1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12 
13 /*
14  * Common bits between hash and Radix page table
15  */
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x00040UL
36 
37 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
38 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
39 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
40 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
41 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
42 
43 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
44 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
45 /*
46  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
47  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
48  * differentiate between two use a SW field when invalidating.
49  *
50  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
51  *
52  * This is used only when _PAGE_PRESENT is cleared.
53  */
54 #define _PAGE_INVALID		_RPAGE_SW0
55 
56 /*
57  * Top and bottom bits of RPN which can be used by hash
58  * translation mode, because we expect them to be zero
59  * otherwise.
60  */
61 #define _RPAGE_RPN0		0x01000
62 #define _RPAGE_RPN1		0x02000
63 #define _RPAGE_RPN43		0x0080000000000000UL
64 #define _RPAGE_RPN42		0x0040000000000000UL
65 #define _RPAGE_RPN41		0x0020000000000000UL
66 
67 /* Max physical address bit as per radix table */
68 #define _RPAGE_PA_MAX		56
69 
70 /*
71  * Max physical address bit we will use for now.
72  *
73  * This is mostly a hardware limitation and for now Power9 has
74  * a 51 bit limit.
75  *
76  * This is different from the number of physical bit required to address
77  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
78  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
79  * number of sections we can support (SECTIONS_SHIFT).
80  *
81  * This is different from Radix page table limitation above and
82  * should always be less than that. The limit is done such that
83  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
84  * for hash linux page table specific bits.
85  *
86  * In order to be compatible with future hardware generations we keep
87  * some offsets and limit this for now to 53
88  */
89 #define _PAGE_PA_MAX		53
90 
91 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
92 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
93 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
94 
95 /*
96  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97  * Instead of fixing all of them, add an alternate define which
98  * maps CI pte mapping.
99  */
100 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101 /*
102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104  * and every thing below PAGE_SHIFT;
105  */
106 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 /*
108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
109  * in here, on radix we expect them to be zero.
110  */
111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114 /*
115  * user access blocked by key
116  */
117 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119 #define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
120 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
121 				 _PAGE_RW | _PAGE_EXEC)
122 /*
123  * _PAGE_CHG_MASK masks of bits that are to be preserved across
124  * pgprot changes
125  */
126 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
127 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
128 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
129 
130 /*
131  * We define 2 sets of base prot bits, one for basic pages (ie,
132  * cacheable kernel and user pages) and one for non cacheable
133  * pages. We always set _PAGE_COHERENT when SMP is enabled or
134  * the processor might need it for DMA coherency.
135  */
136 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
137 #define _PAGE_BASE	(_PAGE_BASE_NC)
138 
139 /* Permission masks used to generate the __P and __S table,
140  *
141  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142  *
143  * Write permissions imply read permissions for now (we could make write-only
144  * pages on BookE but we don't bother for now). Execute permission control is
145  * possible on platforms that define _PAGE_EXEC
146  */
147 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
149 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154 /* Radix only, Hash uses PAGE_READONLY_X + execute-only pkey instead */
155 #define PAGE_EXECONLY	__pgprot(_PAGE_BASE | _PAGE_EXEC)
156 
157 /* Permission masks used for kernel mappings */
158 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
159 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160 				 _PAGE_TOLERANT)
161 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
162 				 _PAGE_NON_IDEMPOTENT)
163 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
164 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
165 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
166 
167 /*
168  * Protection used for kernel text. We want the debuggers to be able to
169  * set breakpoints anywhere, so don't write protect the kernel text
170  * on platforms where such control is possible.
171  */
172 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
173 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
174 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
175 #else
176 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
177 #endif
178 
179 /* Make modules code happy. We don't set RO yet */
180 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
181 #define PAGE_AGP		(PAGE_KERNEL_NC)
182 
183 #ifndef __ASSEMBLY__
184 /*
185  * page table defines
186  */
187 extern unsigned long __pte_index_size;
188 extern unsigned long __pmd_index_size;
189 extern unsigned long __pud_index_size;
190 extern unsigned long __pgd_index_size;
191 extern unsigned long __pud_cache_index;
192 #define PTE_INDEX_SIZE  __pte_index_size
193 #define PMD_INDEX_SIZE  __pmd_index_size
194 #define PUD_INDEX_SIZE  __pud_index_size
195 #define PGD_INDEX_SIZE  __pgd_index_size
196 /* pmd table use page table fragments */
197 #define PMD_CACHE_INDEX  0
198 #define PUD_CACHE_INDEX __pud_cache_index
199 /*
200  * Because of use of pte fragments and THP, size of page table
201  * are not always derived out of index size above.
