1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 4 5 #include <asm-generic/5level-fixup.h> 6 7 #ifndef __ASSEMBLY__ 8 #include <linux/mmdebug.h> 9 #include <linux/bug.h> 10 #endif 11 12 /* 13 * Common bits between hash and Radix page table 14 */ 15 #define _PAGE_BIT_SWAP_TYPE 0 16 17 #define _PAGE_EXEC 0x00001 /* execute permission */ 18 #define _PAGE_WRITE 0x00002 /* write access allowed */ 19 #define _PAGE_READ 0x00004 /* read access allowed */ 20 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 21 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) 22 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */ 23 #define _PAGE_SAO 0x00010 /* Strong access order */ 24 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */ 25 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */ 26 #define _PAGE_DIRTY 0x00080 /* C: page changed */ 27 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */ 28 /* 29 * Software bits 30 */ 31 #define _RPAGE_SW0 0x2000000000000000UL 32 #define _RPAGE_SW1 0x00800 33 #define _RPAGE_SW2 0x00400 34 #define _RPAGE_SW3 0x00200 35 #define _RPAGE_RSV1 0x1000000000000000UL 36 #define _RPAGE_RSV2 0x0800000000000000UL 37 #define _RPAGE_RSV3 0x0400000000000000UL 38 #define _RPAGE_RSV4 0x0200000000000000UL 39 #define _RPAGE_RSV5 0x00040UL 40 41 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */ 42 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */ 43 /* 44 * We need to mark a pmd pte invalid while splitting. We can do that by clearing 45 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to 46 * differentiate between two use a SW field when invalidating. 47 * 48 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags 49 * 50 * This is used only when _PAGE_PRESENT is cleared. 51 */ 52 #define _PAGE_INVALID _RPAGE_SW0 53 54 /* 55 * Top and bottom bits of RPN which can be used by hash 56 * translation mode, because we expect them to be zero 57 * otherwise. 58 */ 59 #define _RPAGE_RPN0 0x01000 60 #define _RPAGE_RPN1 0x02000 61 #define _RPAGE_RPN44 0x0100000000000000UL 62 #define _RPAGE_RPN43 0x0080000000000000UL 63 #define _RPAGE_RPN42 0x0040000000000000UL 64 #define _RPAGE_RPN41 0x0020000000000000UL 65 66 /* Max physical address bit as per radix table */ 67 #define _RPAGE_PA_MAX 57 68 69 /* 70 * Max physical address bit we will use for now. 71 * 72 * This is mostly a hardware limitation and for now Power9 has 73 * a 51 bit limit. 74 * 75 * This is different from the number of physical bit required to address 76 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS. 77 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum 78 * number of sections we can support (SECTIONS_SHIFT). 79 * 80 * This is different from Radix page table limitation above and 81 * should always be less than that. The limit is done such that 82 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX 83 * for hash linux page table specific bits. 84 * 85 * In order to be compatible with future hardware generations we keep 86 * some offsets and limit this for now to 53 87 */ 88 #define _PAGE_PA_MAX 53 89 90 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */ 91 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */ 92 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */ 93 #define __HAVE_ARCH_PTE_DEVMAP 94 95 /* 96 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE 97 * Instead of fixing all of them, add an alternate define which 98 * maps CI pte mapping. 99 */ 100 #define _PAGE_NO_CACHE _PAGE_TOLERANT 101 /* 102 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side 103 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX 104 * and every thing below PAGE_SHIFT; 105 */ 106 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK)) 107 /* 108 * set of bits not changed in pmd_modify. Even though we have hash specific bits 109 * in here, on radix we expect them to be zero. 110 */ 111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 112 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \ 113 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) 114 /* 115 * user access blocked by key 116 */ 117 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY) 118 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ) 119 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \ 120 _PAGE_RW | _PAGE_EXEC) 121 /* 122 * _PAGE_CHG_MASK masks of bits that are to be preserved across 123 * pgprot changes 124 */ 125 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 126 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \ 127 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) 128 129 #define H_PTE_PKEY (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \ 130 H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4) 131 /* 132 * We define 2 sets of base prot bits, one for basic pages (ie, 133 * cacheable kernel and user pages) and one for non cacheable 134 * pages. We always set _PAGE_COHERENT when SMP is enabled or 135 * the processor might need it for DMA coherency. 