1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/5level-fixup.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_NA		0
18 #define _PAGE_RO		0
19 #define _PAGE_USER		0
20 
21 #define _PAGE_EXEC		0x00001 /* execute permission */
22 #define _PAGE_WRITE		0x00002 /* write access allowed */
23 #define _PAGE_READ		0x00004	/* read access allowed */
24 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
25 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
26 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
27 #define _PAGE_SAO		0x00010 /* Strong access order */
28 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
29 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
30 #define _PAGE_DIRTY		0x00080 /* C: page changed */
31 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
32 /*
33  * Software bits
34  */
35 #define _RPAGE_SW0		0x2000000000000000UL
36 #define _RPAGE_SW1		0x00800
37 #define _RPAGE_SW2		0x00400
38 #define _RPAGE_SW3		0x00200
39 #define _RPAGE_RSV1		0x1000000000000000UL
40 #define _RPAGE_RSV2		0x0800000000000000UL
41 #define _RPAGE_RSV3		0x0400000000000000UL
42 #define _RPAGE_RSV4		0x0200000000000000UL
43 #define _RPAGE_RSV5		0x00040UL
44 
45 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
46 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
47 
48 /*
49  * Top and bottom bits of RPN which can be used by hash
50  * translation mode, because we expect them to be zero
51  * otherwise.
52  */
53 #define _RPAGE_RPN0		0x01000
54 #define _RPAGE_RPN1		0x02000
55 #define _RPAGE_RPN44		0x0100000000000000UL
56 #define _RPAGE_RPN43		0x0080000000000000UL
57 #define _RPAGE_RPN42		0x0040000000000000UL
58 #define _RPAGE_RPN41		0x0020000000000000UL
59 
60 /* Max physical address bit as per radix table */
61 #define _RPAGE_PA_MAX		57
62 
63 #ifdef CONFIG_PPC_MEM_KEYS
64 #ifdef CONFIG_PPC_64K_PAGES
65 #define H_PTE_PKEY_BIT0	_RPAGE_RSV1
66 #define H_PTE_PKEY_BIT1	_RPAGE_RSV2
67 #else /* CONFIG_PPC_64K_PAGES */
68 #define H_PTE_PKEY_BIT0	0 /* _RPAGE_RSV1 is not available */
69 #define H_PTE_PKEY_BIT1	0 /* _RPAGE_RSV2 is not available */
70 #endif /* CONFIG_PPC_64K_PAGES */
71 #define H_PTE_PKEY_BIT2	_RPAGE_RSV3
72 #define H_PTE_PKEY_BIT3	_RPAGE_RSV4
73 #define H_PTE_PKEY_BIT4	_RPAGE_RSV5
74 #else /*  CONFIG_PPC_MEM_KEYS */
75 #define H_PTE_PKEY_BIT0	0
76 #define H_PTE_PKEY_BIT1	0
77 #define H_PTE_PKEY_BIT2	0
78 #define H_PTE_PKEY_BIT3	0
79 #define H_PTE_PKEY_BIT4	0
80 #endif /*  CONFIG_PPC_MEM_KEYS */
81 
82 /*
83  * Max physical address bit we will use for now.
84  *
85  * This is mostly a hardware limitation and for now Power9 has
86  * a 51 bit limit.
87  *
88  * This is different from the number of physical bit required to address
89  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
90  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
91  * number of sections we can support (SECTIONS_SHIFT).
92  *
93  * This is different from Radix page table limitation above and
94  * should always be less than that. The limit is done such that
95  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
96  * for hash linux page table specific bits.
97  *
98  * In order to be compatible with future hardware generations we keep
99  * some offsets and limit this for now to 53
100  */
101 #define _PAGE_PA_MAX		53
102 
103 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
104 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
105 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
106 #define __HAVE_ARCH_PTE_DEVMAP
107 
108 /*
109  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
110  * Instead of fixing all of them, add an alternate define which
111  * maps CI pte mapping.
112  */
113 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
114 /*
115  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
116  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
117  * and every thing below PAGE_SHIFT;
118  */
119 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
120 /*
121  * set of bits not changed in pmd_modify. Even though we have hash specific bits
122  * in here, on radix we expect them to be zero.