202  */
203 extern unsigned long __pte_table_size;
204 extern unsigned long __pmd_table_size;
205 extern unsigned long __pud_table_size;
206 extern unsigned long __pgd_table_size;
207 #define PTE_TABLE_SIZE	__pte_table_size
208 #define PMD_TABLE_SIZE	__pmd_table_size
209 #define PUD_TABLE_SIZE	__pud_table_size
210 #define PGD_TABLE_SIZE	__pgd_table_size
211 
212 extern unsigned long __pmd_val_bits;
213 extern unsigned long __pud_val_bits;
214 extern unsigned long __pgd_val_bits;
215 #define PMD_VAL_BITS	__pmd_val_bits
216 #define PUD_VAL_BITS	__pud_val_bits
217 #define PGD_VAL_BITS	__pgd_val_bits
218 
219 extern unsigned long __pte_frag_nr;
220 #define PTE_FRAG_NR __pte_frag_nr
221 extern unsigned long __pte_frag_size_shift;
222 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
223 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
224 
225 extern unsigned long __pmd_frag_nr;
226 #define PMD_FRAG_NR __pmd_frag_nr
227 extern unsigned long __pmd_frag_size_shift;
228 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
229 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
230 
231 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
232 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
233 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
234 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
235 
236 #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
237 #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
238 #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
239 #define MAX_PTRS_PER_PGD	(1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
240 				       H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
241 
242 /* PMD_SHIFT determines what a second-level page table entry can map */
243 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
244 #define PMD_SIZE	(1UL << PMD_SHIFT)
245 #define PMD_MASK	(~(PMD_SIZE-1))
246 
247 /* PUD_SHIFT determines what a third-level page table entry can map */
248 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
249 #define PUD_SIZE	(1UL << PUD_SHIFT)
250 #define PUD_MASK	(~(PUD_SIZE-1))
251 
252 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
253 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
254 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
255 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
256 
257 /* Bits to mask out from a PMD to get to the PTE page */
258 #define PMD_MASKED_BITS		0xc0000000000000ffUL
259 /* Bits to mask out from a PUD to get to the PMD page */
260 #define PUD_MASKED_BITS		0xc0000000000000ffUL
261 /* Bits to mask out from a PGD to get to the PUD page */
262 #define P4D_MASKED_BITS		0xc0000000000000ffUL
263 
264 /*
265  * Used as an indicator for rcu callback functions
266  */
267 enum pgtable_index {
268 	PTE_INDEX = 0,
269 	PMD_INDEX,
270 	PUD_INDEX,
271 	PGD_INDEX,
272 	/*
273 	 * Below are used with 4k page size and hugetlb
274 	 */
275 	HTLB_16M_INDEX,
276 	HTLB_16G_INDEX,
277 };
278 
279 extern unsigned long __vmalloc_start;
280 extern unsigned long __vmalloc_end;
281 #define VMALLOC_START	__vmalloc_start
282 #define VMALLOC_END	__vmalloc_end
283 
284 static inline unsigned int ioremap_max_order(void)
285 {
286 	if (radix_enabled())
287 		return PUD_SHIFT;
288 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
289 }
290 #define IOREMAP_MAX_ORDER ioremap_max_order()
291 
292 extern unsigned long __kernel_virt_start;
293 extern unsigned long __kernel_io_start;
294 extern unsigned long __kernel_io_end;
295 #define KERN_VIRT_START __kernel_virt_start
296 #define KERN_IO_START  __kernel_io_start
297 #define KERN_IO_END __kernel_io_end
298 
299 extern struct page *vmemmap;
300 extern unsigned long pci_io_base;
301 #endif /* __ASSEMBLY__ */
302 
303 #include <asm/book3s/64/hash.h>
304 #include <asm/book3s/64/radix.h>
305 
306 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
307 #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
308 #else
309 #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
310 #endif
311 
312 
313 #ifdef CONFIG_PPC_64K_PAGES
314 #include <asm/book3s/64/pgtable-64k.h>
315 #else
316 #include <asm/book3s/64/pgtable-4k.h>
317 #endif
318 
319 #include <asm/barrier.h>
320 /*
321  * IO space itself carved into the PIO region (ISA and PHB IO space) and
322  * the ioremap space
323  *
324  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
325  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
326  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
327  */
328 #define FULL_IO_SIZE	0x80000000ul
329 #define  ISA_IO_BASE	(KERN_IO_START)
330 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
331 #define  PHB_IO_BASE	(ISA_IO_END)
332 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
333 #define IOREMAP_BASE	(PHB_IO_END)
334 #define IOREMAP_START	(ioremap_bot)
335 #define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
336 #define FIXADDR_SIZE	SZ_32M
337 
338 /* Advertise special mapping type for AGP */
339 #define HAVE_PAGE_AGP
340 
341 #ifndef __ASSEMBLY__
342 
343 /*
344  * This is the default implementation of various PTE accessors, it's
345  * used in all cases except Book3S with 64K pages where we have a
346  * concept of sub-pages
347  */
348 #ifndef __real_pte
349 
350 #define __real_pte(e, p, o)		((real_pte_t){(e)})
351 #define __rpte_to_pte(r)	((r).pte)
352 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
353 
354 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
355 	do {							         \
356 		index = 0;					         \
357 		shift = mmu_psize_defs[psize].shift;		         \
358 
359 #define pte_iterate_hashed_end() } while(0)
360 
361 /*
362  * We expect this to be called only for user addresses or kernel virtual
363  * addresses other than the linear mapping.