136 */ 137 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) 138 #define _PAGE_BASE (_PAGE_BASE_NC) 139 140 /* Permission masks used to generate the __P and __S table, 141 * 142 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h 143 * 144 * Write permissions imply read permissions for now (we could make write-only 145 * pages on BookE but we don't bother for now). Execute permission control is 146 * possible on platforms that define _PAGE_EXEC 147 */ 148 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED) 149 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW) 150 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC) 151 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ) 152 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 153 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ) 154 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 155 156 /* Permission masks used for kernel mappings */ 157 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 158 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 159 _PAGE_TOLERANT) 160 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 161 _PAGE_NON_IDEMPOTENT) 162 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 163 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 164 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 165 166 /* 167 * Protection used for kernel text. We want the debuggers to be able to 168 * set breakpoints anywhere, so don't write protect the kernel text 169 * on platforms where such control is possible. 170 */ 171 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \ 172 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) 173 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X 174 #else 175 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX 176 #endif 177 178 /* Make modules code happy. We don't set RO yet */ 179 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X 180 #define PAGE_AGP (PAGE_KERNEL_NC) 181 182 #ifndef __ASSEMBLY__ 183 /* 184 * page table defines 185 */ 186 extern unsigned long __pte_index_size; 187 extern unsigned long __pmd_index_size; 188 extern unsigned long __pud_index_size; 189 extern unsigned long __pgd_index_size; 190 extern unsigned long __pud_cache_index; 191 #define PTE_INDEX_SIZE __pte_index_size 192 #define PMD_INDEX_SIZE __pmd_index_size 193 #define PUD_INDEX_SIZE __pud_index_size 194 #define PGD_INDEX_SIZE __pgd_index_size 195 /* pmd table use page table fragments */ 196 #define PMD_CACHE_INDEX 0 197 #define PUD_CACHE_INDEX __pud_cache_index 198 /* 199 * Because of use of pte fragments and THP, size of page table 200 * are not always derived out of index size above. 201 */ 202 extern unsigned long __pte_table_size; 203 extern unsigned long __pmd_table_size; 204 extern unsigned long __pud_table_size; 205 extern unsigned long __pgd_table_size; 206 #define PTE_TABLE_SIZE __pte_table_size 207 #define PMD_TABLE_SIZE __pmd_table_size 208 #define PUD_TABLE_SIZE __pud_table_size 209 #define PGD_TABLE_SIZE __pgd_table_size 210 211 extern unsigned long __pmd_val_bits; 212 extern unsigned long __pud_val_bits; 213 extern unsigned long __pgd_val_bits; 214 #define PMD_VAL_BITS __pmd_val_bits 215 #define PUD_VAL_BITS __pud_val_bits 216 #define PGD_VAL_BITS __pgd_val_bits 217 218 extern unsigned long __pte_frag_nr; 219 #define PTE_FRAG_NR __pte_frag_nr 220 extern unsigned long __pte_frag_size_shift; 221 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift 222 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) 223 224 extern unsigned long __pmd_frag_nr; 225 #define PMD_FRAG_NR __pmd_frag_nr 226 extern unsigned long __pmd_frag_size_shift; 227 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift 228 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT) 229 230 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 231 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) 232 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE) 233 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 234 235 /* PMD_SHIFT determines what a second-level page table entry can map */ 236 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 237 #define PMD_SIZE (1UL << PMD_SHIFT) 238 #define PMD_MASK (~(PMD_SIZE-1)) 239 240 /* PUD_SHIFT determines what a third-level page table entry can map */ 241 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) 242 #define PUD_SIZE (1UL << PUD_SHIFT) 243 #define PUD_MASK (~(PUD_SIZE-1)) 244 245 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ 246 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE) 247 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 248 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 249 250 /* Bits to mask out from a PMD to get to the PTE page */ 251 #define PMD_MASKED_BITS 0xc0000000000000ffUL 252 /* Bits to mask out from a PUD to get to the PMD page */ 253 #define PUD_MASKED_BITS 0xc0000000000000ffUL 254 /* Bits to mask out from a PGD to get to the PUD page */ 255 #define PGD_MASKED_BITS 0xc0000000000000ffUL 256 257 /* 258 * Used as an indicator for rcu callback functions 259 */ 260 enum pgtable_index { 261 PTE_INDEX = 0, 262 PMD_INDEX, 263 PUD_INDEX, 264 PGD_INDEX, 265 /* 266 * Below are used with 4k page size and hugetlb 267 */ 268 HTLB_16M_INDEX, 269 HTLB_16G_INDEX, 270 }; 271 272 extern unsigned long __vmalloc_start; 273 extern unsigned long __vmalloc_end; 274 #define VMALLOC_START __vmalloc_start 275 #define VMALLOC_END __vmalloc_end 276 277 extern unsigned long __kernel_virt_start; 278 extern unsigned long __kernel_virt_size; 