1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12 
13 /*
14  * Common bits between hash and Radix page table
15  */
16 #define _PAGE_BIT_SWAP_TYPE	0
17 
18 #define _PAGE_EXEC		0x00001 /* execute permission */
19 #define _PAGE_WRITE		0x00002 /* write access allowed */
20 #define _PAGE_READ		0x00004	/* read access allowed */
21 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
22 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
23 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
24 #define _PAGE_SAO		0x00010 /* Strong access order */
25 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
26 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
27 #define _PAGE_DIRTY		0x00080 /* C: page changed */
28 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
29 /*
30  * Software bits
31  */
32 #define _RPAGE_SW0		0x2000000000000000UL
33 #define _RPAGE_SW1		0x00800
34 #define _RPAGE_SW2		0x00400
35 #define _RPAGE_SW3		0x00200
36 #define _RPAGE_RSV1		0x00040UL
37 
38 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
39 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
40 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
41 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
42 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
43 
44 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
45 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
46 /*
47  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
48  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
49  * differentiate between two use a SW field when invalidating.
50  *
51  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
52  *
53  * This is used only when _PAGE_PRESENT is cleared.
54  */
55 #define _PAGE_INVALID		_RPAGE_SW0
56 
57 /*
58  * Top and bottom bits of RPN which can be used by hash
59  * translation mode, because we expect them to be zero
60  * otherwise.
61  */
62 #define _RPAGE_RPN0		0x01000
63 #define _RPAGE_RPN1		0x02000
64 #define _RPAGE_RPN43		0x0080000000000000UL
65 #define _RPAGE_RPN42		0x0040000000000000UL
66 #define _RPAGE_RPN41		0x0020000000000000UL
67 
68 /* Max physical address bit as per radix table */
69 #define _RPAGE_PA_MAX		56
70 
71 /*
72  * Max physical address bit we will use for now.
73  *
74  * This is mostly a hardware limitation and for now Power9 has
75  * a 51 bit limit.
76  *
77  * This is different from the number of physical bit required to address
78  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
79  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
80  * number of sections we can support (SECTIONS_SHIFT).
81  *
82  * This is different from Radix page table limitation above and
83  * should always be less than that. The limit is done such that
84  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
85  * for hash linux page table specific bits.
86  *
87  * In order to be compatible with future hardware generations we keep
88  * some offsets and limit this for now to 53
89  */
90 #define _PAGE_PA_MAX		53
91 
92 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
93 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
94 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
95 
96 /*
97  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
98  * Instead of fixing all of them, add an alternate define which
99  * maps CI pte mapping.
100  */
101 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
102 /*
103  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
104  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
105  * and every thing below PAGE_SHIFT;
106  */
107 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
108 /*
109  * set of bits not changed in pmd_modify. Even though we have hash specific bits
110  * in here, on radix we expect them to be zero.
111  */
112 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
113 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
114 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
115 /*
116  * user access blocked by key
117  */
118 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
119 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
120 #define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
121 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
122 				 _PAGE_RW | _PAGE_EXEC)
123 /*
124  * _PAGE_CHG_MASK masks of bits that are to be preserved across
125  * pgprot changes
126  */
127 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
128 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
129 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
130 
131 /*
132  * We define 2 sets of base prot bits, one for basic pages (ie,
133  * cacheable kernel and user pages) and one for non cacheable
134  * pages. We always set _PAGE_COHERENT when SMP is enabled or
135  * the processor might need it for DMA coherency.
136  */
137 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
138 #define _PAGE_BASE	(_PAGE_BASE_NC)
139 
140 /* Permission masks used to generate the __P and __S table,
141  *
142  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
143  *
144  * Write permissions imply read permissions for now (we could make write-only
145  * pages on BookE but we don't bother for now). Execute permission control is
146  * possible on platforms that define _PAGE_EXEC
147  */
148 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
149 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
150 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
151 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
152 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
153 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
154 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
155 
156 /* Permission masks used for kernel mappings */
157 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
158 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
159 				 _PAGE_TOLERANT)
160 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
161 				 _PAGE_NON_IDEMPOTENT)
162 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
163 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
164 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
165 
166 /*
167  * Protection used for kernel text. We want the debuggers to be able to
168  * set breakpoints anywhere, so don't write protect the kernel text
169  * on platforms where such control is possible.
