1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/5level-fixup.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x1000000000000000UL
36 #define _RPAGE_RSV2		0x0800000000000000UL
37 #define _RPAGE_RSV3		0x0400000000000000UL
38 #define _RPAGE_RSV4		0x0200000000000000UL
39 #define _RPAGE_RSV5		0x00040UL
40 
41 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43 /*
44  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46  * differentiate between two use a SW field when invalidating.
47  *
48  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49  *
50  * This is used only when _PAGE_PRESENT is cleared.
51  */
52 #define _PAGE_INVALID		_RPAGE_SW0
53 
54 /*
55  * Top and bottom bits of RPN which can be used by hash
56  * translation mode, because we expect them to be zero
57  * otherwise.
58  */
59 #define _RPAGE_RPN0		0x01000
60 #define _RPAGE_RPN1		0x02000
61 #define _RPAGE_RPN44		0x0100000000000000UL
62 #define _RPAGE_RPN43		0x0080000000000000UL
63 #define _RPAGE_RPN42		0x0040000000000000UL
64 #define _RPAGE_RPN41		0x0020000000000000UL
65 
66 /* Max physical address bit as per radix table */
67 #define _RPAGE_PA_MAX		57
68 
69 /*
70  * Max physical address bit we will use for now.
71  *
72  * This is mostly a hardware limitation and for now Power9 has
73  * a 51 bit limit.
74  *
75  * This is different from the number of physical bit required to address
76  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
77  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
78  * number of sections we can support (SECTIONS_SHIFT).
79  *
80  * This is different from Radix page table limitation above and
81  * should always be less than that. The limit is done such that
82  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
83  * for hash linux page table specific bits.
84  *
85  * In order to be compatible with future hardware generations we keep
86  * some offsets and limit this for now to 53
87  */
88 #define _PAGE_PA_MAX		53
89 
90 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
91 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
92 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
93 #define __HAVE_ARCH_PTE_DEVMAP
94 
95 /*
96  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97  * Instead of fixing all of them, add an alternate define which
98  * maps CI pte mapping.
99  */
100 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101 /*
102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104  * and every thing below PAGE_SHIFT;
105  */
106 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 /*
108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
109  * in here, on radix we expect them to be zero.
110  */
111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114 /*
115  * user access blocked by key
116  */
117 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
120 				 _PAGE_RW | _PAGE_EXEC)
121 /*
122  * _PAGE_CHG_MASK masks of bits that are to be preserved across
123  * pgprot changes
124  */
125 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
126 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
127 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
128 
129 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
130 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
131 /*
132  * We define 2 sets of base prot bits, one for basic pages (ie,
133  * cacheable kernel and user pages) and one for non cacheable
134  * pages. We always set _PAGE_COHERENT when SMP is enabled or
135  * the processor might need it for DMA coherency.
136  */
137 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
138 #define _PAGE_BASE	(_PAGE_BASE_NC)
139 
140 /* Permission masks used to generate the __P and __S table,
141  *
142  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
143  *
144  * Write permissions imply read permissions for now (we could make write-only
145  * pages on BookE but we don't bother for now). Execute permission control is
146  * possible on platforms that define _PAGE_EXEC
147  */
148 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
149 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
150 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
151 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
152 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
153 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
154 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
155 
156 /* Permission masks used for kernel mappings */
157 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
158 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
159 				 _PAGE_TOLERANT)
160 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
161 				 _PAGE_NON_IDEMPOTENT)
162 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
163 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
164 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
165 
166 /*
167  * Protection used for kernel text. We want the debuggers to be able to
168  * set breakpoints anywhere, so don't write protect the kernel text
169  * on platforms where such control is possible.
170  */
171 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
172 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
173 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
174 #else
175 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
176 #endif
177 
178 /* Make modules code happy. We don't set RO yet */
179 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
180 #define PAGE_AGP		(PAGE_KERNEL_NC)
181 
182 #ifndef __ASSEMBLY__
183 /*
184  * page table defines
185  */
186 extern unsigned long __pte_index_size;
187 extern unsigned long __pmd_index_size;
188 extern unsigned long __pud_index_size;
189 extern unsigned long __pgd_index_size;
190 extern unsigned long __pud_cache_index;
191 #define PTE_INDEX_SIZE  __pte_index_size
192 #define PMD_INDEX_SIZE  __pmd_index_size
193 #define PUD_INDEX_SIZE  __pud_index_size
194 #define PGD_INDEX_SIZE  __pgd_index_size
195 /* pmd table use page table fragments */
196 #define PMD_CACHE_INDEX  0
197 #define PUD_CACHE_INDEX __pud_cache_index
198 /*
199  * Because of use of pte fragments and THP, size of page table
200  * are not always derived out of index size above.
