1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 4 5 #include <asm-generic/5level-fixup.h> 6 7 #ifndef __ASSEMBLY__ 8 #include <linux/mmdebug.h> 9 #include <linux/bug.h> 10 #endif 11 12 /* 13 * Common bits between hash and Radix page table 14 */ 15 #define _PAGE_BIT_SWAP_TYPE 0 16 17 #define _PAGE_NA 0 18 #define _PAGE_RO 0 19 #define _PAGE_USER 0 20 21 #define _PAGE_EXEC 0x00001 /* execute permission */ 22 #define _PAGE_WRITE 0x00002 /* write access allowed */ 23 #define _PAGE_READ 0x00004 /* read access allowed */ 24 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 25 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) 26 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */ 27 #define _PAGE_SAO 0x00010 /* Strong access order */ 28 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */ 29 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */ 30 #define _PAGE_DIRTY 0x00080 /* C: page changed */ 31 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */ 32 /* 33 * Software bits 34 */ 35 #define _RPAGE_SW0 0x2000000000000000UL 36 #define _RPAGE_SW1 0x00800 37 #define _RPAGE_SW2 0x00400 38 #define _RPAGE_SW3 0x00200 39 #define _RPAGE_RSV1 0x1000000000000000UL 40 #define _RPAGE_RSV2 0x0800000000000000UL 41 #define _RPAGE_RSV3 0x0400000000000000UL 42 #define _RPAGE_RSV4 0x0200000000000000UL 43 #define _RPAGE_RSV5 0x00040UL 44 45 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */ 46 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */ 47 48 /* 49 * Top and bottom bits of RPN which can be used by hash 50 * translation mode, because we expect them to be zero 51 * otherwise. 52 */ 53 #define _RPAGE_RPN0 0x01000 54 #define _RPAGE_RPN1 0x02000 55 #define _RPAGE_RPN44 0x0100000000000000UL 56 #define _RPAGE_RPN43 0x0080000000000000UL 57 #define _RPAGE_RPN42 0x0040000000000000UL 58 #define _RPAGE_RPN41 0x0020000000000000UL 59 60 /* Max physical address bit as per radix table */ 61 #define _RPAGE_PA_MAX 57 62 63 #ifdef CONFIG_PPC_MEM_KEYS 64 #ifdef CONFIG_PPC_64K_PAGES 65 #define H_PTE_PKEY_BIT0 _RPAGE_RSV1 66 #define H_PTE_PKEY_BIT1 _RPAGE_RSV2 67 #else /* CONFIG_PPC_64K_PAGES */ 68 #define H_PTE_PKEY_BIT0 0 /* _RPAGE_RSV1 is not available */ 69 #define H_PTE_PKEY_BIT1 0 /* _RPAGE_RSV2 is not available */ 70 #endif /* CONFIG_PPC_64K_PAGES */ 71 #define H_PTE_PKEY_BIT2 _RPAGE_RSV3 72 #define H_PTE_PKEY_BIT3 _RPAGE_RSV4 73 #define H_PTE_PKEY_BIT4 _RPAGE_RSV5 74 #else /* CONFIG_PPC_MEM_KEYS */ 75 #define H_PTE_PKEY_BIT0 0 76 #define H_PTE_PKEY_BIT1 0 77 #define H_PTE_PKEY_BIT2 0 78 #define H_PTE_PKEY_BIT3 0 79 #define H_PTE_PKEY_BIT4 0 80 #endif /* CONFIG_PPC_MEM_KEYS */ 81 82 /* 83 * Max physical address bit we will use for now. 84 * 85 * This is mostly a hardware limitation and for now Power9 has 86 * a 51 bit limit. 87 * 88 * This is different from the number of physical bit required to address 89 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS. 90 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum 91 * number of sections we can support (SECTIONS_SHIFT). 92 * 93 * This is different from Radix page table limitation above and 94 * should always be less than that. The limit is done such that 95 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX 96 * for hash linux page table specific bits. 97 * 98 * In order to be compatible with future hardware generations we keep 99 * some offsets and limit this for now to 53 100 */ 101 #define _PAGE_PA_MAX 53 102 103 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */ 104 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */ 105 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */ 106 #define __HAVE_ARCH_PTE_DEVMAP 107 108 /* 109 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE 110 * Instead of fixing all of them, add an alternate define which 111 * maps CI pte mapping. 112 */ 113 #define _PAGE_NO_CACHE _PAGE_TOLERANT 114 /* 115 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side 116 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX 117 * and every thing below PAGE_SHIFT; 118 */ 119 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK)) 120 /* 121 * set of bits not changed in pmd_modify. Even though we have hash specific bits 122 * in here, on radix we expect them to be zero. 123 */ 124 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 125 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \ 126 _PAGE_SOFT_DIRTY) 127 /* 128 * user access blocked by key 129 */ 130 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY) 131 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ) 132 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \ 133 _PAGE_RW | _PAGE_EXEC) 134 /* 135 * No page size encoding in the linux PTE 136 */ 137 #define _PAGE_PSIZE 0 138 /* 139 * _PAGE_CHG_MASK masks of bits that are to be preserved across 140 * pgprot changes 141 */ 142 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 143 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \ 144 _PAGE_SOFT_DIRTY) 145 146 #define H_PTE_PKEY (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \ 147 H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4) 148 /* 149 * Mask of bits returned by pte_pgprot() 150 */ 151 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \ 152 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \ 153 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \ 154 _PAGE_SOFT_DIRTY | H_PTE_PKEY) 155 /* 156 * We define 2 sets of base prot bits, one for basic pages (ie, 157 * cacheable kernel and user pages) and one for non cacheable 158 * pages. We always set _PAGE_COHERENT when SMP is enabled or 159 * the processor might need it for DMA coherency. 