170  */
171 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
172 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
173 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
174 #else
175 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
176 #endif
177 
178 /* Make modules code happy. We don't set RO yet */
179 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
180 #define PAGE_AGP		(PAGE_KERNEL_NC)
181 
182 #ifndef __ASSEMBLY__
183 /*
184  * page table defines
185  */
186 extern unsigned long __pte_index_size;
187 extern unsigned long __pmd_index_size;
188 extern unsigned long __pud_index_size;
189 extern unsigned long __pgd_index_size;
190 extern unsigned long __pud_cache_index;
191 #define PTE_INDEX_SIZE  __pte_index_size
192 #define PMD_INDEX_SIZE  __pmd_index_size
193 #define PUD_INDEX_SIZE  __pud_index_size
194 #define PGD_INDEX_SIZE  __pgd_index_size
195 /* pmd table use page table fragments */
196 #define PMD_CACHE_INDEX  0
197 #define PUD_CACHE_INDEX __pud_cache_index
198 /*
199  * Because of use of pte fragments and THP, size of page table
200  * are not always derived out of index size above.
201  */
202 extern unsigned long __pte_table_size;
203 extern unsigned long __pmd_table_size;
204 extern unsigned long __pud_table_size;
205 extern unsigned long __pgd_table_size;
206 #define PTE_TABLE_SIZE	__pte_table_size
207 #define PMD_TABLE_SIZE	__pmd_table_size
208 #define PUD_TABLE_SIZE	__pud_table_size
209 #define PGD_TABLE_SIZE	__pgd_table_size
210 
211 extern unsigned long __pmd_val_bits;
212 extern unsigned long __pud_val_bits;
213 extern unsigned long __pgd_val_bits;
214 #define PMD_VAL_BITS	__pmd_val_bits
215 #define PUD_VAL_BITS	__pud_val_bits
216 #define PGD_VAL_BITS	__pgd_val_bits
217 
218 extern unsigned long __pte_frag_nr;
219 #define PTE_FRAG_NR __pte_frag_nr
220 extern unsigned long __pte_frag_size_shift;
221 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
222 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
223 
224 extern unsigned long __pmd_frag_nr;
225 #define PMD_FRAG_NR __pmd_frag_nr
226 extern unsigned long __pmd_frag_size_shift;
227 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
228 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
229 
230 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
231 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
232 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
233 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
234 
235 /* PMD_SHIFT determines what a second-level page table entry can map */
236 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
237 #define PMD_SIZE	(1UL << PMD_SHIFT)
238 #define PMD_MASK	(~(PMD_SIZE-1))
239 
240 /* PUD_SHIFT determines what a third-level page table entry can map */
241 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
242 #define PUD_SIZE	(1UL << PUD_SHIFT)
243 #define PUD_MASK	(~(PUD_SIZE-1))
244 
245 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
246 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
247 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
248 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
249 
250 /* Bits to mask out from a PMD to get to the PTE page */
251 #define PMD_MASKED_BITS		0xc0000000000000ffUL
252 /* Bits to mask out from a PUD to get to the PMD page */
253 #define PUD_MASKED_BITS		0xc0000000000000ffUL
254 /* Bits to mask out from a PGD to get to the PUD page */
255 #define P4D_MASKED_BITS		0xc0000000000000ffUL
256 
257 /*
258  * Used as an indicator for rcu callback functions
259  */
260 enum pgtable_index {
261 	PTE_INDEX = 0,
262 	PMD_INDEX,
263 	PUD_INDEX,
264 	PGD_INDEX,
265 	/*
266 	 * Below are used with 4k page size and hugetlb
267 	 */
268 	HTLB_16M_INDEX,
269 	HTLB_16G_INDEX,
270 };
271 
272 extern unsigned long __vmalloc_start;
273 extern unsigned long __vmalloc_end;
274 #define VMALLOC_START	__vmalloc_start
275 #define VMALLOC_END	__vmalloc_end
276 
277 static inline unsigned int ioremap_max_order(void)
278 {
279 	if (radix_enabled())
280 		return PUD_SHIFT;
281 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
282 }
283 #define IOREMAP_MAX_ORDER ioremap_max_order()
284 
285 extern unsigned long __kernel_virt_start;
286 extern unsigned long __kernel_io_start;
287 extern unsigned long __kernel_io_end;
288 #define KERN_VIRT_START __kernel_virt_start
289 #define KERN_IO_START  __kernel_io_start
290 #define KERN_IO_END __kernel_io_end
291 
292 extern struct page *vmemmap;
293 extern unsigned long pci_io_base;
294 #endif /* __ASSEMBLY__ */
295 
296 #include <asm/book3s/64/hash.h>
297 #include <asm/book3s/64/radix.h>
298 
299 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
300 #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
301 #else
302 #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
303 #endif
304 
305 
306 #ifdef CONFIG_PPC_64K_PAGES
307 #include <asm/book3s/64/pgtable-64k.h>
308 #else
309 #include <asm/book3s/64/pgtable-4k.h>
310 #endif
311 
312 #include <asm/barrier.h>
313 /*
314  * IO space itself carved into the PIO region (ISA and PHB IO space) and
315  * the ioremap space
316  *
317  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
318  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
319  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
320  */
321 #define FULL_IO_SIZE	0x80000000ul
322 #define  ISA_IO_BASE	(KERN_IO_START)
323 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
324 #define  PHB_IO_BASE	(ISA_IO_END)
325 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
326 #define IOREMAP_BASE	(PHB_IO_END)
327 #define IOREMAP_START	(ioremap_bot)
328 #define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
329 #define FIXADDR_SIZE	SZ_32M
330 
331 /* Advertise special mapping type for AGP */
332 #define HAVE_PAGE_AGP
333 
334 #ifndef __ASSEMBLY__
335 
336 /*
337  * This is the default implementation of various PTE accessors, it's
338  * used in all cases except Book3S with 64K pages where we have a
339  * concept of sub-pages
340  */
341 #ifndef __real_pte
342 
343 #define __real_pte(e, p, o)		((real_pte_t){(e)})
344 #define __rpte_to_pte(r)	((r).pte)
345 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
346 
347 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
348 	do {							         \
349 		index = 0;					         \
350 		shift = mmu_psize_defs[psize].shift;		         \
351 
352 #define pte_iterate_hashed_end() } while(0)
353 
354 /*
355  * We expect this to be called only for user addresses or kernel virtual
356  * addresses other than the linear mapping.