201  */
202 extern unsigned long __pte_table_size;
203 extern unsigned long __pmd_table_size;
204 extern unsigned long __pud_table_size;
205 extern unsigned long __pgd_table_size;
206 #define PTE_TABLE_SIZE	__pte_table_size
207 #define PMD_TABLE_SIZE	__pmd_table_size
208 #define PUD_TABLE_SIZE	__pud_table_size
209 #define PGD_TABLE_SIZE	__pgd_table_size
210 
211 extern unsigned long __pmd_val_bits;
212 extern unsigned long __pud_val_bits;
213 extern unsigned long __pgd_val_bits;
214 #define PMD_VAL_BITS	__pmd_val_bits
215 #define PUD_VAL_BITS	__pud_val_bits
216 #define PGD_VAL_BITS	__pgd_val_bits
217 
218 extern unsigned long __pte_frag_nr;
219 #define PTE_FRAG_NR __pte_frag_nr
220 extern unsigned long __pte_frag_size_shift;
221 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
222 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
223 
224 extern unsigned long __pmd_frag_nr;
225 #define PMD_FRAG_NR __pmd_frag_nr
226 extern unsigned long __pmd_frag_size_shift;
227 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
228 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
229 
230 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
231 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
232 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
233 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
234 
235 /* PMD_SHIFT determines what a second-level page table entry can map */
236 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
237 #define PMD_SIZE	(1UL << PMD_SHIFT)
238 #define PMD_MASK	(~(PMD_SIZE-1))
239 
240 /* PUD_SHIFT determines what a third-level page table entry can map */
241 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
242 #define PUD_SIZE	(1UL << PUD_SHIFT)
243 #define PUD_MASK	(~(PUD_SIZE-1))
244 
245 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
246 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
247 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
248 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
249 
250 /* Bits to mask out from a PMD to get to the PTE page */
251 #define PMD_MASKED_BITS		0xc0000000000000ffUL
252 /* Bits to mask out from a PUD to get to the PMD page */
253 #define PUD_MASKED_BITS		0xc0000000000000ffUL
254 /* Bits to mask out from a PGD to get to the PUD page */
255 #define PGD_MASKED_BITS		0xc0000000000000ffUL
256 
257 /*
258  * Used as an indicator for rcu callback functions
259  */
260 enum pgtable_index {
261 	PTE_INDEX = 0,
262 	PMD_INDEX,
263 	PUD_INDEX,
264 	PGD_INDEX,
265 	/*
266 	 * Below are used with 4k page size and hugetlb
267 	 */
268 	HTLB_16M_INDEX,
269 	HTLB_16G_INDEX,
270 };
271 
272 extern unsigned long __vmalloc_start;
273 extern unsigned long __vmalloc_end;
274 #define VMALLOC_START	__vmalloc_start
275 #define VMALLOC_END	__vmalloc_end
276 
277 static inline unsigned int ioremap_max_order(void)
278 {
279 	if (radix_enabled())
280 		return PUD_SHIFT;
281 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
282 }
283 #define IOREMAP_MAX_ORDER ioremap_max_order()
284 
285 extern unsigned long __kernel_virt_start;
286 extern unsigned long __kernel_io_start;
287 extern unsigned long __kernel_io_end;
288 #define KERN_VIRT_START __kernel_virt_start
289 #define KERN_IO_START  __kernel_io_start
290 #define KERN_IO_END __kernel_io_end
291 
292 extern struct page *vmemmap;
293 extern unsigned long ioremap_bot;
294 extern unsigned long pci_io_base;
295 #endif /* __ASSEMBLY__ */
296 
297 #include <asm/book3s/64/hash.h>
298 #include <asm/book3s/64/radix.h>
299 
300 #ifdef CONFIG_PPC_64K_PAGES
301 #include <asm/book3s/64/pgtable-64k.h>
302 #else
303 #include <asm/book3s/64/pgtable-4k.h>
304 #endif
305 
306 #include <asm/barrier.h>
307 /*
308  * IO space itself carved into the PIO region (ISA and PHB IO space) and
309  * the ioremap space
310  *
311  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
312  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
313  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
314  */
315 #define FULL_IO_SIZE	0x80000000ul
316 #define  ISA_IO_BASE	(KERN_IO_START)
317 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
318 #define  PHB_IO_BASE	(ISA_IO_END)
319 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
320 #define IOREMAP_BASE	(PHB_IO_END)
321 #define IOREMAP_END	(KERN_IO_END)
322 
323 /* Advertise special mapping type for AGP */
324 #define HAVE_PAGE_AGP
325 
326 #ifndef __ASSEMBLY__
327 
328 /*
329  * This is the default implementation of various PTE accessors, it's
330  * used in all cases except Book3S with 64K pages where we have a
331  * concept of sub-pages
332  */
333 #ifndef __real_pte
334 
335 #define __real_pte(e, p, o)		((real_pte_t){(e)})
336 #define __rpte_to_pte(r)	((r).pte)
337 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
338 
339 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
340 	do {							         \
341 		index = 0;					         \
342 		shift = mmu_psize_defs[psize].shift;		         \
343 
344 #define pte_iterate_hashed_end() } while(0)
345 
346 /*
347  * We expect this to be called only for user addresses or kernel virtual
348  * addresses other than the linear mapping.