160 */ 161 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE) 162 #define _PAGE_BASE (_PAGE_BASE_NC) 163 164 /* Permission masks used to generate the __P and __S table, 165 * 166 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h 167 * 168 * Write permissions imply read permissions for now (we could make write-only 169 * pages on BookE but we don't bother for now). Execute permission control is 170 * possible on platforms that define _PAGE_EXEC 171 * 172 * Note due to the way vm flags are laid out, the bits are XWR 173 */ 174 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED) 175 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW) 176 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC) 177 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ) 178 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 179 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ) 180 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 181 182 #define __P000 PAGE_NONE 183 #define __P001 PAGE_READONLY 184 #define __P010 PAGE_COPY 185 #define __P011 PAGE_COPY 186 #define __P100 PAGE_READONLY_X 187 #define __P101 PAGE_READONLY_X 188 #define __P110 PAGE_COPY_X 189 #define __P111 PAGE_COPY_X 190 191 #define __S000 PAGE_NONE 192 #define __S001 PAGE_READONLY 193 #define __S010 PAGE_SHARED 194 #define __S011 PAGE_SHARED 195 #define __S100 PAGE_READONLY_X 196 #define __S101 PAGE_READONLY_X 197 #define __S110 PAGE_SHARED_X 198 #define __S111 PAGE_SHARED_X 199 200 /* Permission masks used for kernel mappings */ 201 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 202 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 203 _PAGE_TOLERANT) 204 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 205 _PAGE_NON_IDEMPOTENT) 206 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 207 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 208 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 209 210 /* 211 * Protection used for kernel text. We want the debuggers to be able to 212 * set breakpoints anywhere, so don't write protect the kernel text 213 * on platforms where such control is possible. 214 */ 215 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \ 216 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) 217 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X 218 #else 219 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX 220 #endif 221 222 /* Make modules code happy. We don't set RO yet */ 223 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X 224 #define PAGE_AGP (PAGE_KERNEL_NC) 225 226 #ifndef __ASSEMBLY__ 227 /* 228 * page table defines 229 */ 230 extern unsigned long __pte_index_size; 231 extern unsigned long __pmd_index_size; 232 extern unsigned long __pud_index_size; 233 extern unsigned long __pgd_index_size; 234 extern unsigned long __pmd_cache_index; 235 extern unsigned long __pud_cache_index; 236 #define PTE_INDEX_SIZE __pte_index_size 237 #define PMD_INDEX_SIZE __pmd_index_size 238 #define PUD_INDEX_SIZE __pud_index_size 239 #define PGD_INDEX_SIZE __pgd_index_size 240 #define PMD_CACHE_INDEX __pmd_cache_index 241 #define PUD_CACHE_INDEX __pud_cache_index 242 /* 243 * Because of use of pte fragments and THP, size of page table 244 * are not always derived out of index size above. 245 */ 246 extern unsigned long __pte_table_size; 247 extern unsigned long __pmd_table_size; 248 extern unsigned long __pud_table_size; 249 extern unsigned long __pgd_table_size; 250 #define PTE_TABLE_SIZE __pte_table_size 251 #define PMD_TABLE_SIZE __pmd_table_size 252 #define PUD_TABLE_SIZE __pud_table_size 253 #define PGD_TABLE_SIZE __pgd_table_size 254 255 extern unsigned long __pmd_val_bits; 256 extern unsigned long __pud_val_bits; 257 extern unsigned long __pgd_val_bits; 258 #define PMD_VAL_BITS __pmd_val_bits 259 #define PUD_VAL_BITS __pud_val_bits 260 #define PGD_VAL_BITS __pgd_val_bits 261 262 extern unsigned long __pte_frag_nr; 263 #define PTE_FRAG_NR __pte_frag_nr 264 extern unsigned long __pte_frag_size_shift; 265 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift 266 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) 267 268 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 269 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) 270 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE) 271 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 272 273 /* PMD_SHIFT determines what a second-level page table entry can map */ 274 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 