357  */
358 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
359 
360 #endif /* __real_pte */
361 
362 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
363 				       pte_t *ptep, unsigned long clr,
364 				       unsigned long set, int huge)
365 {
366 	if (radix_enabled())
367 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
368 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
369 }
370 /*
371  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
372  * We currently remove entries from the hashtable regardless of whether
373  * the entry was young or dirty.
374  *
375  * We should be more intelligent about this but for the moment we override
376  * these functions and force a tlb flush unconditionally
377  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
378  * function for both hash and radix.
379  */
380 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
381 					      unsigned long addr, pte_t *ptep)
382 {
383 	unsigned long old;
384 
385 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
386 		return 0;
387 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
388 	return (old & _PAGE_ACCESSED) != 0;
389 }
390 
391 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
392 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
393 ({								\
394 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
395 })
396 
397 /*
398  * On Book3S CPUs, clearing the accessed bit without a TLB flush
399  * doesn't cause data corruption. [ It could cause incorrect
400  * page aging and the (mistaken) reclaim of hot pages, but the
401  * chance of that should be relatively low. ]
402  *
403  * So as a performance optimization don't flush the TLB when
404  * clearing the accessed bit, it will eventually be flushed by
405  * a context switch or a VM operation anyway. [ In the rare
406  * event of it not getting flushed for a long time the delay
407  * shouldn't really matter because there's no real memory
408  * pressure for swapout to react to. ]
409  */
410 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
411 #define ptep_clear_flush_young ptep_test_and_clear_young
412 
413 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
414 #define pmdp_clear_flush_young pmdp_test_and_clear_young
415 
416 static inline int __pte_write(pte_t pte)
417 {
418 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
419 }
420 
421 #ifdef CONFIG_NUMA_BALANCING
422 #define pte_savedwrite pte_savedwrite
423 static inline bool pte_savedwrite(pte_t pte)
424 {
425 	/*
426 	 * Saved write ptes are prot none ptes that doesn't have
427 	 * privileged bit sit. We mark prot none as one which has
428 	 * present and pviliged bit set and RWX cleared. To mark
429 	 * protnone which used to have _PAGE_WRITE set we clear
430 	 * the privileged bit.
431 	 */
432 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
433 }
434 #else
435 #define pte_savedwrite pte_savedwrite
436 static inline bool pte_savedwrite(pte_t pte)
437 {
438 	return false;
439 }
440 #endif
441 
442 static inline int pte_write(pte_t pte)
443 {
444 	return __pte_write(pte) || pte_savedwrite(pte);
445 }
446 
447 static inline int pte_read(pte_t pte)
448 {
449 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
450 }
451 
452 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
453 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
454 				      pte_t *ptep)
455 {
456 	if (__pte_write(*ptep))
457 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
458 	else if (unlikely(pte_savedwrite(*ptep)))
459 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
460 }
461 
462 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
463 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
464 					   unsigned long addr, pte_t *ptep)
465 {
466 	/*
467 	 * We should not find protnone for hugetlb, but this complete the
468 	 * interface.
469 	 */
470 	if (__pte_write(*ptep))
471 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
472 	else if (unlikely(pte_savedwrite(*ptep)))
473 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
474 }
475 
476 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
477 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
478 				       unsigned long addr, pte_t *ptep)
479 {
480 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
481 	return __pte(old);
482 }
483 
484 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
485 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
486 					    unsigned long addr,
487 					    pte_t *ptep, int full)
488 {
489 	if (full && radix_enabled()) {
490 		/*
491 		 * We know that this is a full mm pte clear and
492 		 * hence can be sure there is no parallel set_pte.