279 extern unsigned long __kernel_io_start; 280 extern unsigned long __kernel_io_end; 281 #define KERN_VIRT_START __kernel_virt_start 282 #define KERN_IO_START __kernel_io_start 283 #define KERN_IO_END __kernel_io_end 284 285 extern struct page *vmemmap; 286 extern unsigned long ioremap_bot; 287 extern unsigned long pci_io_base; 288 #endif /* __ASSEMBLY__ */ 289 290 #include <asm/book3s/64/hash.h> 291 #include <asm/book3s/64/radix.h> 292 293 #ifdef CONFIG_PPC_64K_PAGES 294 #include <asm/book3s/64/pgtable-64k.h> 295 #else 296 #include <asm/book3s/64/pgtable-4k.h> 297 #endif 298 299 #include <asm/barrier.h> 300 /* 301 * IO space itself carved into the PIO region (ISA and PHB IO space) and 302 * the ioremap space 303 * 304 * ISA_IO_BASE = KERN_IO_START, 64K reserved area 305 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces 306 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE 307 */ 308 #define FULL_IO_SIZE 0x80000000ul 309 #define ISA_IO_BASE (KERN_IO_START) 310 #define ISA_IO_END (KERN_IO_START + 0x10000ul) 311 #define PHB_IO_BASE (ISA_IO_END) 312 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) 313 #define IOREMAP_BASE (PHB_IO_END) 314 #define IOREMAP_END (KERN_IO_END) 315 316 /* Advertise special mapping type for AGP */ 317 #define HAVE_PAGE_AGP 318 319 #ifndef __ASSEMBLY__ 320 321 /* 322 * This is the default implementation of various PTE accessors, it's 323 * used in all cases except Book3S with 64K pages where we have a 324 * concept of sub-pages 325 */ 326 #ifndef __real_pte 327 328 #define __real_pte(e, p, o) ((real_pte_t){(e)}) 329 #define __rpte_to_pte(r) ((r).pte) 330 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) 331 332 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ 333 do { \ 334 index = 0; \ 335 shift = mmu_psize_defs[psize].shift; \ 336 337 #define pte_iterate_hashed_end() } while(0) 338 339 /* 340 * We expect this to be called only for user addresses or kernel virtual 341 * addresses other than the linear mapping. 342 */ 343 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K 344 345 #endif /* __real_pte */ 346 347 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, 348 pte_t *ptep, unsigned long clr, 349 unsigned long set, int huge) 350 { 351 if (radix_enabled()) 352 return radix__pte_update(mm, addr, ptep, clr, set, huge); 353 return hash__pte_update(mm, addr, ptep, clr, set, huge); 354 } 355 /* 356 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update. 357 * We currently remove entries from the hashtable regardless of whether 358 * the entry was young or dirty. 359 * 360 * We should be more intelligent about this but for the moment we override 361 * these functions and force a tlb flush unconditionally 362 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same 363 * function for both hash and radix. 364 */ 365 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 366 unsigned long addr, pte_t *ptep) 367 { 368 unsigned long old; 369 370 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 371 return 0; 372 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 373 return (old & _PAGE_ACCESSED) != 0; 374 } 375 376 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 377 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 378 ({ \ 379 int __r; \ 380 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 381 __r; \ 382 }) 383 384 static inline int __pte_write(pte_t pte) 385 { 386 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE)); 387 } 388 389 #ifdef CONFIG_NUMA_BALANCING 390 #define pte_savedwrite pte_savedwrite 391 static inline bool pte_savedwrite(pte_t pte) 392 { 393 /* 394 * Saved write ptes are prot none ptes that doesn't have 395 * privileged bit sit. We mark prot none as one which has 396 * present and pviliged bit set and RWX cleared. To mark 397 * protnone which used to have _PAGE_WRITE set we clear 398 * the privileged bit. 399 */ 400 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED)); 401 } 402 #else 403 #define pte_savedwrite pte_savedwrite 404 static inline bool pte_savedwrite(pte_t pte) 405 { 406 return false; 407 } 408 #endif 409 410 static inline int pte_write(pte_t pte) 411 { 412 return __pte_write(pte) || pte_savedwrite(pte); 413 } 414 415 static inline int pte_read(pte_t pte) 416 { 417 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ)); 418 } 419 420 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 421 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 422 pte_t *ptep) 423 { 424 if (__pte_write(*ptep)) 425 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); 426 else if (unlikely(pte_savedwrite(*ptep))) 427 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0); 428 } 429 430 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT 431 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 432 unsigned long addr, pte_t *ptep) 433 { 434 /* 435 * We should not find protnone for hugetlb, but this complete the 436 * interface. 