275 #define PMD_SIZE (1UL << PMD_SHIFT) 276 #define PMD_MASK (~(PMD_SIZE-1)) 277 278 /* PUD_SHIFT determines what a third-level page table entry can map */ 279 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) 280 #define PUD_SIZE (1UL << PUD_SHIFT) 281 #define PUD_MASK (~(PUD_SIZE-1)) 282 283 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ 284 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE) 285 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 286 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 287 288 /* Bits to mask out from a PMD to get to the PTE page */ 289 #define PMD_MASKED_BITS 0xc0000000000000ffUL 290 /* Bits to mask out from a PUD to get to the PMD page */ 291 #define PUD_MASKED_BITS 0xc0000000000000ffUL 292 /* Bits to mask out from a PGD to get to the PUD page */ 293 #define PGD_MASKED_BITS 0xc0000000000000ffUL 294 295 extern unsigned long __vmalloc_start; 296 extern unsigned long __vmalloc_end; 297 #define VMALLOC_START __vmalloc_start 298 #define VMALLOC_END __vmalloc_end 299 300 extern unsigned long __kernel_virt_start; 301 extern unsigned long __kernel_virt_size; 302 extern unsigned long __kernel_io_start; 303 #define KERN_VIRT_START __kernel_virt_start 304 #define KERN_VIRT_SIZE __kernel_virt_size 305 #define KERN_IO_START __kernel_io_start 306 extern struct page *vmemmap; 307 extern unsigned long ioremap_bot; 308 extern unsigned long pci_io_base; 309 #endif /* __ASSEMBLY__ */ 310 311 #include <asm/book3s/64/hash.h> 312 #include <asm/book3s/64/radix.h> 313 314 #ifdef CONFIG_PPC_64K_PAGES 315 #include <asm/book3s/64/pgtable-64k.h> 316 #else 317 #include <asm/book3s/64/pgtable-4k.h> 318 #endif 319 320 #include <asm/barrier.h> 321 /* 322 * The second half of the kernel virtual space is used for IO mappings, 323 * it's itself carved into the PIO region (ISA and PHB IO space) and 324 * the ioremap space 325 * 326 * ISA_IO_BASE = KERN_IO_START, 64K reserved area 327 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces 328 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE 329 */ 330 #define FULL_IO_SIZE 0x80000000ul 331 #define ISA_IO_BASE (KERN_IO_START) 332 #define ISA_IO_END (KERN_IO_START + 0x10000ul) 333 #define PHB_IO_BASE (ISA_IO_END) 334 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) 335 #define IOREMAP_BASE (PHB_IO_END) 336 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE) 337 338 /* Advertise special mapping type for AGP */ 339 #define HAVE_PAGE_AGP 340 341 /* Advertise support for _PAGE_SPECIAL */ 342 #define __HAVE_ARCH_PTE_SPECIAL 343 344 #ifndef __ASSEMBLY__ 345 346 /* 347 * This is the default implementation of various PTE accessors, it's 348 * used in all cases except Book3S with 64K pages where we have a 349 * concept of sub-pages 350 */ 351 #ifndef __real_pte 352 353 #define __real_pte(e, p, o) ((real_pte_t){(e)}) 354 #define __rpte_to_pte(r) ((r).pte) 355 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) 356 357 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ 358 do { \ 359 index = 0; \ 360 shift = mmu_psize_defs[psize].shift; \ 361 362 #define pte_iterate_hashed_end() } while(0) 363 364 /* 365 * We expect this to be called only for user addresses or kernel virtual 366 * addresses other than the linear mapping. 367 */ 368 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K 369 370 #endif /* __real_pte */ 371 372 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, 373 pte_t *ptep, unsigned long clr, 374 unsigned long set, int huge) 375 { 376 if (radix_enabled()) 377 return radix__pte_update(mm, addr, ptep, clr, set, huge); 378 return hash__pte_update(mm, addr, ptep, clr, set, huge); 379 } 380 /* 381 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update. 382 * We currently remove entries from the hashtable regardless of whether 383 * the entry was young or dirty. 384 * 385 * We should be more intelligent about this but for the moment we override 386 * these functions and force a tlb flush unconditionally 387 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same 388 * function for both hash and radix. 389 */ 390 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 391 unsigned long addr, pte_t *ptep) 392 { 393 unsigned long old; 394 395 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 396 return 0; 397 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 398 return (old & _PAGE_ACCESSED) != 0; 399 } 400 401 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 402 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 403 ({ \ 404 int __r; \ 405 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 406 __r; \ 407 }) 408 409 static inline int __pte_write(pte_t pte) 410 { 411 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE)); 412 } 413 414 #ifdef CONFIG_NUMA_BALANCING 415 #define pte_savedwrite pte_savedwrite 416 static inline bool pte_savedwrite(pte_t pte) 417 { 418 /* 419 * Saved write ptes are prot none ptes that doesn't have 420 * privileged bit sit. We mark prot none as one which has 421 * present and pviliged bit set and RWX cleared. To mark 422 * protnone which used to have _PAGE_WRITE set we clear 423 * the privileged bit. 424 */ 425 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED)); 426 } 427 #else 428 #define pte_savedwrite pte_savedwrite 429 static inline bool pte_savedwrite(pte_t pte) 430 { 431 return false; 432 } 433 #endif 434 435 static inline int pte_write(pte_t pte) 436 { 437 return __pte_write(pte) || pte_savedwrite(pte); 438 } 439 440 static inline int pte_read(pte_t pte) 441 { 442 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ)); 443 } 444 445 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 446 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 447 pte_t *ptep) 448 { 449 if (__pte_write(*ptep)) 450 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); 451 else if (unlikely(pte_savedwrite(*ptep))) 452 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0); 453 } 454 455 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 456 unsigned long addr, pte_t *ptep) 457 { 458 /* 459 * We should not find protnone for hugetlb, but this complete the 460 * interface. 461 */ 462 if (__pte_write(*ptep)) 463 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1); 464 else if (unlikely(pte_savedwrite(*ptep))) 465 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1); 466 } 467 468 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 469 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 470 unsigned long addr, pte_t *ptep) 471 { 472 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); 473 return __pte(old); 474 } 475 476 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 477 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 478 unsigned long addr, 479 pte_t *ptep, int full) 480 { 481 if (full && radix_enabled()) { 482 /* 483 * Let's skip the DD1 style pte update here. We know that 484 * this is a full mm pte clear and hence can be sure there is 485 * no parallel set_pte. 486 */ 487 return radix__ptep_get_and_clear_full(mm, addr, ptep, full); 488 } 489 return ptep_get_and_clear(mm, addr, ptep); 490 } 491 492 493 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 494 pte_t * ptep) 495 { 496 pte_update(mm, addr, ptep, ~0UL, 0, 0); 497 } 498 499 static inline int pte_dirty(pte_t pte) 500 { 501 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY)); 502 } 503 504 static inline int pte_young(pte_t pte) 505 { 506 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED)); 507 } 508 509 static inline int pte_special(pte_t pte) 510 { 511 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL)); 512 } 513 514 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } 515 516 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 517 static inline bool pte_soft_dirty(pte_t pte) 518 { 519 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY)); 520 } 521 522 static inline pte_t pte_mksoft_dirty(pte_t pte) 523 { 524 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY); 525 } 526 527 static inline pte_t pte_clear_soft_dirty(pte_t pte) 528 { 529 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY); 530 } 531 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 532 533 #ifdef CONFIG_NUMA_BALANCING 534 static inline int pte_protnone(pte_t pte) 535 { 536 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) == 537 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); 538 } 539 540 #define pte_mk_savedwrite pte_mk_savedwrite 541 static inline pte_t pte_mk_savedwrite(pte_t pte) 542 { 543 /* 544 * Used by Autonuma subsystem to preserve the write bit 545 * while marking the pte PROT_NONE. Only allow this 546 * on PROT_NONE pte 547 */ 548 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) != 549 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED)); 550 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED); 551 } 552 553 #define pte_clear_savedwrite pte_clear_savedwrite 554 static inline pte_t pte_clear_savedwrite(pte_t pte) 555 { 556 /* 557 * Used by KSM subsystem to make a protnone pte readonly. 558 */ 559 VM_BUG_ON(!pte_protnone(pte)); 560 return __pte(pte_val(pte) | _PAGE_PRIVILEGED); 561 } 562 #else 563 #define pte_clear_savedwrite pte_clear_savedwrite 564 static inline pte_t pte_clear_savedwrite(pte_t pte) 565 { 566 VM_WARN_ON(1); 567 return __pte(pte_val(pte) & ~_PAGE_WRITE); 568 } 569 #endif /* CONFIG_NUMA_BALANCING */ 570 571 static inline int pte_present(pte_t pte) 572 { 573 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT)); 574 } 575 576 #ifdef CONFIG_PPC_MEM_KEYS 577 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute); 578 #else 579 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute) 580 { 581 return true; 582 } 583 #endif /* CONFIG_PPC_MEM_KEYS */ 584 585 #define pte_access_permitted pte_access_permitted 586 static inline bool pte_access_permitted(pte_t pte, bool write) 587 { 588 unsigned long pteval = pte_val(pte); 589 /* Also check for pte_user */ 590 unsigned long clear_pte_bits = _PAGE_PRIVILEGED; 591 /* 592 * _PAGE_READ is needed for any access and will be 593 * cleared for PROT_NONE 594 */ 595 unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ; 