349  */
350 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
351 
352 #endif /* __real_pte */
353 
354 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
355 				       pte_t *ptep, unsigned long clr,
356 				       unsigned long set, int huge)
357 {
358 	if (radix_enabled())
359 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
360 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
361 }
362 /*
363  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
364  * We currently remove entries from the hashtable regardless of whether
365  * the entry was young or dirty.
366  *
367  * We should be more intelligent about this but for the moment we override
368  * these functions and force a tlb flush unconditionally
369  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
370  * function for both hash and radix.
371  */
372 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
373 					      unsigned long addr, pte_t *ptep)
374 {
375 	unsigned long old;
376 
377 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
378 		return 0;
379 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
380 	return (old & _PAGE_ACCESSED) != 0;
381 }
382 
383 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
384 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
385 ({								\
386 	int __r;						\
387 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
388 	__r;							\
389 })
390 
391 static inline int __pte_write(pte_t pte)
392 {
393 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
394 }
395 
396 #ifdef CONFIG_NUMA_BALANCING
397 #define pte_savedwrite pte_savedwrite
398 static inline bool pte_savedwrite(pte_t pte)
399 {
400 	/*
401 	 * Saved write ptes are prot none ptes that doesn't have
402 	 * privileged bit sit. We mark prot none as one which has
403 	 * present and pviliged bit set and RWX cleared. To mark
404 	 * protnone which used to have _PAGE_WRITE set we clear
405 	 * the privileged bit.
406 	 */
407 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
408 }
409 #else
410 #define pte_savedwrite pte_savedwrite
411 static inline bool pte_savedwrite(pte_t pte)
412 {
413 	return false;
414 }
415 #endif
416 
417 static inline int pte_write(pte_t pte)
418 {
419 	return __pte_write(pte) || pte_savedwrite(pte);
420 }
421 
422 static inline int pte_read(pte_t pte)
423 {
424 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
425 }
426 
427 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
428 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
429 				      pte_t *ptep)
430 {
431 	if (__pte_write(*ptep))
432 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
433 	else if (unlikely(pte_savedwrite(*ptep)))
434 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
435 }
436 
437 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
438 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
439 					   unsigned long addr, pte_t *ptep)
440 {
441 	/*
442 	 * We should not find protnone for hugetlb, but this complete the
443 	 * interface.
444 	 */
445 	if (__pte_write(*ptep))
446 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
447 	else if (unlikely(pte_savedwrite(*ptep)))
448 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
449 }
450 
451 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
452 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
453 				       unsigned long addr, pte_t *ptep)
454 {
455 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
456 	return __pte(old);
457 }
458 
459 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
460 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
461 					    unsigned long addr,
462 					    pte_t *ptep, int full)
463 {
464 	if (full && radix_enabled()) {
465 		/*
466 		 * We know that this is a full mm pte clear and
467 		 * hence can be sure there is no parallel set_pte.