437 */ 438 if (__pte_write(*ptep)) 439 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1); 440 else if (unlikely(pte_savedwrite(*ptep))) 441 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1); 442 } 443 444 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 445 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 446 unsigned long addr, pte_t *ptep) 447 { 448 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); 449 return __pte(old); 450 } 451 452 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 453 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 454 unsigned long addr, 455 pte_t *ptep, int full) 456 { 457 if (full && radix_enabled()) { 458 /* 459 * We know that this is a full mm pte clear and 460 * hence can be sure there is no parallel set_pte. 461 */ 462 return radix__ptep_get_and_clear_full(mm, addr, ptep, full); 463 } 464 return ptep_get_and_clear(mm, addr, ptep); 465 } 466 467 468 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 469 pte_t * ptep) 470 { 471 pte_update(mm, addr, ptep, ~0UL, 0, 0); 472 } 473 474 static inline int pte_dirty(pte_t pte) 475 { 476 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY)); 477 } 478 479 static inline int pte_young(pte_t pte) 480 { 481 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED)); 482 } 483 484 static inline int pte_special(pte_t pte) 485 { 486 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL)); 487 } 488 489 static inline bool pte_exec(pte_t pte) 490 { 491 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC)); 492 } 493 494 495 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 496 static inline bool pte_soft_dirty(pte_t pte) 497 { 498 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY)); 499 } 500 501 static inline pte_t pte_mksoft_dirty(pte_t pte) 502 { 503 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY)); 504 } 505 506 static inline pte_t pte_clear_soft_dirty(pte_t pte) 507 { 508 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY)); 509 } 510 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 511 512 #ifdef CONFIG_NUMA_BALANCING 513 static inline int pte_protnone(pte_t pte) 514 { 515 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) == 516 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); 517 } 518 519 #define pte_mk_savedwrite pte_mk_savedwrite 520 static inline pte_t pte_mk_savedwrite(pte_t pte) 521 { 522 /* 523 * Used by Autonuma subsystem to preserve the write bit 524 * while marking the pte PROT_NONE. Only allow this 525 * on PROT_NONE pte 526 */ 527 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) != 528 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED)); 529 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED)); 530 } 531 532 #define pte_clear_savedwrite pte_clear_savedwrite 533 static inline pte_t pte_clear_savedwrite(pte_t pte) 534 { 535 /* 536 * Used by KSM subsystem to make a protnone pte readonly. 537 */ 538 VM_BUG_ON(!pte_protnone(pte)); 539 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED)); 540 } 541 #else 542 #define pte_clear_savedwrite pte_clear_savedwrite 543 static inline pte_t pte_clear_savedwrite(pte_t pte) 544 { 545 VM_WARN_ON(1); 546 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE)); 547 } 548 #endif /* CONFIG_NUMA_BALANCING */ 549 550 static inline int pte_present(pte_t pte) 551 { 552 /* 553 * A pte is considerent present if _PAGE_PRESENT is set. 554 * We also need to consider the pte present which is marked 555 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID 556 * if we find _PAGE_PRESENT cleared. 557 */ 558 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)); 559 } 560 561 static inline bool pte_hw_valid(pte_t pte) 562 { 563 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT)); 564 } 565 566 #ifdef CONFIG_PPC_MEM_KEYS 567 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute); 568 #else 569 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute) 570 { 571 return true; 572 } 573 #endif /* CONFIG_PPC_MEM_KEYS */ 574 575 static inline bool pte_user(pte_t pte) 576 { 577 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED)); 578 } 579 580 #define pte_access_permitted pte_access_permitted 581 static inline bool pte_access_permitted(pte_t pte, bool write) 582 { 583 /* 584 * _PAGE_READ is needed for any access and will be 585 * cleared for PROT_NONE 586 */ 587 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) 588 return false; 589 590 if (write && !pte_write(pte)) 591 return false; 592 593 return arch_pte_access_permitted(pte_val(pte), write, 0); 594 } 595 596 /* 597 * Conversion functions: convert a page and protection to a page entry, 598 * and a page entry and page directory to the page they refer to. 599 * 600 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 601 * long for now. 602 */ 603 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 604 { 605 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) | 606 pgprot_val(pgprot)); 607 } 608 609 static inline unsigned long pte_pfn(pte_t pte) 610 { 611 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT; 612 } 613 614 /* Generic modifiers for PTE bits */ 615 static inline pte_t pte_wrprotect(pte_t pte) 616 { 617 if (unlikely(pte_savedwrite(pte))) 618 return pte_clear_savedwrite(pte); 619 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE)); 620 } 621 622 static inline pte_t pte_exprotect(pte_t pte) 623 { 624 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC)); 625 } 626 627 static inline pte_t pte_mkclean(pte_t pte) 628 { 629 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY)); 630 } 631 632 