493 		 */
494 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
495 	}
496 	return ptep_get_and_clear(mm, addr, ptep);
497 }
498 
499 
500 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
501 			     pte_t * ptep)
502 {
503 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
504 }
505 
506 static inline int pte_dirty(pte_t pte)
507 {
508 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
509 }
510 
511 static inline int pte_young(pte_t pte)
512 {
513 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
514 }
515 
516 static inline int pte_special(pte_t pte)
517 {
518 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
519 }
520 
521 static inline bool pte_exec(pte_t pte)
522 {
523 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
524 }
525 
526 
527 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
528 static inline bool pte_soft_dirty(pte_t pte)
529 {
530 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
531 }
532 
533 static inline pte_t pte_mksoft_dirty(pte_t pte)
534 {
535 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
536 }
537 
538 static inline pte_t pte_clear_soft_dirty(pte_t pte)
539 {
540 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
541 }
542 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
543 
544 #ifdef CONFIG_NUMA_BALANCING
545 static inline int pte_protnone(pte_t pte)
546 {
547 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
548 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
549 }
550 
551 #define pte_mk_savedwrite pte_mk_savedwrite
552 static inline pte_t pte_mk_savedwrite(pte_t pte)
553 {
554 	/*
555 	 * Used by Autonuma subsystem to preserve the write bit
556 	 * while marking the pte PROT_NONE. Only allow this
557 	 * on PROT_NONE pte
558 	 */
559 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
560 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
561 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
562 }
563 
564 #define pte_clear_savedwrite pte_clear_savedwrite
565 static inline pte_t pte_clear_savedwrite(pte_t pte)
566 {
567 	/*
568 	 * Used by KSM subsystem to make a protnone pte readonly.
569 	 */
570 	VM_BUG_ON(!pte_protnone(pte));
571 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
572 }
573 #else
574 #define pte_clear_savedwrite pte_clear_savedwrite
575 static inline pte_t pte_clear_savedwrite(pte_t pte)
576 {
577 	VM_WARN_ON(1);
578 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
579 }
580 #endif /* CONFIG_NUMA_BALANCING */
581 
582 static inline bool pte_hw_valid(pte_t pte)
583 {
584 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
585 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
586 }
587 
588 static inline int pte_present(pte_t pte)
589 {
590 	/*
591 	 * A pte is considerent present if _PAGE_PRESENT is set.
592 	 * We also need to consider the pte present which is marked
593 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
594 	 * if we find _PAGE_PRESENT cleared.
595 	 */
596 
597 	if (pte_hw_valid(pte))
598 		return true;
599 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
600 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
601 }
602 
603 #ifdef CONFIG_PPC_MEM_KEYS
604 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
605 #else
606 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
607 {
608 	return true;
609 }
610 #endif /* CONFIG_PPC_MEM_KEYS */
611 
612 static inline bool pte_user(pte_t pte)
613 {
614 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
615 }
616 
617 #define pte_access_permitted pte_access_permitted
618 static inline bool pte_access_permitted(pte_t pte, bool write)
619 {
620 	/*
621 	 * _PAGE_READ is needed for any access and will be
622 	 * cleared for PROT_NONE
623 	 */
624 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
625 		return false;
626 
627 	if (write && !pte_write(pte))
628 		return false;
629 
630 	return arch_pte_access_permitted(pte_val(pte), write, 0);
631 }
632 
633 /*
634  * Conversion functions: convert a page and protection to a page entry,
635  * and a page entry and page directory to the page they refer to.
636  *
637  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
638  * long for now.
639  */
640 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
641 {
642 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
643 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
644 
645 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
646 }
647 
648 static inline unsigned long pte_pfn(pte_t pte)
649 {
650 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
651 }
652 
653 /* Generic modifiers for PTE bits */
654 static inline pte_t pte_wrprotect(pte_t pte)
655 {
656 	if (unlikely(pte_savedwrite(pte)))
657 		return pte_clear_savedwrite(pte);
658 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
659 }
660 
661 static inline pte_t pte_exprotect(pte_t pte)
662 {
663 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
664 }
665 
666 static inline pte_t pte_mkclean(pte_t pte)
667 {
668 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
669 }
670 
671 static inline pte_t pte_mkold(pte_t pte)
672 {
673 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
674 }
675 
676 static inline pte_t pte_mkexec(pte_t pte)
677 {
678 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
679 }
680 
681 static inline pte_t pte_mkwrite(pte_t pte)
682 {
683 	/*
684 	 * write implies read, hence set both
685 	 */
686 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
687 }
688 
689 static inline pte_t pte_mkdirty(pte_t pte)
690 {
691 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
692 }
693 
694 static inline pte_t pte_mkyoung(pte_t pte)
695 {
696 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
697 }
698 
699 static inline pte_t pte_mkspecial(pte_t pte)
700 {
701 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
702 }
703 
704 static inline pte_t pte_mkhuge(pte_t pte)
705 {
706 	return pte;
707 }
708 
709 static inline pte_t pte_mkdevmap(pte_t pte)
710 {
711 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
712 }
713 
714 static inline pte_t pte_mkprivileged(pte_t pte)
715 {
716 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
717 }
718 
719 static inline pte_t pte_mkuser(pte_t pte)
720 {
721 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
722 }
723 
724 /*
725  * This is potentially called with a pmd as the argument, in which case it's not
726  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
727  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
728  * use in page directory entries (ie. non-ptes).