468 		 */
469 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
470 	}
471 	return ptep_get_and_clear(mm, addr, ptep);
472 }
473 
474 
475 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
476 			     pte_t * ptep)
477 {
478 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
479 }
480 
481 static inline int pte_dirty(pte_t pte)
482 {
483 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
484 }
485 
486 static inline int pte_young(pte_t pte)
487 {
488 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
489 }
490 
491 static inline int pte_special(pte_t pte)
492 {
493 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
494 }
495 
496 static inline bool pte_exec(pte_t pte)
497 {
498 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
499 }
500 
501 
502 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
503 static inline bool pte_soft_dirty(pte_t pte)
504 {
505 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
506 }
507 
508 static inline pte_t pte_mksoft_dirty(pte_t pte)
509 {
510 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
511 }
512 
513 static inline pte_t pte_clear_soft_dirty(pte_t pte)
514 {
515 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
516 }
517 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
518 
519 #ifdef CONFIG_NUMA_BALANCING
520 static inline int pte_protnone(pte_t pte)
521 {
522 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
523 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
524 }
525 
526 #define pte_mk_savedwrite pte_mk_savedwrite
527 static inline pte_t pte_mk_savedwrite(pte_t pte)
528 {
529 	/*
530 	 * Used by Autonuma subsystem to preserve the write bit
531 	 * while marking the pte PROT_NONE. Only allow this
532 	 * on PROT_NONE pte
533 	 */
534 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
535 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
536 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
537 }
538 
539 #define pte_clear_savedwrite pte_clear_savedwrite
540 static inline pte_t pte_clear_savedwrite(pte_t pte)
541 {
542 	/*
543 	 * Used by KSM subsystem to make a protnone pte readonly.
544 	 */
545 	VM_BUG_ON(!pte_protnone(pte));
546 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
547 }
548 #else
549 #define pte_clear_savedwrite pte_clear_savedwrite
550 static inline pte_t pte_clear_savedwrite(pte_t pte)
551 {
552 	VM_WARN_ON(1);
553 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
554 }
555 #endif /* CONFIG_NUMA_BALANCING */
556 
557 static inline int pte_present(pte_t pte)
558 {
559 	/*
560 	 * A pte is considerent present if _PAGE_PRESENT is set.
561 	 * We also need to consider the pte present which is marked
562 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
563 	 * if we find _PAGE_PRESENT cleared.
564 	 */
565 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
566 }
567 
568 static inline bool pte_hw_valid(pte_t pte)
569 {
570 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
571 }
572 
573 #ifdef CONFIG_PPC_MEM_KEYS
574 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
575 #else
576 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
577 {
578 	return true;
579 }
580 #endif /* CONFIG_PPC_MEM_KEYS */
581 
582 static inline bool pte_user(pte_t pte)
583 {
584 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
585 }
586 
587 #define pte_access_permitted pte_access_permitted
588 static inline bool pte_access_permitted(pte_t pte, bool write)
589 {
590 	/*
591 	 * _PAGE_READ is needed for any access and will be
592 	 * cleared for PROT_NONE
593 	 */
594 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
595 		return false;
596 
597 	if (write && !pte_write(pte))
598 		return false;
599 
600 	return arch_pte_access_permitted(pte_val(pte), write, 0);
601 }
602 
603 /*
604  * Conversion functions: convert a page and protection to a page entry,
605  * and a page entry and page directory to the page they refer to.
606  *
607  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
608  * long for now.
609  */
610 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
611 {
612 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
613 		     pgprot_val(pgprot));
614 }
615 
616 static inline unsigned long pte_pfn(pte_t pte)
617 {
618 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
619 }
620 
621 /* Generic modifiers for PTE bits */
622 static inline pte_t pte_wrprotect(pte_t pte)
623 {
624 	if (unlikely(pte_savedwrite(pte)))
625 		return pte_clear_savedwrite(pte);
626 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
627 }
628 
629 static inline pte_t pte_exprotect(pte_t pte)
630 {
631 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
632 }
633 
634 static inline pte_t pte_mkclean(pte_t pte)
635 {
636 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
637 }
638 
639 static inline pte_t pte_mkold(pte_t pte)
640 {
641 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
642 }
643 
644 static inline pte_t pte_mkexec(pte_t pte)
645 {
646 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
647 }
648 
649 static inline pte_t pte_mkpte(pte_t pte)
650 {
651 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
652 }
653 
654 static inline pte_t pte_mkwrite(pte_t pte)
655 {
656 	/*
657 	 * write implies read, hence set both
658 	 */
659 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
660 }
661 
662 static inline pte_t pte_mkdirty(pte_t pte)
663 {
664 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
665 }
666 
667 static inline pte_t pte_mkyoung(pte_t pte)
668 {
669 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
670 }
671 
672 static inline pte_t pte_mkspecial(pte_t pte)
673 {
674 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
675 }
676 
677 static inline pte_t pte_mkhuge(pte_t pte)
678 {
679 	return pte;
680 }
681 
682 static inline pte_t pte_mkdevmap(pte_t pte)
683 {
684 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
685 }
686 
687 static inline pte_t pte_mkprivileged(pte_t pte)
688 {
689 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
690 }
691 
692 static inline pte_t pte_mkuser(pte_t pte)
693 {
694 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
695 }
696 
697 /*
698  * This is potentially called with a pmd as the argument, in which case it's not
699  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
700  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
701  * use in page directory entries (ie. non-ptes).