static inline pte_t pte_mkold(pte_t pte) 633 { 634 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED)); 635 } 636 637 static inline pte_t pte_mkexec(pte_t pte) 638 { 639 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC)); 640 } 641 642 static inline pte_t pte_mkpte(pte_t pte) 643 { 644 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE)); 645 } 646 647 static inline pte_t pte_mkwrite(pte_t pte) 648 { 649 /* 650 * write implies read, hence set both 651 */ 652 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW)); 653 } 654 655 static inline pte_t pte_mkdirty(pte_t pte) 656 { 657 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); 658 } 659 660 static inline pte_t pte_mkyoung(pte_t pte) 661 { 662 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED)); 663 } 664 665 static inline pte_t pte_mkspecial(pte_t pte) 666 { 667 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL)); 668 } 669 670 static inline pte_t pte_mkhuge(pte_t pte) 671 { 672 return pte; 673 } 674 675 static inline pte_t pte_mkdevmap(pte_t pte) 676 { 677 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP)); 678 } 679 680 static inline pte_t pte_mkprivileged(pte_t pte) 681 { 682 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED)); 683 } 684 685 static inline pte_t pte_mkuser(pte_t pte) 686 { 687 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED)); 688 } 689 690 /* 691 * This is potentially called with a pmd as the argument, in which case it's not 692 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set. 693 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software 694 * use in page directory entries (ie. non-ptes). 695 */ 696 static inline int pte_devmap(pte_t pte) 697 { 698 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE); 699 700 return (pte_raw(pte) & mask) == mask; 701 } 702 703 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 704 { 705 /* FIXME!! check whether this need to be a conditional */ 706 return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) | 707 cpu_to_be64(pgprot_val(newprot))); 708 } 709 710 /* Encode and de-code a swap entry */ 711 #define MAX_SWAPFILES_CHECK() do { \ 712 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ 713 /* \ 714 * Don't have overlapping bits with _PAGE_HPTEFLAGS \ 715 * We filter HPTEFLAGS on set_pte. \ 716 */ \ 717 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \ 718 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \ 719 } while (0) 720 721 #define SWP_TYPE_BITS 5 722 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ 723 & ((1UL << SWP_TYPE_BITS) - 1)) 724 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT) 725 #define __swp_entry(type, offset) ((swp_entry_t) { \ 726 ((type) << _PAGE_BIT_SWAP_TYPE) \ 727 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)}) 728 /* 729 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from 730 * swap type and offset we get from swap and convert that to pte to find a 731 * matching pte in linux page table. 732 * Clear bits not found in swap entries here. 733 */ 734 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE }) 735 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE) 736 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd))) 737 #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x))) 738 739 #ifdef CONFIG_MEM_SOFT_DIRTY 740 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE)) 741 #else 742 #define _PAGE_SWP_SOFT_DIRTY 0UL 743 #endif /* CONFIG_MEM_SOFT_DIRTY */ 744 745 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 746 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 747 { 748 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); 749 } 750 751 static inline bool pte_swp_soft_dirty(pte_t pte) 752 { 753 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); 754 } 755 756 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 757 { 758 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY)); 759 } 760 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 761 762 static inline bool check_pte_access(unsigned long access, unsigned long ptev) 763 { 764 /* 765 * This check for _PAGE_RWX and _PAGE_PRESENT bits 766 */ 767 if (access & ~ptev) 768 return false; 769 /* 770 * This check for access to privilege space 771 */ 772 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED)) 773 return false; 774 775 return true; 776 } 777 /* 778 * Generic functions with hash/radix callbacks 779 */ 780 781 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 782 pte_t *ptep, pte_t entry, 783 unsigned long address, 784 int psize) 785 { 786 if (radix_enabled()) 787 return radix__ptep_set_access_flags(vma, ptep, entry, 788 address, psize); 789 return hash__ptep_set_access_flags(ptep, entry); 790 } 791 792 #define __HAVE_ARCH_PTE_SAME 793 static inline int pte_same(pte_t pte_a, pte_t pte_b) 794 { 795 if (radix_enabled()) 796 return radix__pte_same(pte_a, pte_b); 797 return hash__pte_same(pte_a, pte_b); 798 } 799 800 static inline int pte_none(pte_t pte) 801 { 802 if (radix_enabled()) 803 return radix__pte_none(pte); 804 return hash__pte_none(pte); 805 } 806 807 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 808 pte_t *ptep, pte_t pte, int percpu) 809 { 810 if (radix_enabled()) 811 return radix__set_pte_at(mm, addr, ptep, pte, percpu); 