729  */
730 static inline int pte_devmap(pte_t pte)
731 {
732 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
733 
734 	return (pte_raw(pte) & mask) == mask;
735 }
736 
737 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
738 {
739 	/* FIXME!! check whether this need to be a conditional */
740 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
741 			 cpu_to_be64(pgprot_val(newprot)));
742 }
743 
744 /* Encode and de-code a swap entry */
745 #define MAX_SWAPFILES_CHECK() do { \
746 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
747 	/*							\
748 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
749 	 * We filter HPTEFLAGS on set_pte.			\
750 	 */							\
751 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
752 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
753 	} while (0)
754 
755 #define SWP_TYPE_BITS 5
756 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
757 				& ((1UL << SWP_TYPE_BITS) - 1))
758 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
759 #define __swp_entry(type, offset)	((swp_entry_t) { \
760 				((type) << _PAGE_BIT_SWAP_TYPE) \
761 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
762 /*
763  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
764  * swap type and offset we get from swap and convert that to pte to find a
765  * matching pte in linux page table.
766  * Clear bits not found in swap entries here.
767  */
768 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
769 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
770 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
771 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
772 
773 #ifdef CONFIG_MEM_SOFT_DIRTY
774 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
775 #else
776 #define _PAGE_SWP_SOFT_DIRTY	0UL
777 #endif /* CONFIG_MEM_SOFT_DIRTY */
778 
779 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
780 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
781 {
782 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
783 }
784 
785 static inline bool pte_swp_soft_dirty(pte_t pte)
786 {
787 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
788 }
789 
790 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
791 {
792 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
793 }
794 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
795 
796 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
797 {
798 	/*
799 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
800 	 */
801 	if (access & ~ptev)
802 		return false;
803 	/*
804 	 * This check for access to privilege space
805 	 */
806 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
807 		return false;
808 
809 	return true;
810 }
811 /*
812  * Generic functions with hash/radix callbacks
813  */
814 
815 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
816 					   pte_t *ptep, pte_t entry,
817 					   unsigned long address,
818 					   int psize)
819 {
820 	if (radix_enabled())
821 		return radix__ptep_set_access_flags(vma, ptep, entry,
822 						    address, psize);
823 	return hash__ptep_set_access_flags(ptep, entry);
824 }
825 
826 #define __HAVE_ARCH_PTE_SAME
827 static inline int pte_same(pte_t pte_a, pte_t pte_b)
828 {
829 	if (radix_enabled())
830 		return radix__pte_same(pte_a, pte_b);
831 	return hash__pte_same(pte_a, pte_b);
832 }
833 
834 static inline int pte_none(pte_t pte)
835 {
836 	if (radix_enabled())
837 		return radix__pte_none(pte);
838 	return hash__pte_none(pte);
839 }
840 
841 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
842 				pte_t *ptep, pte_t pte, int percpu)
843 {
844 
845 	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
846 	/*
847 	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
848 	 * in all the callers.
849 	 */
850 	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
851 
852 	if (radix_enabled())
853 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
854 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
855 }
856 
857 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
858 
859 #define pgprot_noncached pgprot_noncached
860 static inline pgprot_t pgprot_noncached(pgprot_t prot)
861 {
862 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
863 			_PAGE_NON_IDEMPOTENT);
864 }
865 
866 #define pgprot_noncached_wc pgprot_noncached_wc
867 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
868 {
869 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
870 			_PAGE_TOLERANT);
871 }
872 
873 #define pgprot_cached pgprot_cached
874 static inline pgprot_t pgprot_cached(pgprot_t prot)
875 {
876 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
877 }
878 
879 #define pgprot_writecombine pgprot_writecombine
880 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
881 {
882 	return pgprot_noncached_wc(prot);
883 }
884 /*
885  * check a pte mapping have cache inhibited property
886  */
887 static inline bool pte_ci(pte_t pte)
888 {
889 	__be64 pte_v = pte_raw(pte);
890 
891 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
892 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
893 		return true;
894 	return false;
895 }
896 
897 static inline void pmd_clear(pmd_t *pmdp)
898 {
899 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
900 		/*
901 		 * Don't use this if we can possibly have a hash page table
902 		 * entry mapping this.