596 597 if (write) 598 need_pte_bits |= _PAGE_WRITE; 599 600 if ((pteval & need_pte_bits) != need_pte_bits) 601 return false; 602 603 if ((pteval & clear_pte_bits) == clear_pte_bits) 604 return false; 605 606 return arch_pte_access_permitted(pte_val(pte), write, 0); 607 } 608 609 /* 610 * Conversion functions: convert a page and protection to a page entry, 611 * and a page entry and page directory to the page they refer to. 612 * 613 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 614 * long for now. 615 */ 616 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 617 { 618 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) | 619 pgprot_val(pgprot)); 620 } 621 622 static inline unsigned long pte_pfn(pte_t pte) 623 { 624 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT; 625 } 626 627 /* Generic modifiers for PTE bits */ 628 static inline pte_t pte_wrprotect(pte_t pte) 629 { 630 if (unlikely(pte_savedwrite(pte))) 631 return pte_clear_savedwrite(pte); 632 return __pte(pte_val(pte) & ~_PAGE_WRITE); 633 } 634 635 static inline pte_t pte_mkclean(pte_t pte) 636 { 637 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 638 } 639 640 static inline pte_t pte_mkold(pte_t pte) 641 { 642 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 643 } 644 645 static inline pte_t pte_mkwrite(pte_t pte) 646 { 647 /* 648 * write implies read, hence set both 649 */ 650 return __pte(pte_val(pte) | _PAGE_RW); 651 } 652 653 static inline pte_t pte_mkdirty(pte_t pte) 654 { 655 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 656 } 657 658 static inline pte_t pte_mkyoung(pte_t pte) 659 { 660 return __pte(pte_val(pte) | _PAGE_ACCESSED); 661 } 662 663 static inline pte_t pte_mkspecial(pte_t pte) 664 { 665 return __pte(pte_val(pte) | _PAGE_SPECIAL); 666 } 667 668 static inline pte_t pte_mkhuge(pte_t pte) 669 { 670 return pte; 671 } 672 673 static inline pte_t pte_mkdevmap(pte_t pte) 674 { 675 return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP); 676 } 677 678 /* 679 * This is potentially called with a pmd as the argument, in which case it's not 680 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set. 681 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software 682 * use in page directory entries (ie. non-ptes). 683 */ 684 static inline int pte_devmap(pte_t pte) 685 { 686 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE); 687 688 return (pte_raw(pte) & mask) == mask; 689 } 690 691 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 692 { 693 /* FIXME!! check whether this need to be a conditional */ 694 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 695 } 696 697 static inline bool pte_user(pte_t pte) 698 { 699 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED)); 700 } 701 702 /* Encode and de-code a swap entry */ 703 #define MAX_SWAPFILES_CHECK() do { \ 704 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ 705 /* \ 706 * Don't have overlapping bits with _PAGE_HPTEFLAGS \ 707 * We filter HPTEFLAGS on set_pte. \ 708 */ \ 709 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \ 710 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \ 711 } while (0) 712 /* 713 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT; 714 */ 715 #define SWP_TYPE_BITS 5 716 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ 717 & ((1UL << SWP_TYPE_BITS) - 1)) 718 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT) 719 #define __swp_entry(type, offset) ((swp_entry_t) { \ 720 ((type) << _PAGE_BIT_SWAP_TYPE) \ 721 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)}) 722 /* 723 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from 724 * swap type and offset we get from swap and convert that to pte to find a 725 * matching pte in linux page table. 726 * Clear bits not found in swap entries here. 727 */ 728 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE }) 729 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE) 730 731 #ifdef CONFIG_MEM_SOFT_DIRTY 732 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE)) 733 #else 734 #define _PAGE_SWP_SOFT_DIRTY 0UL 735 #endif /* CONFIG_MEM_SOFT_DIRTY */ 736 737 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 738 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 739 { 740 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY); 741 } 742 743 static inline bool pte_swp_soft_dirty(pte_t pte) 744 { 745 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); 746 } 747 748 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 749 { 750 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY); 751 } 752 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 753 754 static inline bool check_pte_access(unsigned long access, unsigned long ptev) 755 { 756 /* 757 * This check for _PAGE_RWX and _PAGE_PRESENT bits 758 */ 759 if (access & ~ptev) 760 return false; 761 /* 762 * This check for access to privilege space 763 */ 764 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED)) 765 return false; 766 767 return true; 768 } 769 /* 770 * Generic functions with hash/radix callbacks 771 */ 772 773 