812 return hash__set_pte_at(mm, addr, ptep, pte, percpu); 813 } 814 815 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT) 816 817 #define pgprot_noncached pgprot_noncached 818 static inline pgprot_t pgprot_noncached(pgprot_t prot) 819 { 820 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 821 _PAGE_NON_IDEMPOTENT); 822 } 823 824 #define pgprot_noncached_wc pgprot_noncached_wc 825 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 826 { 827 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 828 _PAGE_TOLERANT); 829 } 830 831 #define pgprot_cached pgprot_cached 832 static inline pgprot_t pgprot_cached(pgprot_t prot) 833 { 834 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL)); 835 } 836 837 #define pgprot_writecombine pgprot_writecombine 838 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 839 { 840 return pgprot_noncached_wc(prot); 841 } 842 /* 843 * check a pte mapping have cache inhibited property 844 */ 845 static inline bool pte_ci(pte_t pte) 846 { 847 __be64 pte_v = pte_raw(pte); 848 849 if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) || 850 ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT))) 851 return true; 852 return false; 853 } 854 855 static inline void pmd_clear(pmd_t *pmdp) 856 { 857 *pmdp = __pmd(0); 858 } 859 860 static inline int pmd_none(pmd_t pmd) 861 { 862 return !pmd_raw(pmd); 863 } 864 865 static inline int pmd_present(pmd_t pmd) 866 { 867 /* 868 * A pmd is considerent present if _PAGE_PRESENT is set. 869 * We also need to consider the pmd present which is marked 870 * invalid during a split. Hence we look for _PAGE_INVALID 871 * if we find _PAGE_PRESENT cleared. 872 */ 873 if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) 874 return true; 875 876 return false; 877 } 878 879 static inline int pmd_bad(pmd_t pmd) 880 { 881 if (radix_enabled()) 882 return radix__pmd_bad(pmd); 883 return hash__pmd_bad(pmd); 884 } 885 886 static inline void pud_clear(pud_t *pudp) 887 { 888 *pudp = __pud(0); 889 } 890 891 static inline int pud_none(pud_t pud) 892 { 893 return !pud_raw(pud); 894 } 895 896 static inline int pud_present(pud_t pud) 897 { 898 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT)); 899 } 900 901 extern struct page *pud_page(pud_t pud); 902 extern struct page *pmd_page(pmd_t pmd); 903 static inline pte_t pud_pte(pud_t pud) 904 { 905 return __pte_raw(pud_raw(pud)); 906 } 907 908 static inline pud_t pte_pud(pte_t pte) 909 { 910 return __pud_raw(pte_raw(pte)); 911 } 912 #define pud_write(pud) pte_write(pud_pte(pud)) 913 914 static inline int pud_bad(pud_t pud) 915 { 916 if (radix_enabled()) 917 return radix__pud_bad(pud); 918 return hash__pud_bad(pud); 919 } 920 921 #define pud_access_permitted pud_access_permitted 922 static inline bool pud_access_permitted(pud_t pud, bool write) 923 { 924 return pte_access_permitted(pud_pte(pud), write); 925 } 926 927 #define pgd_write(pgd) pte_write(pgd_pte(pgd)) 928 929 static inline void pgd_clear(pgd_t *pgdp) 930 { 931 *pgdp = __pgd(0); 932 } 933 934 static inline int pgd_none(pgd_t pgd) 935 { 936 return !pgd_raw(pgd); 937 } 938 939 static inline int pgd_present(pgd_t pgd) 940 { 941 return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT)); 942 } 943 944 static inline pte_t pgd_pte(pgd_t pgd) 945 { 946 return __pte_raw(pgd_raw(pgd)); 947 } 948 949 static inline pgd_t pte_pgd(pte_t pte) 950 { 951 return __pgd_raw(pte_raw(pte)); 952 } 953 954 static inline int pgd_bad(pgd_t pgd) 955 { 956 if (radix_enabled()) 957 return radix__pgd_bad(pgd); 958 return hash__pgd_bad(pgd); 959 } 960 961 #define pgd_access_permitted pgd_access_permitted 962 static inline bool pgd_access_permitted(pgd_t pgd, bool write) 963 { 964 return pte_access_permitted(pgd_pte(pgd), write); 965 } 966 967 extern struct page *pgd_page(pgd_t pgd); 968 969 /* Pointers in the page table tree are physical addresses */ 970 #define __pgtable_ptr_val(ptr) __pa(ptr) 971 972 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS) 973 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS) 974 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS) 975 976 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1)) 977 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1)) 978 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1)) 979 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1)) 980 981 /* 982 * Find an entry in a page-table-directory. We combine the address region 983 * (the high order N bits) and the pgd portion of the address. 