903 		 */
904 		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
905 	}
906 	*pmdp = __pmd(0);
907 }
908 
909 static inline int pmd_none(pmd_t pmd)
910 {
911 	return !pmd_raw(pmd);
912 }
913 
914 static inline int pmd_present(pmd_t pmd)
915 {
916 	/*
917 	 * A pmd is considerent present if _PAGE_PRESENT is set.
918 	 * We also need to consider the pmd present which is marked
919 	 * invalid during a split. Hence we look for _PAGE_INVALID
920 	 * if we find _PAGE_PRESENT cleared.
921 	 */
922 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
923 		return true;
924 
925 	return false;
926 }
927 
928 static inline int pmd_is_serializing(pmd_t pmd)
929 {
930 	/*
931 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
932 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
933 	 *
934 	 * This condition may also occur when flushing a pmd while flushing
935 	 * it (see ptep_modify_prot_start), so callers must ensure this
936 	 * case is fine as well.
937 	 */
938 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
939 						cpu_to_be64(_PAGE_INVALID))
940 		return true;
941 
942 	return false;
943 }
944 
945 static inline int pmd_bad(pmd_t pmd)
946 {
947 	if (radix_enabled())
948 		return radix__pmd_bad(pmd);
949 	return hash__pmd_bad(pmd);
950 }
951 
952 static inline void pud_clear(pud_t *pudp)
953 {
954 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
955 		/*
956 		 * Don't use this if we can possibly have a hash page table
957 		 * entry mapping this.
958 		 */
959 		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
960 	}
961 	*pudp = __pud(0);
962 }
963 
964 static inline int pud_none(pud_t pud)
965 {
966 	return !pud_raw(pud);
967 }
968 
969 static inline int pud_present(pud_t pud)
970 {
971 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
972 }
973 
974 extern struct page *pud_page(pud_t pud);
975 extern struct page *pmd_page(pmd_t pmd);
976 static inline pte_t pud_pte(pud_t pud)
977 {
978 	return __pte_raw(pud_raw(pud));
979 }
980 
981 static inline pud_t pte_pud(pte_t pte)
982 {
983 	return __pud_raw(pte_raw(pte));
984 }
985 #define pud_write(pud)		pte_write(pud_pte(pud))
986 
987 static inline int pud_bad(pud_t pud)
988 {
989 	if (radix_enabled())
990 		return radix__pud_bad(pud);
991 	return hash__pud_bad(pud);
992 }
993 
994 #define pud_access_permitted pud_access_permitted
995 static inline bool pud_access_permitted(pud_t pud, bool write)
996 {
997 	return pte_access_permitted(pud_pte(pud), write);
998 }
999 
1000 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
1001 static inline __be64 p4d_raw(p4d_t x)
1002 {
1003 	return pgd_raw(x.pgd);
1004 }
1005 
1006 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
1007 
1008 static inline void p4d_clear(p4d_t *p4dp)
1009 {
1010 	*p4dp = __p4d(0);
1011 }
1012 
1013 static inline int p4d_none(p4d_t p4d)
1014 {
1015 	return !p4d_raw(p4d);
1016 }
1017 
1018 static inline int p4d_present(p4d_t p4d)
1019 {
1020 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1021 }
1022 
1023 static inline pte_t p4d_pte(p4d_t p4d)
1024 {
1025 	return __pte_raw(p4d_raw(p4d));
1026 }
1027 
1028 static inline p4d_t pte_p4d(pte_t pte)
1029 {
1030 	return __p4d_raw(pte_raw(pte));
1031 }
1032 
1033 static inline int p4d_bad(p4d_t p4d)
1034 {
1035 	if (radix_enabled())
1036 		return radix__p4d_bad(p4d);
1037 	return hash__p4d_bad(p4d);
1038 }
1039 
1040 #define p4d_access_permitted p4d_access_permitted
1041 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1042 {
1043 	return pte_access_permitted(p4d_pte(p4d), write);
1044 }
1045 
1046 extern struct page *p4d_page(p4d_t p4d);
1047 
1048 /* Pointers in the page table tree are physical addresses */
1049 #define __pgtable_ptr_val(ptr)	__pa(ptr)
1050 
1051 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
1052 #define p4d_page_vaddr(p4d)	__va(p4d_val(p4d) & ~P4D_MASKED_BITS)
1053 
1054 #define pte_ERROR(e) \
1055 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1056 #define pmd_ERROR(e) \
1057 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1058 #define pud_ERROR(e) \
1059 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1060 #define pgd_ERROR(e) \
1061 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1062 
1063 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1064 {
1065 	if (radix_enabled()) {
1066 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1067 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1068 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1069 #endif
1070 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1071 	}
1072 	return hash__map_kernel_page(ea, pa, prot);
1073 }
1074 
1075 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1076 						   unsigned long page_size,
1077 						   unsigned long phys)
1078 {
1079 	if (radix_enabled())
1080 		return radix__vmemmap_create_mapping(start, page_size, phys);
1081 	return hash__vmemmap_create_mapping(start, page_size, phys);
1082 }
1083 
1084 #ifdef CONFIG_MEMORY_HOTPLUG
1085 static inline void vmemmap_remove_mapping(unsigned long start,
1086 					  unsigned long page_size)
1087 {
1088 	if (radix_enabled())
1089 		return radix__vmemmap_remove_mapping(start, page_size);