static inline void __ptep_set_access_flags(struct mm_struct *mm, 774 pte_t *ptep, pte_t entry, 775 unsigned long address) 776 { 777 if (radix_enabled()) 778 return radix__ptep_set_access_flags(mm, ptep, entry, address); 779 return hash__ptep_set_access_flags(ptep, entry); 780 } 781 782 #define __HAVE_ARCH_PTE_SAME 783 static inline int pte_same(pte_t pte_a, pte_t pte_b) 784 { 785 if (radix_enabled()) 786 return radix__pte_same(pte_a, pte_b); 787 return hash__pte_same(pte_a, pte_b); 788 } 789 790 static inline int pte_none(pte_t pte) 791 { 792 if (radix_enabled()) 793 return radix__pte_none(pte); 794 return hash__pte_none(pte); 795 } 796 797 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 798 pte_t *ptep, pte_t pte, int percpu) 799 { 800 if (radix_enabled()) 801 return radix__set_pte_at(mm, addr, ptep, pte, percpu); 802 return hash__set_pte_at(mm, addr, ptep, pte, percpu); 803 } 804 805 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT) 806 807 #define pgprot_noncached pgprot_noncached 808 static inline pgprot_t pgprot_noncached(pgprot_t prot) 809 { 810 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 811 _PAGE_NON_IDEMPOTENT); 812 } 813 814 #define pgprot_noncached_wc pgprot_noncached_wc 815 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 816 { 817 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 818 _PAGE_TOLERANT); 819 } 820 821 #define pgprot_cached pgprot_cached 822 static inline pgprot_t pgprot_cached(pgprot_t prot) 823 { 824 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL)); 825 } 826 827 #define pgprot_writecombine pgprot_writecombine 828 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 829 { 830 return pgprot_noncached_wc(prot); 831 } 832 /* 833 * check a pte mapping have cache inhibited property 834 */ 835 static inline bool pte_ci(pte_t pte) 836 { 837 unsigned long pte_v = pte_val(pte); 838 839 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) || 840 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)) 841 return true; 842 return false; 843 } 844 845 static inline void pmd_set(pmd_t *pmdp, unsigned long val) 846 { 847 *pmdp = __pmd(val); 848 } 849 850 static inline void pmd_clear(pmd_t *pmdp) 851 { 852 *pmdp = __pmd(0); 853 } 854 855 static inline int pmd_none(pmd_t pmd) 856 { 857 return !pmd_raw(pmd); 858 } 859 860 static inline int pmd_present(pmd_t pmd) 861 { 862 863 return !pmd_none(pmd); 864 } 865 866 static inline int pmd_bad(pmd_t pmd) 867 { 868 if (radix_enabled()) 869 return radix__pmd_bad(pmd); 870 return hash__pmd_bad(pmd); 871 } 872 873 static inline void pud_set(pud_t *pudp, unsigned long val) 874 { 875 *pudp = __pud(val); 876 } 877 878 static inline void pud_clear(pud_t *pudp) 879 { 880 *pudp = __pud(0); 881 } 882 883 static inline int pud_none(pud_t pud) 884 { 885 return !pud_raw(pud); 886 } 887 888 static inline int pud_present(pud_t pud) 889 { 890 return !pud_none(pud); 891 } 892 893 extern struct page *pud_page(pud_t pud); 894 extern struct page *pmd_page(pmd_t pmd); 895 static inline pte_t pud_pte(pud_t pud) 896 { 897 return __pte_raw(pud_raw(pud)); 898 } 899 900 static inline pud_t pte_pud(pte_t pte) 901 { 902 return __pud_raw(pte_raw(pte)); 903 } 904 #define pud_write(pud) pte_write(pud_pte(pud)) 905 906 static inline int pud_bad(pud_t pud) 907 { 908 if (radix_enabled()) 909 return radix__pud_bad(pud); 910 return hash__pud_bad(pud); 911 } 912 913 #define pud_access_permitted pud_access_permitted 914 static inline bool pud_access_permitted(pud_t pud, bool write) 915 { 916 return pte_access_permitted(pud_pte(pud), write); 917 } 918 919 #define pgd_write(pgd) pte_write(pgd_pte(pgd)) 920 static inline void pgd_set(pgd_t *pgdp, unsigned long val) 921 { 922 *pgdp = __pgd(val); 923 } 924 925 static inline void pgd_clear(pgd_t *pgdp) 926 { 927 *pgdp = __pgd(0); 928 } 929 930 static inline int pgd_none(pgd_t pgd) 931 { 932 return !pgd_raw(pgd); 933 } 934 935 static inline int pgd_present(pgd_t pgd) 936 { 937 return !pgd_none(pgd); 938 } 939 940 static inline pte_t pgd_pte(pgd_t pgd) 941 { 942 return __pte_raw(pgd_raw(pgd)); 943 } 944 945 static inline pgd_t pte_pgd(pte_t pte) 946 { 947 return __pgd_raw(pte_raw(pte)); 948 } 949 950 static inline int pgd_bad(pgd_t pgd) 951 { 952 if (radix_enabled()) 953 return radix__pgd_bad(pgd); 954 return hash__pgd_bad(pgd); 955 } 956 957 #define pgd_access_permitted pgd_access_permitted 958 static inline bool pgd_access_permitted(pgd_t pgd, bool write) 959 { 960 return pte_access_permitted(pgd_pte(pgd), write); 961 } 962 963 extern struct page *pgd_page(pgd_t pgd); 964 965 /* Pointers in the page table tree are physical addresses */ 966 #define __pgtable_ptr_val(ptr) __pa(ptr) 967 968 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS) 969 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS) 970 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS) 971 972 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1)) 973 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1)) 974 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1)) 975 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1)) 976 977 /* 978 * Find an entry in a page-table-directory. We combine the address region 979 * (the high order N bits) and the pgd portion of the address. 