984 */ 985 986 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 987 988 #define pud_offset(pgdp, addr) \ 989 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr)) 990 #define pmd_offset(pudp,addr) \ 991 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr)) 992 #define pte_offset_kernel(dir,addr) \ 993 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr)) 994 995 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) 996 997 static inline void pte_unmap(pte_t *pte) { } 998 999 /* to find an entry in a kernel page-table-directory */ 1000 /* This now only contains the vmalloc pages */ 1001 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 1002 1003 #define pte_ERROR(e) \ 1004 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 1005 #define pmd_ERROR(e) \ 1006 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 1007 #define pud_ERROR(e) \ 1008 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e)) 1009 #define pgd_ERROR(e) \ 1010 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 1011 1012 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot) 1013 { 1014 if (radix_enabled()) { 1015 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM) 1016 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift; 1017 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE"); 1018 #endif 1019 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE); 1020 } 1021 return hash__map_kernel_page(ea, pa, prot); 1022 } 1023 1024 static inline int __meminit vmemmap_create_mapping(unsigned long start, 1025 unsigned long page_size, 1026 unsigned long phys) 1027 { 1028 if (radix_enabled()) 1029 return radix__vmemmap_create_mapping(start, page_size, phys); 1030 return hash__vmemmap_create_mapping(start, page_size, phys); 1031 } 1032 1033 #ifdef CONFIG_MEMORY_HOTPLUG 1034 static inline void vmemmap_remove_mapping(unsigned long start, 1035 unsigned long page_size) 1036 { 1037 if (radix_enabled()) 1038 return radix__vmemmap_remove_mapping(start, page_size); 1039 return hash__vmemmap_remove_mapping(start, page_size); 1040 } 1041 #endif 1042 1043 static inline pte_t pmd_pte(pmd_t pmd) 1044 { 1045 return __pte_raw(pmd_raw(pmd)); 1046 } 1047 1048 static inline pmd_t pte_pmd(pte_t pte) 1049 { 1050 return __pmd_raw(pte_raw(pte)); 1051 } 1052 1053 static inline pte_t *pmdp_ptep(pmd_t *pmd) 1054 { 1055 return (pte_t *)pmd; 1056 } 1057 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) 1058 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 1059 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 1060 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 1061 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 1062 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 1063 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 1064 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 1065 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 1066 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd))) 1067 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd))) 1068 1069 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1070 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd)) 1071 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd))) 1072 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd))) 1073 1074 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1075 #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd))) 1076 #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd)) 1077 #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd))) 1078 #endif 1079 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1080 1081 #ifdef CONFIG_NUMA_BALANCING 1082 static inline int pmd_protnone(pmd_t pmd) 1083 { 1084 return pte_protnone(pmd_pte(pmd)); 1085 } 1086 #endif /* CONFIG_NUMA_BALANCING */ 1087 1088 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 1089 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd)) 1090 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd)) 1091 1092 #define pmd_access_permitted pmd_access_permitted 1093 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1094 { 1095 return pte_access_permitted(pmd_pte(pmd), write); 1096 } 1097 1098 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1099 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); 1100 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); 1101 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); 1102 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1103 pmd_t *pmdp, pmd_t pmd); 1104 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 1105 pmd_t *pmd); 1106 extern int hash__has_transparent_hugepage(void); 1107 static inline int has_transparent_hugepage(void) 1108 { 1109 if (radix_enabled()) 1110 return radix__has_transparent_hugepage(); 1111 return hash__has_transparent_hugepage(); 1112 } 1113 #define has_transparent_hugepage has_transparent_hugepage 1114 1115 static inline unsigned long 1116 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, 1117 unsigned long clr, unsigned long set) 1118 { 1119 if (radix_enabled()) 1120 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set); 1121 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set); 1122 } 1123 1124 /* 1125 * returns true for pmd migration entries, THP, devmap, hugetlb 1126 * But compile time dependent on THP config 1127 */ 1128 static inline int pmd_large(pmd_t pmd) 1129 { 1130 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); 1131 } 1132 1133 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 1134 { 1135 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT); 1136 } 1137 /* 1138 * For radix we should always find H_PAGE_HASHPTE zero. Hence 1139 * the below will work for radix too 1140 */ 1141 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, 1142 unsigned long addr, pmd_t *pmdp) 1143 { 1144 unsigned long old; 1145 1146 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 1147 return 0; 1148 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); 1149 return ((old & _PAGE_ACCESSED) != 0); 1150 } 1151 1152 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1153 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, 1154 pmd_t *pmdp) 1155 { 1156 if (__pmd_write((*pmdp))) 1157 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0); 1158 else if (unlikely(pmd_savedwrite(*pmdp))) 1159 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED); 1160 } 1161 1162 /* 1163 * Only returns true for a THP. False for pmd migration entry. 