364  */
365 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
366 
367 #endif /* __real_pte */
368 
369 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
370 				       pte_t *ptep, unsigned long clr,
371 				       unsigned long set, int huge)
372 {
373 	if (radix_enabled())
374 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
375 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
376 }
377 /*
378  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
379  * We currently remove entries from the hashtable regardless of whether
380  * the entry was young or dirty.
381  *
382  * We should be more intelligent about this but for the moment we override
383  * these functions and force a tlb flush unconditionally
384  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
385  * function for both hash and radix.
386  */
387 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
388 					      unsigned long addr, pte_t *ptep)
389 {
390 	unsigned long old;
391 
392 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
393 		return 0;
394 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
395 	return (old & _PAGE_ACCESSED) != 0;
396 }
397 
398 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
399 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
400 ({								\
401 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
402 })
403 
404 /*
405  * On Book3S CPUs, clearing the accessed bit without a TLB flush
406  * doesn't cause data corruption. [ It could cause incorrect
407  * page aging and the (mistaken) reclaim of hot pages, but the
408  * chance of that should be relatively low. ]
409  *
410  * So as a performance optimization don't flush the TLB when
411  * clearing the accessed bit, it will eventually be flushed by
412  * a context switch or a VM operation anyway. [ In the rare
413  * event of it not getting flushed for a long time the delay
414  * shouldn't really matter because there's no real memory
415  * pressure for swapout to react to. ]
416  */
417 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
418 #define ptep_clear_flush_young ptep_test_and_clear_young
419 
420 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
421 #define pmdp_clear_flush_young pmdp_test_and_clear_young
422 
423 static inline int __pte_write(pte_t pte)
424 {
425 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
426 }
427 
428 #ifdef CONFIG_NUMA_BALANCING
429 #define pte_savedwrite pte_savedwrite
430 static inline bool pte_savedwrite(pte_t pte)
431 {
432 	/*
433 	 * Saved write ptes are prot none ptes that doesn't have
434 	 * privileged bit sit. We mark prot none as one which has
435 	 * present and pviliged bit set and RWX cleared. To mark
436 	 * protnone which used to have _PAGE_WRITE set we clear
437 	 * the privileged bit.
438 	 */
439 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
440 }
441 #else
442 #define pte_savedwrite pte_savedwrite
443 static inline bool pte_savedwrite(pte_t pte)
444 {
445 	return false;
446 }
447 #endif
448 
449 static inline int pte_write(pte_t pte)
450 {
451 	return __pte_write(pte) || pte_savedwrite(pte);
452 }
453 
454 static inline int pte_read(pte_t pte)
455 {
456 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
457 }
458 
459 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
460 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
461 				      pte_t *ptep)
462 {
463 	if (__pte_write(*ptep))
464 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
465 	else if (unlikely(pte_savedwrite(*ptep)))
466 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
467 }
468 
469 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
470 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
471 					   unsigned long addr, pte_t *ptep)
472 {
473 	/*
474 	 * We should not find protnone for hugetlb, but this complete the
475 	 * interface.
476 	 */
477 	if (__pte_write(*ptep))
478 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
479 	else if (unlikely(pte_savedwrite(*ptep)))
480 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
481 }
482 
483 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
484 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
485 				       unsigned long addr, pte_t *ptep)
486 {
487 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
488 	return __pte(old);
489 }
490 
491 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
492 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
493 					    unsigned long addr,
494 					    pte_t *ptep, int full)
495 {
496 	if (full && radix_enabled()) {
497 		/*
498 		 * We know that this is a full mm pte clear and
499 		 * hence can be sure there is no parallel set_pte.