1090 	return hash__vmemmap_remove_mapping(start, page_size);
1091 }
1092 #endif
1093 
1094 static inline pte_t pmd_pte(pmd_t pmd)
1095 {
1096 	return __pte_raw(pmd_raw(pmd));
1097 }
1098 
1099 static inline pmd_t pte_pmd(pte_t pte)
1100 {
1101 	return __pmd_raw(pte_raw(pte));
1102 }
1103 
1104 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1105 {
1106 	return (pte_t *)pmd;
1107 }
1108 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1109 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1110 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1111 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1112 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1113 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1114 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1115 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1116 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1117 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1118 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1119 
1120 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1121 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1122 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1123 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1124 
1125 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1126 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1127 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1128 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1129 #endif
1130 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1131 
1132 #ifdef CONFIG_NUMA_BALANCING
1133 static inline int pmd_protnone(pmd_t pmd)
1134 {
1135 	return pte_protnone(pmd_pte(pmd));
1136 }
1137 #endif /* CONFIG_NUMA_BALANCING */
1138 
1139 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1140 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1141 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1142 
1143 #define pmd_access_permitted pmd_access_permitted
1144 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1145 {
1146 	/*
1147 	 * pmdp_invalidate sets this combination (which is not caught by
1148 	 * !pte_present() check in pte_access_permitted), to prevent
1149 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1150 	 * synchronisation.
1151 	 *
1152 	 * This also catches the case where the PTE's hardware PRESENT bit is
1153 	 * cleared while TLB is flushed, which is suboptimal but should not
1154 	 * be frequent.
1155 	 */
1156 	if (pmd_is_serializing(pmd))
1157 		return false;
1158 
1159 	return pte_access_permitted(pmd_pte(pmd), write);
1160 }
1161 
1162 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1163 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1164 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1165 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1166 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1167 		       pmd_t *pmdp, pmd_t pmd);
1168 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1169 					unsigned long addr, pmd_t *pmd)
1170 {
1171 }
1172 
1173 extern int hash__has_transparent_hugepage(void);
1174 static inline int has_transparent_hugepage(void)
1175 {
1176 	if (radix_enabled())
1177 		return radix__has_transparent_hugepage();
1178 	return hash__has_transparent_hugepage();
1179 }
1180 #define has_transparent_hugepage has_transparent_hugepage
1181 
1182 static inline unsigned long
1183 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1184 		    unsigned long clr, unsigned long set)
1185 {
1186 	if (radix_enabled())
1187 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1188 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1189 }
1190 
1191 /*
1192  * returns true for pmd migration entries, THP, devmap, hugetlb
1193  * But compile time dependent on THP config
1194  */
1195 static inline int pmd_large(pmd_t pmd)
1196 {
1197 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1198 }
1199 
1200 /*
1201  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1202  * the below will work for radix too
1203  */
1204 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1205 					      unsigned long addr, pmd_t *pmdp)
1206 {
1207 	unsigned long old;
1208 
1209 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1210 		return 0;
1211 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1212 	return ((old & _PAGE_ACCESSED) != 0);
1213 }
1214 
1215 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1216 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1217 				      pmd_t *pmdp)
1218 {
1219 	if (__pmd_write((*pmdp)))
1220 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1221 	else if (unlikely(pmd_savedwrite(*pmdp)))
1222 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1223 }
1224 
1225 /*
1226  * Only returns true for a THP. False for pmd migration entry.
1227  * We also need to return true when we come across a pte that
1228  * in between a thp split. While splitting THP, we mark the pmd
1229  * invalid (pmdp_invalidate()) before we set it with pte page
1230  * address. A pmd_trans_huge() check against a pmd entry during that time
1231  * should return true.