702  */
703 static inline int pte_devmap(pte_t pte)
704 {
705 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
706 
707 	return (pte_raw(pte) & mask) == mask;
708 }
709 
710 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
711 {
712 	/* FIXME!! check whether this need to be a conditional */
713 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
714 			 cpu_to_be64(pgprot_val(newprot)));
715 }
716 
717 /* Encode and de-code a swap entry */
718 #define MAX_SWAPFILES_CHECK() do { \
719 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
720 	/*							\
721 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
722 	 * We filter HPTEFLAGS on set_pte.			\
723 	 */							\
724 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
725 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
726 	} while (0)
727 
728 #define SWP_TYPE_BITS 5
729 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
730 				& ((1UL << SWP_TYPE_BITS) - 1))
731 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
732 #define __swp_entry(type, offset)	((swp_entry_t) { \
733 				((type) << _PAGE_BIT_SWAP_TYPE) \
734 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
735 /*
736  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
737  * swap type and offset we get from swap and convert that to pte to find a
738  * matching pte in linux page table.
739  * Clear bits not found in swap entries here.
740  */
741 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
742 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
743 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
744 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
745 
746 #ifdef CONFIG_MEM_SOFT_DIRTY
747 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
748 #else
749 #define _PAGE_SWP_SOFT_DIRTY	0UL
750 #endif /* CONFIG_MEM_SOFT_DIRTY */
751 
752 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
753 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
754 {
755 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
756 }
757 
758 static inline bool pte_swp_soft_dirty(pte_t pte)
759 {
760 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
761 }
762 
763 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
764 {
765 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
766 }
767 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
768 
769 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
770 {
771 	/*
772 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
773 	 */
774 	if (access & ~ptev)
775 		return false;
776 	/*
777 	 * This check for access to privilege space
778 	 */
779 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
780 		return false;
781 
782 	return true;
783 }
784 /*
785  * Generic functions with hash/radix callbacks
786  */
787 
788 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
789 					   pte_t *ptep, pte_t entry,
790 					   unsigned long address,
791 					   int psize)
792 {
793 	if (radix_enabled())
794 		return radix__ptep_set_access_flags(vma, ptep, entry,
795 						    address, psize);
796 	return hash__ptep_set_access_flags(ptep, entry);
797 }
798 
799 #define __HAVE_ARCH_PTE_SAME
800 static inline int pte_same(pte_t pte_a, pte_t pte_b)
801 {
802 	if (radix_enabled())
803 		return radix__pte_same(pte_a, pte_b);
804 	return hash__pte_same(pte_a, pte_b);
805 }
806 
807 static inline int pte_none(pte_t pte)
808 {
809 	if (radix_enabled())
810 		return radix__pte_none(pte);
811 	return hash__pte_none(pte);
812 }
813 
814 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
815 				pte_t *ptep, pte_t pte, int percpu)
816 {
817 	if (radix_enabled())
818 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
819 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
820 }
821 
822 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
823 
824 #define pgprot_noncached pgprot_noncached
825 static inline pgprot_t pgprot_noncached(pgprot_t prot)
826 {
827 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
828 			_PAGE_NON_IDEMPOTENT);
829 }
830 
831 #define pgprot_noncached_wc pgprot_noncached_wc
832 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
833 {
834 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
835 			_PAGE_TOLERANT);
836 }
837 
838 #define pgprot_cached pgprot_cached
839 static inline pgprot_t pgprot_cached(pgprot_t prot)
840 {
841 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
842 }
843 
844 #define pgprot_writecombine pgprot_writecombine
845 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
846 {
847 	return pgprot_noncached_wc(prot);
848 }
849 /*
850  * check a pte mapping have cache inhibited property
851  */
852 static inline bool pte_ci(pte_t pte)
853 {
854 	__be64 pte_v = pte_raw(pte);
855 
856 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
857 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
858 		return true;
859 	return false;
860 }
861 
862 static inline void pmd_clear(pmd_t *pmdp)
863 {
864 	*pmdp = __pmd(0);
865 }
866 
867 static inline int pmd_none(pmd_t pmd)
868 {
869 	return !pmd_raw(pmd);
870 }
871 
872 static inline int pmd_present(pmd_t pmd)
873 {
874 	/*
875 	 * A pmd is considerent present if _PAGE_PRESENT is set.