500 		 */
501 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
502 	}
503 	return ptep_get_and_clear(mm, addr, ptep);
504 }
505 
506 
507 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
508 			     pte_t * ptep)
509 {
510 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
511 }
512 
513 static inline int pte_dirty(pte_t pte)
514 {
515 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
516 }
517 
518 static inline int pte_young(pte_t pte)
519 {
520 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
521 }
522 
523 static inline int pte_special(pte_t pte)
524 {
525 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
526 }
527 
528 static inline bool pte_exec(pte_t pte)
529 {
530 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
531 }
532 
533 
534 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
535 static inline bool pte_soft_dirty(pte_t pte)
536 {
537 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
538 }
539 
540 static inline pte_t pte_mksoft_dirty(pte_t pte)
541 {
542 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
543 }
544 
545 static inline pte_t pte_clear_soft_dirty(pte_t pte)
546 {
547 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
548 }
549 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
550 
551 #ifdef CONFIG_NUMA_BALANCING
552 static inline int pte_protnone(pte_t pte)
553 {
554 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
555 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
556 }
557 
558 #define pte_mk_savedwrite pte_mk_savedwrite
559 static inline pte_t pte_mk_savedwrite(pte_t pte)
560 {
561 	/*
562 	 * Used by Autonuma subsystem to preserve the write bit
563 	 * while marking the pte PROT_NONE. Only allow this
564 	 * on PROT_NONE pte
565 	 */
566 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
567 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
568 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
569 }
570 
571 #define pte_clear_savedwrite pte_clear_savedwrite
572 static inline pte_t pte_clear_savedwrite(pte_t pte)
573 {
574 	/*
575 	 * Used by KSM subsystem to make a protnone pte readonly.
576 	 */
577 	VM_BUG_ON(!pte_protnone(pte));
578 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
579 }
580 #else
581 #define pte_clear_savedwrite pte_clear_savedwrite
582 static inline pte_t pte_clear_savedwrite(pte_t pte)
583 {
584 	VM_WARN_ON(1);
585 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
586 }
587 #endif /* CONFIG_NUMA_BALANCING */
588 
589 static inline bool pte_hw_valid(pte_t pte)
590 {
591 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
592 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
593 }
594 
595 static inline int pte_present(pte_t pte)
596 {
597 	/*
598 	 * A pte is considerent present if _PAGE_PRESENT is set.
599 	 * We also need to consider the pte present which is marked
600 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
601 	 * if we find _PAGE_PRESENT cleared.
602 	 */
603 
604 	if (pte_hw_valid(pte))
605 		return true;
606 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
607 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
608 }
609 
610 #ifdef CONFIG_PPC_MEM_KEYS
611 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
612 #else
613 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
614 {
615 	return true;
616 }
617 #endif /* CONFIG_PPC_MEM_KEYS */
618 
619 static inline bool pte_user(pte_t pte)
620 {
621 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
622 }
623 
624 #define pte_access_permitted pte_access_permitted
625 static inline bool pte_access_permitted(pte_t pte, bool write)
626 {
627 	/*
628 	 * _PAGE_READ is needed for any access and will be
629 	 * cleared for PROT_NONE
630 	 */
631 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
632 		return false;
633 
634 	if (write && !pte_write(pte))
635 		return false;
636 
637 	return arch_pte_access_permitted(pte_val(pte), write, 0);
638 }
639 
640 /*
641  * Conversion functions: convert a page and protection to a page entry,
642  * and a page entry and page directory to the page they refer to.
643  *
644  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
645  * long for now.
646  */
647 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
648 {
649 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
650 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
651 
652 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
653 }
654 
655 static inline unsigned long pte_pfn(pte_t pte)
656 {
657 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
658 }
659 
660 /* Generic modifiers for PTE bits */
661 static inline pte_t pte_wrprotect(pte_t pte)
662 {
663 	if (unlikely(pte_savedwrite(pte)))
664 		return pte_clear_savedwrite(pte);
665 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
666 }
667 
668 static inline pte_t pte_exprotect(pte_t pte)
669 {
670 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
671 }
672 
673 static inline pte_t pte_mkclean(pte_t pte)
674 {
675 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
676 }
677 
678 static inline pte_t pte_mkold(pte_t pte)
679 {
680 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
681 }
682 
683 static inline pte_t pte_mkexec(pte_t pte)
684 {
685 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
686 }
687 
688 static inline pte_t pte_mkwrite(pte_t pte)
689 {
690 	/*
691 	 * write implies read, hence set both
692 	 */
693 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
694 }
695 
696 static inline pte_t pte_mkdirty(pte_t pte)
697 {
698 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
699 }
700 
701 static inline pte_t pte_mkyoung(pte_t pte)
702 {
703 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
704 }
705 
706 static inline pte_t pte_mkspecial(pte_t pte)
707 {
708 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
709 }
710 
711 static inline pte_t pte_mkhuge(pte_t pte)
712 {
713 	return pte;
714 }
715 
716 static inline pte_t pte_mkdevmap(pte_t pte)
717 {
718 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
719 }
720 
721 static inline pte_t pte_mkprivileged(pte_t pte)
722 {
723 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
724 }
725 
726 static inline pte_t pte_mkuser(pte_t pte)
727 {
728 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
729 }
730 
731 /*
732  * This is potentially called with a pmd as the argument, in which case it's not
733  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
734  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
735  * use in page directory entries (ie. non-ptes).