1164 * We also need to return true when we come across a pte that 1165 * in between a thp split. While splitting THP, we mark the pmd 1166 * invalid (pmdp_invalidate()) before we set it with pte page 1167 * address. A pmd_trans_huge() check against a pmd entry during that time 1168 * should return true. 1169 * We should not call this on a hugetlb entry. We should check for HugeTLB 1170 * entry using vma->vm_flags 1171 * The page table walk rule is explained in Documentation/vm/transhuge.rst 1172 */ 1173 static inline int pmd_trans_huge(pmd_t pmd) 1174 { 1175 if (!pmd_present(pmd)) 1176 return false; 1177 1178 if (radix_enabled()) 1179 return radix__pmd_trans_huge(pmd); 1180 return hash__pmd_trans_huge(pmd); 1181 } 1182 1183 #define __HAVE_ARCH_PMD_SAME 1184 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1185 { 1186 if (radix_enabled()) 1187 return radix__pmd_same(pmd_a, pmd_b); 1188 return hash__pmd_same(pmd_a, pmd_b); 1189 } 1190 1191 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1192 { 1193 if (radix_enabled()) 1194 return radix__pmd_mkhuge(pmd); 1195 return hash__pmd_mkhuge(pmd); 1196 } 1197 1198 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1199 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1200 unsigned long address, pmd_t *pmdp, 1201 pmd_t entry, int dirty); 1202 1203 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1204 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1205 unsigned long address, pmd_t *pmdp); 1206 1207 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1208 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1209 unsigned long addr, pmd_t *pmdp) 1210 { 1211 if (radix_enabled()) 1212 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp); 1213 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp); 1214 } 1215 1216 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1217 unsigned long address, pmd_t *pmdp) 1218 { 1219 if (radix_enabled()) 1220 return radix__pmdp_collapse_flush(vma, address, pmdp); 1221 return hash__pmdp_collapse_flush(vma, address, pmdp); 1222 } 1223 #define pmdp_collapse_flush pmdp_collapse_flush 1224 1225 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1226 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm, 1227 pmd_t *pmdp, pgtable_t pgtable) 1228 { 1229 if (radix_enabled()) 1230 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 1231 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 1232 } 1233 1234 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1235 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, 1236 pmd_t *pmdp) 1237 { 1238 if (radix_enabled()) 1239 return radix__pgtable_trans_huge_withdraw(mm, pmdp); 1240 return hash__pgtable_trans_huge_withdraw(mm, pmdp); 1241 } 1242 1243 #define __HAVE_ARCH_PMDP_INVALIDATE 1244 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 1245 pmd_t *pmdp); 1246 1247 #define pmd_move_must_withdraw pmd_move_must_withdraw 1248 struct spinlock; 1249 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 1250 struct spinlock *old_pmd_ptl, 1251 struct vm_area_struct *vma); 1252 /* 1253 * Hash translation mode use the deposited table to store hash pte 1254 * slot information. 1255 */ 1256 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit 1257 static inline bool arch_needs_pgtable_deposit(void) 1258 { 1259 if (radix_enabled()) 1260 return false; 1261 return true; 1262 } 1263 extern void serialize_against_pte_lookup(struct mm_struct *mm); 1264 1265 1266 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 1267 { 1268 return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP)); 1269 } 1270 1271 static inline int pmd_devmap(pmd_t pmd) 1272 { 1273 return pte_devmap(pmd_pte(pmd)); 1274 } 1275 1276 static inline int pud_devmap(pud_t pud) 1277 { 1278 return 0; 1279 } 1280 1281 static inline int pgd_devmap(pgd_t pgd) 1282 { 1283 return 0; 1284 } 1285 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1286 1287 static inline int pud_pfn(pud_t pud) 1288 { 1289 /* 1290 * Currently all calls to pud_pfn() are gated around a pud_devmap() 1291 * check so this should never be used. If it grows another user we 1292 * want to know about it. 1293 */ 1294 BUILD_BUG(); 1295 return 0; 1296 } 1297 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1298 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1299 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1300 pte_t *, pte_t, pte_t); 1301 1302 /* 1303 * Returns true for a R -> RW upgrade of pte 1304 */ 1305 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val) 1306 { 1307 if (!(old_val & _PAGE_READ)) 1308 return false; 1309 1310 if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE)) 1311 return true; 1312 1313 return false; 1314 } 1315 1316 #endif /* __ASSEMBLY__ */ 1317 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */ 1318