123  */
124 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
125 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
126 			 _PAGE_SOFT_DIRTY)
127 /*
128  * user access blocked by key
129  */
130 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
131 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
132 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
133 				 _PAGE_RW | _PAGE_EXEC)
134 /*
135  * No page size encoding in the linux PTE
136  */
137 #define _PAGE_PSIZE		0
138 /*
139  * _PAGE_CHG_MASK masks of bits that are to be preserved across
140  * pgprot changes
141  */
142 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
143 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
144 			 _PAGE_SOFT_DIRTY)
145 
146 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
147 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
148 /*
149  * Mask of bits returned by pte_pgprot()
150  */
151 #define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
152 			 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
153 			 _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
154 			 _PAGE_SOFT_DIRTY | H_PTE_PKEY)
155 /*
156  * We define 2 sets of base prot bits, one for basic pages (ie,
157  * cacheable kernel and user pages) and one for non cacheable
158  * pages. We always set _PAGE_COHERENT when SMP is enabled or
159  * the processor might need it for DMA coherency.
160  */
161 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
162 #define _PAGE_BASE	(_PAGE_BASE_NC)
163 
164 /* Permission masks used to generate the __P and __S table,
165  *
166  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
167  *
168  * Write permissions imply read permissions for now (we could make write-only
169  * pages on BookE but we don't bother for now). Execute permission control is
170  * possible on platforms that define _PAGE_EXEC
171  *
172  * Note due to the way vm flags are laid out, the bits are XWR
173  */
174 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
175 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
176 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
177 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
178 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
179 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
180 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
181 
182 #define __P000	PAGE_NONE
183 #define __P001	PAGE_READONLY
184 #define __P010	PAGE_COPY
185 #define __P011	PAGE_COPY
186 #define __P100	PAGE_READONLY_X
187 #define __P101	PAGE_READONLY_X
188 #define __P110	PAGE_COPY_X
189 #define __P111	PAGE_COPY_X
190 
191 #define __S000	PAGE_NONE
192 #define __S001	PAGE_READONLY
193 #define __S010	PAGE_SHARED
194 #define __S011	PAGE_SHARED
195 #define __S100	PAGE_READONLY_X
196 #define __S101	PAGE_READONLY_X
197 #define __S110	PAGE_SHARED_X
198 #define __S111	PAGE_SHARED_X
199 
200 /* Permission masks used for kernel mappings */
201 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
202 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
203 				 _PAGE_TOLERANT)
204 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
205 				 _PAGE_NON_IDEMPOTENT)
206 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
207 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
208 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
209 
210 /*
211  * Protection used for kernel text. We want the debuggers to be able to
212  * set breakpoints anywhere, so don't write protect the kernel text
213  * on platforms where such control is possible.
214  */
215 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
216 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
217 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
218 #else
219 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
220 #endif
221 
222 /* Make modules code happy. We don't set RO yet */
223 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
224 #define PAGE_AGP		(PAGE_KERNEL_NC)
225 
226 #ifndef __ASSEMBLY__
227 /*
228  * page table defines
229  */
230 extern unsigned long __pte_index_size;
231 extern unsigned long __pmd_index_size;
232 extern unsigned long __pud_index_size;
233 extern unsigned long __pgd_index_size;
234 extern unsigned long __pmd_cache_index;
235 extern unsigned long __pud_cache_index;
236 #define PTE_INDEX_SIZE  __pte_index_size
237 #define PMD_INDEX_SIZE  __pmd_index_size
238 #define PUD_INDEX_SIZE  __pud_index_size
239 #define PGD_INDEX_SIZE  __pgd_index_size
240 #define PMD_CACHE_INDEX __pmd_cache_index
241 #define PUD_CACHE_INDEX __pud_cache_index
242 /*
243  * Because of use of pte fragments and THP, size of page table
244  * are not always derived out of index size above.