736  */
737 static inline int pte_devmap(pte_t pte)
738 {
739 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
740 
741 	return (pte_raw(pte) & mask) == mask;
742 }
743 
744 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
745 {
746 	/* FIXME!! check whether this need to be a conditional */
747 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
748 			 cpu_to_be64(pgprot_val(newprot)));
749 }
750 
751 /* Encode and de-code a swap entry */
752 #define MAX_SWAPFILES_CHECK() do { \
753 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
754 	/*							\
755 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
756 	 * We filter HPTEFLAGS on set_pte.			\
757 	 */							\
758 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
759 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
760 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE);	\
761 	} while (0)
762 
763 #define SWP_TYPE_BITS 5
764 #define SWP_TYPE_MASK		((1UL << SWP_TYPE_BITS) - 1)
765 #define __swp_type(x)		((x).val & SWP_TYPE_MASK)
766 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
767 #define __swp_entry(type, offset)	((swp_entry_t) { \
768 				(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
769 /*
770  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
771  * swap type and offset we get from swap and convert that to pte to find a
772  * matching pte in linux page table.
773  * Clear bits not found in swap entries here.
774  */
775 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
776 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
777 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
778 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
779 
780 #ifdef CONFIG_MEM_SOFT_DIRTY
781 #define _PAGE_SWP_SOFT_DIRTY	_PAGE_SOFT_DIRTY
782 #else
783 #define _PAGE_SWP_SOFT_DIRTY	0UL
784 #endif /* CONFIG_MEM_SOFT_DIRTY */
785 
786 #define _PAGE_SWP_EXCLUSIVE	_PAGE_NON_IDEMPOTENT
787 
788 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
789 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
790 {
791 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
792 }
793 
794 static inline bool pte_swp_soft_dirty(pte_t pte)
795 {
796 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
797 }
798 
799 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
800 {
801 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
802 }
803 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
804 
805 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
806 static inline pte_t pte_swp_mkexclusive(pte_t pte)
807 {
808 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
809 }
810 
811 static inline int pte_swp_exclusive(pte_t pte)
812 {
813 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
814 }
815 
816 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
817 {
818 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
819 }
820 
821 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
822 {
823 	/*
824 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
825 	 */
826 	if (access & ~ptev)
827 		return false;
828 	/*
829 	 * This check for access to privilege space
830 	 */
831 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
832 		return false;
833 
834 	return true;
835 }
836 /*
837  * Generic functions with hash/radix callbacks
838  */
839 
840 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
841 					   pte_t *ptep, pte_t entry,
842 					   unsigned long address,
843 					   int psize)
844 {
845 	if (radix_enabled())
846 		return radix__ptep_set_access_flags(vma, ptep, entry,
847 						    address, psize);
848 	return hash__ptep_set_access_flags(ptep, entry);
849 }
850 
851 #define __HAVE_ARCH_PTE_SAME
852 static inline int pte_same(pte_t pte_a, pte_t pte_b)
853 {
854 	if (radix_enabled())
855 		return radix__pte_same(pte_a, pte_b);
856 	return hash__pte_same(pte_a, pte_b);
857 }
858 
859 static inline int pte_none(pte_t pte)
860 {
861 	if (radix_enabled())
862 		return radix__pte_none(pte);
863 	return hash__pte_none(pte);
864 }
865 
866 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
867 				pte_t *ptep, pte_t pte, int percpu)
868 {
869 
870 	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
871 	/*
872 	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
873 	 * in all the callers.
874 	 */
875 	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
876 
877 	if (radix_enabled())
878 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
879 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
880 }
881 
882 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
883 
884 #define pgprot_noncached pgprot_noncached
885 static inline pgprot_t pgprot_noncached(pgprot_t prot)
886 {
887 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
888 			_PAGE_NON_IDEMPOTENT);
889 }
890 
891 #define pgprot_noncached_wc pgprot_noncached_wc
892 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
893 {
894 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
895 			_PAGE_TOLERANT);
896 }
897 
898 #define pgprot_cached pgprot_cached
899 static inline pgprot_t pgprot_cached(pgprot_t prot)
900 {
901 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
902 }
903 
904 #define pgprot_writecombine pgprot_writecombine
905 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
906 {
907 	return pgprot_noncached_wc(prot);
908 }
909 /*
910  * check a pte mapping have cache inhibited property
911  */
912 static inline bool pte_ci(pte_t pte)
913 {
914 	__be64 pte_v = pte_raw(pte);
915 
916 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
917 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
918 		return true;
919 	return false;
920 }
921 
922 static inline void pmd_clear(pmd_t *pmdp)
923 {
924 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
925 		/*
926 		 * Don't use this if we can possibly have a hash page table
927 		 * entry mapping this.
928 		 */
929 		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
930 	}
931 	*pmdp = __pmd(0);
932 }
933 
934 static inline int pmd_none(pmd_t pmd)
935 {
936 	return !pmd_raw(pmd);
937 }
938 
939 static inline int pmd_present(pmd_t pmd)
940 {
941 	/*
942 	 * A pmd is considerent present if _PAGE_PRESENT is set.