980 */ 981 982 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 983 984 #define pud_offset(pgdp, addr) \ 985 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr)) 986 #define pmd_offset(pudp,addr) \ 987 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr)) 988 #define pte_offset_kernel(dir,addr) \ 989 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr)) 990 991 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) 992 #define pte_unmap(pte) do { } while(0) 993 994 /* to find an entry in a kernel page-table-directory */ 995 /* This now only contains the vmalloc pages */ 996 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 997 998 #define pte_ERROR(e) \ 999 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 1000 #define pmd_ERROR(e) \ 1001 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 1002 #define pud_ERROR(e) \ 1003 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e)) 1004 #define pgd_ERROR(e) \ 1005 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 1006 1007 static inline int map_kernel_page(unsigned long ea, unsigned long pa, 1008 unsigned long flags) 1009 { 1010 if (radix_enabled()) { 1011 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM) 1012 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift; 1013 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE"); 1014 #endif 1015 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE); 1016 } 1017 return hash__map_kernel_page(ea, pa, flags); 1018 } 1019 1020 static inline int __meminit vmemmap_create_mapping(unsigned long start, 1021 unsigned long page_size, 1022 unsigned long phys) 1023 { 1024 if (radix_enabled()) 1025 return radix__vmemmap_create_mapping(start, page_size, phys); 1026 return hash__vmemmap_create_mapping(start, page_size, phys); 1027 } 1028 1029 #ifdef CONFIG_MEMORY_HOTPLUG 1030 static inline void vmemmap_remove_mapping(unsigned long start, 1031 unsigned long page_size) 1032 { 1033 if (radix_enabled()) 1034 return radix__vmemmap_remove_mapping(start, page_size); 1035 return hash__vmemmap_remove_mapping(start, page_size); 1036 } 1037 #endif 1038 struct page *realmode_pfn_to_page(unsigned long pfn); 1039 1040 static inline pte_t pmd_pte(pmd_t pmd) 1041 { 1042 return __pte_raw(pmd_raw(pmd)); 1043 } 1044 1045 static inline pmd_t pte_pmd(pte_t pte) 1046 { 1047 return __pmd_raw(pte_raw(pte)); 1048 } 1049 1050 static inline pte_t *pmdp_ptep(pmd_t *pmd) 1051 { 1052 return (pte_t *)pmd; 1053 } 1054 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) 1055 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 1056 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 1057 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 1058 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 1059 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 1060 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 1061 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 1062 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 1063 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd))) 1064 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd))) 1065 1066 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1067 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd)) 1068 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd))) 1069 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd))) 1070 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1071 1072 #ifdef CONFIG_NUMA_BALANCING 1073 static inline int pmd_protnone(pmd_t pmd) 1074 { 1075 return pte_protnone(pmd_pte(pmd)); 1076 } 1077 #endif /* CONFIG_NUMA_BALANCING */ 1078 1079 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 1080 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd)) 1081 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd)) 1082 1083 #define pmd_access_permitted pmd_access_permitted 1084 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1085 { 1086 return pte_access_permitted(pmd_pte(pmd), write); 1087 } 1088 1089 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1090 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); 1091 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); 1092 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); 1093 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1094 pmd_t *pmdp, pmd_t pmd); 1095 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 1096 pmd_t *pmd); 1097 extern int hash__has_transparent_hugepage(void); 1098 static inline int has_transparent_hugepage(void) 1099 { 1100 if (radix_enabled()) 1101 return radix__has_transparent_hugepage(); 1102 return hash__has_transparent_hugepage(); 1103 } 1104 #define has_transparent_hugepage has_transparent_hugepage 1105 1106 static inline unsigned long 1107 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, 1108 unsigned long clr, unsigned long set) 1109 { 1110 if (radix_enabled()) 1111 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set); 