876 	 * We also need to consider the pmd present which is marked
877 	 * invalid during a split. Hence we look for _PAGE_INVALID
878 	 * if we find _PAGE_PRESENT cleared.
879 	 */
880 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
881 		return true;
882 
883 	return false;
884 }
885 
886 static inline int pmd_is_serializing(pmd_t pmd)
887 {
888 	/*
889 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
890 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
891 	 *
892 	 * This condition may also occur when flushing a pmd while flushing
893 	 * it (see ptep_modify_prot_start), so callers must ensure this
894 	 * case is fine as well.
895 	 */
896 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
897 						cpu_to_be64(_PAGE_INVALID))
898 		return true;
899 
900 	return false;
901 }
902 
903 static inline int pmd_bad(pmd_t pmd)
904 {
905 	if (radix_enabled())
906 		return radix__pmd_bad(pmd);
907 	return hash__pmd_bad(pmd);
908 }
909 
910 static inline void pud_clear(pud_t *pudp)
911 {
912 	*pudp = __pud(0);
913 }
914 
915 static inline int pud_none(pud_t pud)
916 {
917 	return !pud_raw(pud);
918 }
919 
920 static inline int pud_present(pud_t pud)
921 {
922 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
923 }
924 
925 extern struct page *pud_page(pud_t pud);
926 extern struct page *pmd_page(pmd_t pmd);
927 static inline pte_t pud_pte(pud_t pud)
928 {
929 	return __pte_raw(pud_raw(pud));
930 }
931 
932 static inline pud_t pte_pud(pte_t pte)
933 {
934 	return __pud_raw(pte_raw(pte));
935 }
936 #define pud_write(pud)		pte_write(pud_pte(pud))
937 
938 static inline int pud_bad(pud_t pud)
939 {
940 	if (radix_enabled())
941 		return radix__pud_bad(pud);
942 	return hash__pud_bad(pud);
943 }
944 
945 #define pud_access_permitted pud_access_permitted
946 static inline bool pud_access_permitted(pud_t pud, bool write)
947 {
948 	return pte_access_permitted(pud_pte(pud), write);
949 }
950 
951 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
952 
953 static inline void pgd_clear(pgd_t *pgdp)
954 {
955 	*pgdp = __pgd(0);
956 }
957 
958 static inline int pgd_none(pgd_t pgd)
959 {
960 	return !pgd_raw(pgd);
961 }
962 
963 static inline int pgd_present(pgd_t pgd)
964 {
965 	return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
966 }
967 
968 static inline pte_t pgd_pte(pgd_t pgd)
969 {
970 	return __pte_raw(pgd_raw(pgd));
971 }
972 
973 static inline pgd_t pte_pgd(pte_t pte)
974 {
975 	return __pgd_raw(pte_raw(pte));
976 }
977 
978 static inline int pgd_bad(pgd_t pgd)
979 {
980 	if (radix_enabled())
981 		return radix__pgd_bad(pgd);
982 	return hash__pgd_bad(pgd);
983 }
984 
985 #define pgd_access_permitted pgd_access_permitted
986 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
987 {
988 	return pte_access_permitted(pgd_pte(pgd), write);
989 }
990 
991 extern struct page *pgd_page(pgd_t pgd);
992 
993 /* Pointers in the page table tree are physical addresses */
994 #define __pgtable_ptr_val(ptr)	__pa(ptr)
995 
996 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
997 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
998 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
999 
1000 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
1001 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
1002 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
1003 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
1004 
1005 /*
1006  * Find an entry in a page-table-directory.  We combine the address region
1007  * (the high order N bits) and the pgd portion of the address.