943 	 * We also need to consider the pmd present which is marked
944 	 * invalid during a split. Hence we look for _PAGE_INVALID
945 	 * if we find _PAGE_PRESENT cleared.
946 	 */
947 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
948 		return true;
949 
950 	return false;
951 }
952 
953 static inline int pmd_is_serializing(pmd_t pmd)
954 {
955 	/*
956 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
957 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
958 	 *
959 	 * This condition may also occur when flushing a pmd while flushing
960 	 * it (see ptep_modify_prot_start), so callers must ensure this
961 	 * case is fine as well.
962 	 */
963 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
964 						cpu_to_be64(_PAGE_INVALID))
965 		return true;
966 
967 	return false;
968 }
969 
970 static inline int pmd_bad(pmd_t pmd)
971 {
972 	if (radix_enabled())
973 		return radix__pmd_bad(pmd);
974 	return hash__pmd_bad(pmd);
975 }
976 
977 static inline void pud_clear(pud_t *pudp)
978 {
979 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
980 		/*
981 		 * Don't use this if we can possibly have a hash page table
982 		 * entry mapping this.
983 		 */
984 		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
985 	}
986 	*pudp = __pud(0);
987 }
988 
989 static inline int pud_none(pud_t pud)
990 {
991 	return !pud_raw(pud);
992 }
993 
994 static inline int pud_present(pud_t pud)
995 {
996 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
997 }
998 
999 extern struct page *pud_page(pud_t pud);
1000 extern struct page *pmd_page(pmd_t pmd);
1001 static inline pte_t pud_pte(pud_t pud)
1002 {
1003 	return __pte_raw(pud_raw(pud));
1004 }
1005 
1006 static inline pud_t pte_pud(pte_t pte)
1007 {
1008 	return __pud_raw(pte_raw(pte));
1009 }
1010 #define pud_write(pud)		pte_write(pud_pte(pud))
1011 
1012 static inline int pud_bad(pud_t pud)
1013 {
1014 	if (radix_enabled())
1015 		return radix__pud_bad(pud);
1016 	return hash__pud_bad(pud);
1017 }
1018 
1019 #define pud_access_permitted pud_access_permitted
1020 static inline bool pud_access_permitted(pud_t pud, bool write)
1021 {
1022 	return pte_access_permitted(pud_pte(pud), write);
1023 }
1024 
1025 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
1026 static inline __be64 p4d_raw(p4d_t x)
1027 {
1028 	return pgd_raw(x.pgd);
1029 }
1030 
1031 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
1032 
1033 static inline void p4d_clear(p4d_t *p4dp)
1034 {
1035 	*p4dp = __p4d(0);
1036 }
1037 
1038 static inline int p4d_none(p4d_t p4d)
1039 {
1040 	return !p4d_raw(p4d);
1041 }
1042 
1043 static inline int p4d_present(p4d_t p4d)
1044 {
1045 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1046 }
1047 
1048 static inline pte_t p4d_pte(p4d_t p4d)
1049 {
1050 	return __pte_raw(p4d_raw(p4d));
1051 }
1052 
1053 static inline p4d_t pte_p4d(pte_t pte)
1054 {
1055 	return __p4d_raw(pte_raw(pte));
1056 }
1057 
1058 static inline int p4d_bad(p4d_t p4d)
1059 {
1060 	if (radix_enabled())
1061 		return radix__p4d_bad(p4d);
1062 	return hash__p4d_bad(p4d);
1063 }
1064 
1065 #define p4d_access_permitted p4d_access_permitted
1066 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1067 {
1068 	return pte_access_permitted(p4d_pte(p4d), write);
1069 }
1070 
1071 extern struct page *p4d_page(p4d_t p4d);
1072 
1073 /* Pointers in the page table tree are physical addresses */
1074 #define __pgtable_ptr_val(ptr)	__pa(ptr)
1075 
1076 static inline pud_t *p4d_pgtable(p4d_t p4d)
1077 {
1078 	return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
1079 }
1080 
1081 static inline pmd_t *pud_pgtable(pud_t pud)
1082 {
1083 	return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
1084 }
1085 
1086 #define pte_ERROR(e) \
1087 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1088 #define pmd_ERROR(e) \
1089 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1090 #define pud_ERROR(e) \
1091 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1092 #define pgd_ERROR(e) \
1093 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1094 
1095 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1096 {
1097 	if (radix_enabled()) {
1098 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1099 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1100 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1101 #endif
1102 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1103 	}
1104 	return hash__map_kernel_page(ea, pa, prot);
1105 }
1106 
1107 void unmap_kernel_page(unsigned long va);
1108 
1109 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1110 						   unsigned long page_size,
1111 						   unsigned long phys)
1112 {
1113 	if (radix_enabled())
1114 		return radix__vmemmap_create_mapping(start, page_size, phys);
1115 	return hash__vmemmap_create_mapping(start, page_size, phys);
1116 }
1117 
1118 #ifdef CONFIG_MEMORY_HOTPLUG
1119 static inline void vmemmap_remove_mapping(unsigned long start,
1120 					  unsigned long page_size)
1121 {
1122 	if (radix_enabled())
1123 		return radix__vmemmap_remove_mapping(start, page_size);
1124 	return hash__vmemmap_remove_mapping(start, page_size);
1125 }
1126 #endif
1127 
1128 #ifdef CONFIG_DEBUG_PAGEALLOC