1112 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set); 1113 } 1114 1115 static inline int pmd_large(pmd_t pmd) 1116 { 1117 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); 1118 } 1119 1120 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 1121 { 1122 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT); 1123 } 1124 /* 1125 * For radix we should always find H_PAGE_HASHPTE zero. Hence 1126 * the below will work for radix too 1127 */ 1128 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, 1129 unsigned long addr, pmd_t *pmdp) 1130 { 1131 unsigned long old; 1132 1133 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 1134 return 0; 1135 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); 1136 return ((old & _PAGE_ACCESSED) != 0); 1137 } 1138 1139 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1140 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, 1141 pmd_t *pmdp) 1142 { 1143 if (__pmd_write((*pmdp))) 1144 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0); 1145 else if (unlikely(pmd_savedwrite(*pmdp))) 1146 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED); 1147 } 1148 1149 static inline int pmd_trans_huge(pmd_t pmd) 1150 { 1151 if (radix_enabled()) 1152 return radix__pmd_trans_huge(pmd); 1153 return hash__pmd_trans_huge(pmd); 1154 } 1155 1156 #define __HAVE_ARCH_PMD_SAME 1157 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1158 { 1159 if (radix_enabled()) 1160 return radix__pmd_same(pmd_a, pmd_b); 1161 return hash__pmd_same(pmd_a, pmd_b); 1162 } 1163 1164 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1165 { 1166 if (radix_enabled()) 1167 return radix__pmd_mkhuge(pmd); 1168 return hash__pmd_mkhuge(pmd); 1169 } 1170 1171 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1172 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1173 unsigned long address, pmd_t *pmdp, 1174 pmd_t entry, int dirty); 1175 1176 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1177 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1178 unsigned long address, pmd_t *pmdp); 1179 1180 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1181 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1182 unsigned long addr, pmd_t *pmdp) 1183 { 1184 if (radix_enabled()) 1185 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp); 1186 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp); 1187 } 1188 1189 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1190 unsigned long address, pmd_t *pmdp) 1191 { 1192 if (radix_enabled()) 1193 return radix__pmdp_collapse_flush(vma, address, pmdp); 1194 return hash__pmdp_collapse_flush(vma, address, pmdp); 1195 } 1196 #define pmdp_collapse_flush pmdp_collapse_flush 1197 1198 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1199 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm, 1200 pmd_t *pmdp, pgtable_t pgtable) 1201 { 1202 if (radix_enabled()) 1203 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 1204 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 1205 } 1206 1207 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1208 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, 1209 pmd_t *pmdp) 1210 { 1211 if (radix_enabled()) 1212 return radix__pgtable_trans_huge_withdraw(mm, pmdp); 1213 return hash__pgtable_trans_huge_withdraw(mm, pmdp); 1214 } 1215 1216 #define __HAVE_ARCH_PMDP_INVALIDATE 1217 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 1218 pmd_t *pmdp); 1219 1220 #define pmd_move_must_withdraw pmd_move_must_withdraw 1221 struct spinlock; 1222 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 1223 struct spinlock *old_pmd_ptl, 1224 struct vm_area_struct *vma) 1225 { 1226 if (radix_enabled()) 1227 return false; 1228 /* 1229 * Archs like ppc64 use pgtable to store per pmd 1230 * specific information. So when we switch the pmd, 1231 * we should also withdraw and deposit the pgtable 1232 */ 1233 return true; 1234 } 1235 1236 1237 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit 1238 static inline bool arch_needs_pgtable_deposit(void) 1239 { 1240 if (radix_enabled()) 1241 return false; 1242 return true; 1243 } 1244 extern void serialize_against_pte_lookup(struct mm_struct *mm); 1245 1246 1247 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 1248 { 1249 return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP)); 1250 } 1251 1252 static inline int pmd_devmap(pmd_t pmd) 1253 { 1254 return pte_devmap(pmd_pte(pmd)); 1255 } 1256 1257 static inline int pud_devmap(pud_t pud) 1258 { 1259 return 0; 1260 } 1261 1262 static inline int pgd_devmap(pgd_t pgd) 1263 { 1264 return 0; 1265 } 1266 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1267 1268 static inline const int pud_pfn(pud_t pud) 1269 { 1270 /* 1271 * Currently all calls to pud_pfn() are gated around a pud_devmap() 1272 * check so this should never be used. If it grows another user we 1273 * want to know about it. 1274 */ 1275 BUILD_BUG(); 1276 return 0; 1277 } 1278 1279 #endif /* __ASSEMBLY__ */ 1280 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */ 1281