1008  */
1009 
1010 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
1011 
1012 #define pud_offset(pgdp, addr)	\
1013 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1014 #define pmd_offset(pudp,addr) \
1015 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1016 #define pte_offset_kernel(dir,addr) \
1017 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1018 
1019 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
1020 
1021 static inline void pte_unmap(pte_t *pte) { }
1022 
1023 /* to find an entry in a kernel page-table-directory */
1024 /* This now only contains the vmalloc pages */
1025 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1026 
1027 #define pte_ERROR(e) \
1028 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1029 #define pmd_ERROR(e) \
1030 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1031 #define pud_ERROR(e) \
1032 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1033 #define pgd_ERROR(e) \
1034 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1035 
1036 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1037 {
1038 	if (radix_enabled()) {
1039 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1040 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1041 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1042 #endif
1043 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1044 	}
1045 	return hash__map_kernel_page(ea, pa, prot);
1046 }
1047 
1048 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1049 						   unsigned long page_size,
1050 						   unsigned long phys)
1051 {
1052 	if (radix_enabled())
1053 		return radix__vmemmap_create_mapping(start, page_size, phys);
1054 	return hash__vmemmap_create_mapping(start, page_size, phys);
1055 }
1056 
1057 #ifdef CONFIG_MEMORY_HOTPLUG
1058 static inline void vmemmap_remove_mapping(unsigned long start,
1059 					  unsigned long page_size)
1060 {
1061 	if (radix_enabled())
1062 		return radix__vmemmap_remove_mapping(start, page_size);
1063 	return hash__vmemmap_remove_mapping(start, page_size);
1064 }
1065 #endif
1066 
1067 static inline pte_t pmd_pte(pmd_t pmd)
1068 {
1069 	return __pte_raw(pmd_raw(pmd));
1070 }
1071 
1072 static inline pmd_t pte_pmd(pte_t pte)
1073 {
1074 	return __pmd_raw(pte_raw(pte));
1075 }
1076 
1077 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1078 {
1079 	return (pte_t *)pmd;
1080 }
1081 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1082 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1083 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1084 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1085 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1086 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1087 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1088 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1089 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1090 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1091 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1092 
1093 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1094 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1095 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1096 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1097 
1098 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1099 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1100 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1101 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1102 #endif
1103 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1104 
1105 #ifdef CONFIG_NUMA_BALANCING
1106 static inline int pmd_protnone(pmd_t pmd)
1107 {
1108 	return pte_protnone(pmd_pte(pmd));
1109 }
1110 #endif /* CONFIG_NUMA_BALANCING */
1111 
1112 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1113 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1114 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1115 
1116 #define pmd_access_permitted pmd_access_permitted
1117 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1118 {
1119 	/*
1120 	 * pmdp_invalidate sets this combination (which is not caught by
1121 	 * !pte_present() check in pte_access_permitted), to prevent
1122 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1123 	 * synchronisation.
1124 	 *
1125 	 * This also catches the case where the PTE's hardware PRESENT bit is
1126 	 * cleared while TLB is flushed, which is suboptimal but should not
1127 	 * be frequent.
1128 	 */
1129 	if (pmd_is_serializing(pmd))
1130 		return false;
1131 
1132 	return pte_access_permitted(pmd_pte(pmd), write);
1133 }
1134 
1135 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1136 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1137 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1138 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1139 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1140 		       pmd_t *pmdp, pmd_t pmd);
1141 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1142 				 pmd_t *pmd);
1143 extern int hash__has_transparent_hugepage(void);
1144 static inline int has_transparent_hugepage(void)
1145 {
1146 	if (radix_enabled())
1147 		return radix__has_transparent_hugepage();
1148 	return hash__has_transparent_hugepage();
1149 }
1150 #define has_transparent_hugepage has_transparent_hugepage
1151 
1152 static inline unsigned long
1153 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1154 		    unsigned long clr, unsigned long set)
1155 {
1156 	if (radix_enabled())
1157 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1158 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1159 }
1160 
1161 /*
1162  * returns true for pmd migration entries, THP, devmap, hugetlb
1163  * But compile time dependent on THP config
1164  */
1165 static inline int pmd_large(pmd_t pmd)
1166 {
1167 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1168 }
1169 
1170 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1171 {
1172 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1173 }
1174 /*
1175  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1176  * the below will work for radix too
1177  */
1178 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1179 					      unsigned long addr, pmd_t *pmdp)
1180 {
1181 	unsigned long old;
1182 
1183 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1184 		return 0;
1185 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1186 	return ((old & _PAGE_ACCESSED) != 0);
1187 }
1188 
1189 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1190 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1191 				      pmd_t *pmdp)
1192 {
1193 	if (__pmd_write((*pmdp)))
1194 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1195 	else if (unlikely(pmd_savedwrite(*pmdp)))
1196 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1197 }
1198 
1199 /*
1200  * Only returns true for a THP. False for pmd migration entry.
1201  * We also need to return true when we come across a pte that
1202  * in between a thp split. While splitting THP, we mark the pmd
1203  * invalid (pmdp_invalidate()) before we set it with pte page
1204  * address. A pmd_trans_huge() check against a pmd entry during that time
1205  * should return true.
