1334 					unsigned long address, pmd_t *pmdp)
1335 {
1336 	if (radix_enabled())
1337 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1338 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1339 }
1340 #define pmdp_collapse_flush pmdp_collapse_flush
1341 
1342 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1343 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1344 				   unsigned long addr,
1345 				   pmd_t *pmdp, int full);
1346 
1347 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1348 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1349 					      pmd_t *pmdp, pgtable_t pgtable)
1350 {
1351 	if (radix_enabled())
1352 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1353 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1354 }
1355 
1356 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1357 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1358 						    pmd_t *pmdp)
1359 {
1360 	if (radix_enabled())
1361 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1362 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1363 }
1364 
1365 #define __HAVE_ARCH_PMDP_INVALIDATE
1366 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1367 			     pmd_t *pmdp);
1368 
1369 #define pmd_move_must_withdraw pmd_move_must_withdraw
1370 struct spinlock;
1371 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1372 				  struct spinlock *old_pmd_ptl,
1373 				  struct vm_area_struct *vma);
1374 /*
1375  * Hash translation mode use the deposited table to store hash pte
1376  * slot information.
1377  */
1378 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1379 static inline bool arch_needs_pgtable_deposit(void)
1380 {
1381 	if (radix_enabled())
1382 		return false;
1383 	return true;
1384 }
1385 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1386 
1387 
1388 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1389 {
1390 	if (radix_enabled())
1391 		return radix__pmd_mkdevmap(pmd);
1392 	return hash__pmd_mkdevmap(pmd);
1393 }
1394 
1395 static inline int pmd_devmap(pmd_t pmd)
1396 {
1397 	return pte_devmap(pmd_pte(pmd));
1398 }
1399 
1400 static inline int pud_devmap(pud_t pud)
1401 {
1402 	return 0;
1403 }
1404 
1405 static inline int pgd_devmap(pgd_t pgd)
1406 {
1407 	return 0;
1408 }
1409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1410 
1411 static inline int pud_pfn(pud_t pud)
1412 {
1413 	/*
1414 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1415 	 * check so this should never be used. If it grows another user we
1416 	 * want to know about it.
1417 	 */
1418 	BUILD_BUG();
1419 	return 0;
1420 }
1421 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1422 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1423 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1424 			     pte_t *, pte_t, pte_t);
1425 
1426 /*
1427  * Returns true for a R -> RW upgrade of pte
1428  */
1429 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1430 {
1431 	if (!(old_val & _PAGE_READ))
1432 		return false;
1433 
1434 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1435 		return true;
1436 
1437 	return false;
1438 }
1439 
1440 /*
1441  * Like pmd_huge() and pmd_large(), but works regardless of config options
1442  */
1443 #define pmd_is_leaf pmd_is_leaf
1444 #define pmd_leaf pmd_is_leaf
1445 static inline bool pmd_is_leaf(pmd_t pmd)
1446 {
1447 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1448 }
1449 
1450 #define pud_is_leaf pud_is_leaf
1451 #define pud_leaf pud_is_leaf
1452 static inline bool pud_is_leaf(pud_t pud)
1453 {
1454 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1455 }
1456 
1457 #define p4d_is_leaf p4d_is_leaf
1458 #define p4d_leaf p4d_is_leaf
1459 static inline bool p4d_is_leaf(p4d_t p4d)
1460 {
1461 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1462 }
1463 
1464 #endif /* __ASSEMBLY__ */
1465 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1466