1129 static inline void __kernel_map_pages(struct page *page, int numpages, int enable)
1130 {
1131 	if (radix_enabled())
1132 		radix__kernel_map_pages(page, numpages, enable);
1133 	else
1134 		hash__kernel_map_pages(page, numpages, enable);
1135 }
1136 #endif
1137 
1138 static inline pte_t pmd_pte(pmd_t pmd)
1139 {
1140 	return __pte_raw(pmd_raw(pmd));
1141 }
1142 
1143 static inline pmd_t pte_pmd(pte_t pte)
1144 {
1145 	return __pmd_raw(pte_raw(pte));
1146 }
1147 
1148 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1149 {
1150 	return (pte_t *)pmd;
1151 }
1152 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1153 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1154 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1155 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1156 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1157 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1158 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1159 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1160 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1161 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1162 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1163 
1164 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1165 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1166 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1167 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1168 
1169 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1170 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1171 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1172 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1173 #endif
1174 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1175 
1176 #ifdef CONFIG_NUMA_BALANCING
1177 static inline int pmd_protnone(pmd_t pmd)
1178 {
1179 	return pte_protnone(pmd_pte(pmd));
1180 }
1181 #endif /* CONFIG_NUMA_BALANCING */
1182 
1183 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1184 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1185 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1186 
1187 #define pmd_access_permitted pmd_access_permitted
1188 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1189 {
1190 	/*
1191 	 * pmdp_invalidate sets this combination (which is not caught by
1192 	 * !pte_present() check in pte_access_permitted), to prevent
1193 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1194 	 * synchronisation.
1195 	 *
1196 	 * This also catches the case where the PTE's hardware PRESENT bit is
1197 	 * cleared while TLB is flushed, which is suboptimal but should not
1198 	 * be frequent.
1199 	 */
1200 	if (pmd_is_serializing(pmd))
1201 		return false;
1202 
1203 	return pte_access_permitted(pmd_pte(pmd), write);
1204 }
1205 
1206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1208 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1209 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1210 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1211 		       pmd_t *pmdp, pmd_t pmd);
1212 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1213 					unsigned long addr, pmd_t *pmd)
1214 {
1215 }
1216 
1217 extern int hash__has_transparent_hugepage(void);
1218 static inline int has_transparent_hugepage(void)
1219 {
1220 	if (radix_enabled())
1221 		return radix__has_transparent_hugepage();
1222 	return hash__has_transparent_hugepage();
1223 }
1224 #define has_transparent_hugepage has_transparent_hugepage
1225 
1226 static inline unsigned long
1227 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1228 		    unsigned long clr, unsigned long set)
1229 {
1230 	if (radix_enabled())
1231 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1232 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1233 }
1234 
1235 /*
1236  * returns true for pmd migration entries, THP, devmap, hugetlb
1237  * But compile time dependent on THP config
1238  */
1239 static inline int pmd_large(pmd_t pmd)
1240 {
1241 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1242 }
1243 
1244 /*
1245  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1246  * the below will work for radix too
1247  */
1248 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1249 					      unsigned long addr, pmd_t *pmdp)
1250 {
1251 	unsigned long old;
1252 
1253 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1254 		return 0;
1255 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1256 	return ((old & _PAGE_ACCESSED) != 0);
1257 }
1258 
1259 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1260 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1261 				      pmd_t *pmdp)
1262 {
1263 	if (__pmd_write((*pmdp)))
1264 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1265 	else if (unlikely(pmd_savedwrite(*pmdp)))
1266 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1267 }
1268 
1269 /*
1270  * Only returns true for a THP. False for pmd migration entry.
1271  * We also need to return true when we come across a pte that
1272  * in between a thp split. While splitting THP, we mark the pmd
1273  * invalid (pmdp_invalidate()) before we set it with pte page
1274  * address. A pmd_trans_huge() check against a pmd entry during that time
1275  * should return true.