1206  * We should not call this on a hugetlb entry. We should check for HugeTLB
1207  * entry using vma->vm_flags
1208  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1209  */
1210 static inline int pmd_trans_huge(pmd_t pmd)
1211 {
1212 	if (!pmd_present(pmd))
1213 		return false;
1214 
1215 	if (radix_enabled())
1216 		return radix__pmd_trans_huge(pmd);
1217 	return hash__pmd_trans_huge(pmd);
1218 }
1219 
1220 #define __HAVE_ARCH_PMD_SAME
1221 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1222 {
1223 	if (radix_enabled())
1224 		return radix__pmd_same(pmd_a, pmd_b);
1225 	return hash__pmd_same(pmd_a, pmd_b);
1226 }
1227 
1228 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1229 {
1230 	if (radix_enabled())
1231 		return radix__pmd_mkhuge(pmd);
1232 	return hash__pmd_mkhuge(pmd);
1233 }
1234 
1235 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1236 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1237 				 unsigned long address, pmd_t *pmdp,
1238 				 pmd_t entry, int dirty);
1239 
1240 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1241 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1242 				     unsigned long address, pmd_t *pmdp);
1243 
1244 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1245 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1246 					    unsigned long addr, pmd_t *pmdp)
1247 {
1248 	if (radix_enabled())
1249 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1250 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1251 }
1252 
1253 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1254 					unsigned long address, pmd_t *pmdp)
1255 {
1256 	if (radix_enabled())
1257 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1258 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1259 }
1260 #define pmdp_collapse_flush pmdp_collapse_flush
1261 
1262 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1263 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1264 					      pmd_t *pmdp, pgtable_t pgtable)
1265 {
1266 	if (radix_enabled())
1267 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1268 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1269 }
1270 
1271 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1272 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1273 						    pmd_t *pmdp)
1274 {
1275 	if (radix_enabled())
1276 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1277 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1278 }
1279 
1280 #define __HAVE_ARCH_PMDP_INVALIDATE
1281 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1282 			     pmd_t *pmdp);
1283 
1284 #define pmd_move_must_withdraw pmd_move_must_withdraw
1285 struct spinlock;
1286 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1287 				  struct spinlock *old_pmd_ptl,
1288 				  struct vm_area_struct *vma);
1289 /*
1290  * Hash translation mode use the deposited table to store hash pte
1291  * slot information.
1292  */
1293 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1294 static inline bool arch_needs_pgtable_deposit(void)
1295 {
1296 	if (radix_enabled())
1297 		return false;
1298 	return true;
1299 }
1300 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1301 
1302 
1303 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1304 {
1305 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1306 }
1307 
1308 static inline int pmd_devmap(pmd_t pmd)
1309 {
1310 	return pte_devmap(pmd_pte(pmd));
1311 }
1312 
1313 static inline int pud_devmap(pud_t pud)
1314 {
1315 	return 0;
1316 }
1317 
1318 static inline int pgd_devmap(pgd_t pgd)
1319 {
1320 	return 0;
1321 }
1322 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1323 
1324 static inline int pud_pfn(pud_t pud)
1325 {
1326 	/*
1327 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1328 	 * check so this should never be used. If it grows another user we
1329 	 * want to know about it.
1330 	 */
1331 	BUILD_BUG();
1332 	return 0;
1333 }
1334 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1335 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1336 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1337 			     pte_t *, pte_t, pte_t);
1338 
1339 /*
1340  * Returns true for a R -> RW upgrade of pte
1341  */
1342 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1343 {
1344 	if (!(old_val & _PAGE_READ))
1345 		return false;
1346 
1347 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1348 		return true;
1349 
1350 	return false;
1351 }
1352 
1353 /*
1354  * Like pmd_huge() and pmd_large(), but works regardless of config options
1355  */
1356 #define pmd_is_leaf pmd_is_leaf
1357 static inline bool pmd_is_leaf(pmd_t pmd)
1358 {
1359 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1360 }
1361 
1362 #define pud_is_leaf pud_is_leaf
1363 static inline bool pud_is_leaf(pud_t pud)
1364 {
1365 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1366 }
1367 
1368 #define pgd_is_leaf pgd_is_leaf
1369 static inline bool pgd_is_leaf(pgd_t pgd)
1370 {
1371 	return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PTE));
1372 }
1373 
1374 #endif /* __ASSEMBLY__ */
1375 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1376