1232  * We should not call this on a hugetlb entry. We should check for HugeTLB
1233  * entry using vma->vm_flags
1234  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1235  */
1236 static inline int pmd_trans_huge(pmd_t pmd)
1237 {
1238 	if (!pmd_present(pmd))
1239 		return false;
1240 
1241 	if (radix_enabled())
1242 		return radix__pmd_trans_huge(pmd);
1243 	return hash__pmd_trans_huge(pmd);
1244 }
1245 
1246 #define __HAVE_ARCH_PMD_SAME
1247 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1248 {
1249 	if (radix_enabled())
1250 		return radix__pmd_same(pmd_a, pmd_b);
1251 	return hash__pmd_same(pmd_a, pmd_b);
1252 }
1253 
1254 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1255 {
1256 	if (radix_enabled())
1257 		return radix__pmd_mkhuge(pmd);
1258 	return hash__pmd_mkhuge(pmd);
1259 }
1260 
1261 /*
1262  * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1263  */
1264 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1265 {
1266 #ifdef CONFIG_DEBUG_VM
1267 	if (radix_enabled())
1268 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1269 	else
1270 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1271 			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1272 #endif
1273 	return pmd;
1274 }
1275 
1276 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1277 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1278 				 unsigned long address, pmd_t *pmdp,
1279 				 pmd_t entry, int dirty);
1280 
1281 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1282 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1283 				     unsigned long address, pmd_t *pmdp);
1284 
1285 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1286 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1287 					    unsigned long addr, pmd_t *pmdp)
1288 {
1289 	if (radix_enabled())
1290 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1291 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1292 }
1293 
1294 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1295 					unsigned long address, pmd_t *pmdp)
1296 {
1297 	if (radix_enabled())
1298 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1299 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1300 }
1301 #define pmdp_collapse_flush pmdp_collapse_flush
1302 
1303 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1304 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1305 				   unsigned long addr,
1306 				   pmd_t *pmdp, int full);
1307 
1308 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1309 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1310 					      pmd_t *pmdp, pgtable_t pgtable)
1311 {
1312 	if (radix_enabled())
1313 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1314 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1315 }
1316 
1317 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1318 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1319 						    pmd_t *pmdp)
1320 {
1321 	if (radix_enabled())
1322 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1323 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1324 }
1325 
1326 #define __HAVE_ARCH_PMDP_INVALIDATE
1327 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1328 			     pmd_t *pmdp);
1329 
1330 #define pmd_move_must_withdraw pmd_move_must_withdraw
1331 struct spinlock;
1332 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1333 				  struct spinlock *old_pmd_ptl,
1334 				  struct vm_area_struct *vma);
1335 /*
1336  * Hash translation mode use the deposited table to store hash pte
1337  * slot information.
1338  */
1339 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1340 static inline bool arch_needs_pgtable_deposit(void)
1341 {
1342 	if (radix_enabled())
1343 		return false;
1344 	return true;
1345 }
1346 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1347 
1348 
1349 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1350 {
1351 	if (radix_enabled())
1352 		return radix__pmd_mkdevmap(pmd);
1353 	return hash__pmd_mkdevmap(pmd);
1354 }
1355 
1356 static inline int pmd_devmap(pmd_t pmd)
1357 {
1358 	return pte_devmap(pmd_pte(pmd));
1359 }
1360 
1361 static inline int pud_devmap(pud_t pud)
1362 {
1363 	return 0;
1364 }
1365 
1366 static inline int pgd_devmap(pgd_t pgd)
1367 {
1368 	return 0;
1369 }
1370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1371 
1372 static inline int pud_pfn(pud_t pud)
1373 {
1374 	/*
1375 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1376 	 * check so this should never be used. If it grows another user we
1377 	 * want to know about it.
1378 	 */
1379 	BUILD_BUG();
1380 	return 0;
1381 }
1382 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1383 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1384 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1385 			     pte_t *, pte_t, pte_t);
1386 
1387 /*
1388  * Returns true for a R -> RW upgrade of pte
1389  */
1390 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1391 {
1392 	if (!(old_val & _PAGE_READ))
1393 		return false;
1394 
1395 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1396 		return true;
1397 
1398 	return false;
1399 }
1400 
1401 /*
1402  * Like pmd_huge() and pmd_large(), but works regardless of config options
1403  */
1404 #define pmd_is_leaf pmd_is_leaf
1405 #define pmd_leaf pmd_is_leaf
1406 static inline bool pmd_is_leaf(pmd_t pmd)
1407 {
1408 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1409 }
1410 
1411 #define pud_is_leaf pud_is_leaf
1412 #define pud_leaf pud_is_leaf
1413 static inline bool pud_is_leaf(pud_t pud)
1414 {
1415 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1416 }
1417 
1418 #define p4d_is_leaf p4d_is_leaf
1419 #define p4d_leaf p4d_is_leaf
1420 static inline bool p4d_is_leaf(p4d_t p4d)
1421 {
1422 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1423 }
1424 
1425 #endif /* __ASSEMBLY__ */
1426 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1427