1276  * We should not call this on a hugetlb entry. We should check for HugeTLB
1277  * entry using vma->vm_flags
1278  * The page table walk rule is explained in Documentation/mm/transhuge.rst
1279  */
1280 static inline int pmd_trans_huge(pmd_t pmd)
1281 {
1282 	if (!pmd_present(pmd))
1283 		return false;
1284 
1285 	if (radix_enabled())
1286 		return radix__pmd_trans_huge(pmd);
1287 	return hash__pmd_trans_huge(pmd);
1288 }
1289 
1290 #define __HAVE_ARCH_PMD_SAME
1291 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1292 {
1293 	if (radix_enabled())
1294 		return radix__pmd_same(pmd_a, pmd_b);
1295 	return hash__pmd_same(pmd_a, pmd_b);
1296 }
1297 
1298 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1299 {
1300 	if (radix_enabled())
1301 		return radix__pmd_mkhuge(pmd);
1302 	return hash__pmd_mkhuge(pmd);
1303 }
1304 
1305 /*
1306  * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1307  */
1308 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1309 {
1310 #ifdef CONFIG_DEBUG_VM
1311 	if (radix_enabled())
1312 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1313 	else
1314 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1315 			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1316 #endif
1317 	return pmd;
1318 }
1319 
1320 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1321 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1322 				 unsigned long address, pmd_t *pmdp,
1323 				 pmd_t entry, int dirty);
1324 
1325 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1326 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1327 				     unsigned long address, pmd_t *pmdp);
1328 
1329 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1330 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1331 					    unsigned long addr, pmd_t *pmdp)
1332 {
1333 	if (radix_enabled())
1334 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1335 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1336 }
1337 
1338 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1339 					unsigned long address, pmd_t *pmdp)
1340 {
1341 	if (radix_enabled())
1342 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1343 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1344 }
1345 #define pmdp_collapse_flush pmdp_collapse_flush
1346 
1347 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1348 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1349 				   unsigned long addr,
1350 				   pmd_t *pmdp, int full);
1351 
1352 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1353 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1354 					      pmd_t *pmdp, pgtable_t pgtable)
1355 {
1356 	if (radix_enabled())
1357 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1358 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1359 }
1360 
1361 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1362 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1363 						    pmd_t *pmdp)
1364 {
1365 	if (radix_enabled())
1366 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1367 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1368 }
1369 
1370 #define __HAVE_ARCH_PMDP_INVALIDATE
1371 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1372 			     pmd_t *pmdp);
1373 
1374 #define pmd_move_must_withdraw pmd_move_must_withdraw
1375 struct spinlock;
1376 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1377 				  struct spinlock *old_pmd_ptl,
1378 				  struct vm_area_struct *vma);
1379 /*
1380  * Hash translation mode use the deposited table to store hash pte
1381  * slot information.
1382  */
1383 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1384 static inline bool arch_needs_pgtable_deposit(void)
1385 {
1386 	if (radix_enabled())
1387 		return false;
1388 	return true;
1389 }
1390 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1391 
1392 
1393 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1394 {
1395 	if (radix_enabled())
1396 		return radix__pmd_mkdevmap(pmd);
1397 	return hash__pmd_mkdevmap(pmd);
1398 }
1399 
1400 static inline int pmd_devmap(pmd_t pmd)
1401 {
1402 	return pte_devmap(pmd_pte(pmd));
1403 }
1404 
1405 static inline int pud_devmap(pud_t pud)
1406 {
1407 	return 0;
1408 }
1409 
1410 static inline int pgd_devmap(pgd_t pgd)
1411 {
1412 	return 0;
1413 }
1414 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1415 
1416 static inline int pud_pfn(pud_t pud)
1417 {
1418 	/*
1419 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1420 	 * check so this should never be used. If it grows another user we
1421 	 * want to know about it.
1422 	 */
1423 	BUILD_BUG();
1424 	return 0;
1425 }
1426 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1427 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1428 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1429 			     pte_t *, pte_t, pte_t);
1430 
1431 /*
1432  * Returns true for a R -> RW upgrade of pte
1433  */
1434 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1435 {
1436 	if (!(old_val & _PAGE_READ))
1437 		return false;
1438 
1439 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1440 		return true;
1441 
1442 	return false;
1443 }
1444 
1445 /*
1446  * Like pmd_huge() and pmd_large(), but works regardless of config options
1447  */
1448 #define pmd_is_leaf pmd_is_leaf
1449 #define pmd_leaf pmd_is_leaf
1450 static inline bool pmd_is_leaf(pmd_t pmd)
1451 {
1452 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1453 }
1454 
1455 #define pud_is_leaf pud_is_leaf
1456 #define pud_leaf pud_is_leaf
1457 static inline bool pud_is_leaf(pud_t pud)
1458 {
1459 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1460 }
1461 
1462 #define p4d_is_leaf p4d_is_leaf
1463 #define p4d_leaf p4d_is_leaf
1464 static inline bool p4d_is_leaf(p4d_t p4d)
1465 {
1466 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1467 }
1468 
1469 #endif /* __ASSEMBLY__ */
1470 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1471