245  */
246 extern unsigned long __pte_table_size;
247 extern unsigned long __pmd_table_size;
248 extern unsigned long __pud_table_size;
249 extern unsigned long __pgd_table_size;
250 #define PTE_TABLE_SIZE	__pte_table_size
251 #define PMD_TABLE_SIZE	__pmd_table_size
252 #define PUD_TABLE_SIZE	__pud_table_size
253 #define PGD_TABLE_SIZE	__pgd_table_size
254 
255 extern unsigned long __pmd_val_bits;
256 extern unsigned long __pud_val_bits;
257 extern unsigned long __pgd_val_bits;
258 #define PMD_VAL_BITS	__pmd_val_bits
259 #define PUD_VAL_BITS	__pud_val_bits
260 #define PGD_VAL_BITS	__pgd_val_bits
261 
262 extern unsigned long __pte_frag_nr;
263 #define PTE_FRAG_NR __pte_frag_nr
264 extern unsigned long __pte_frag_size_shift;
265 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
266 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
267 
268 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
269 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
270 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
271 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
272 
273 /* PMD_SHIFT determines what a second-level page table entry can map */
274 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
275 #define PMD_SIZE	(1UL << PMD_SHIFT)
276 #define PMD_MASK	(~(PMD_SIZE-1))
277 
278 /* PUD_SHIFT determines what a third-level page table entry can map */
279 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
280 #define PUD_SIZE	(1UL << PUD_SHIFT)
281 #define PUD_MASK	(~(PUD_SIZE-1))
282 
283 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
284 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
285 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
286 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
287 
288 /* Bits to mask out from a PMD to get to the PTE page */
289 #define PMD_MASKED_BITS		0xc0000000000000ffUL
290 /* Bits to mask out from a PUD to get to the PMD page */
291 #define PUD_MASKED_BITS		0xc0000000000000ffUL
292 /* Bits to mask out from a PGD to get to the PUD page */
293 #define PGD_MASKED_BITS		0xc0000000000000ffUL
294 
295 extern unsigned long __vmalloc_start;
296 extern unsigned long __vmalloc_end;
297 #define VMALLOC_START	__vmalloc_start
298 #define VMALLOC_END	__vmalloc_end
299 
300 extern unsigned long __kernel_virt_start;
301 extern unsigned long __kernel_virt_size;
302 extern unsigned long __kernel_io_start;
303 #define KERN_VIRT_START __kernel_virt_start
304 #define KERN_VIRT_SIZE  __kernel_virt_size
305 #define KERN_IO_START  __kernel_io_start
306 extern struct page *vmemmap;
307 extern unsigned long ioremap_bot;
308 extern unsigned long pci_io_base;
309 #endif /* __ASSEMBLY__ */
310 
311 #include <asm/book3s/64/hash.h>
312 #include <asm/book3s/64/radix.h>
313 
314 #ifdef CONFIG_PPC_64K_PAGES
315 #include <asm/book3s/64/pgtable-64k.h>
316 #else
317 #include <asm/book3s/64/pgtable-4k.h>
318 #endif
319 
320 #include <asm/barrier.h>
321 /*
322  * The second half of the kernel virtual space is used for IO mappings,
323  * it's itself carved into the PIO region (ISA and PHB IO space) and
324  * the ioremap space
325  *
326  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
327  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
328  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
329  */
330 #define FULL_IO_SIZE	0x80000000ul
331 #define  ISA_IO_BASE	(KERN_IO_START)
332 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
333 #define  PHB_IO_BASE	(ISA_IO_END)
334 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
335 #define IOREMAP_BASE	(PHB_IO_END)
336 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
337 
338 /* Advertise special mapping type for AGP */
339 #define HAVE_PAGE_AGP
340 
341 /* Advertise support for _PAGE_SPECIAL */
342 #define __HAVE_ARCH_PTE_SPECIAL
343 
344 #ifndef __ASSEMBLY__
345 
346 /*
347  * This is the default implementation of various PTE accessors, it's
348  * used in all cases except Book3S with 64K pages where we have a
349  * concept of sub-pages
350  */
351 #ifndef __real_pte
352 
353 #define __real_pte(e, p, o)		((real_pte_t){(e)})
354 #define __rpte_to_pte(r)	((r).pte)
355 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
356 
357 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
358 	do {							         \
359 		index = 0;					         \
360 		shift = mmu_psize_defs[psize].shift;		         \
361 
362 #define pte_iterate_hashed_end() } while(0)
363 
364 /*
365  * We expect this to be called only for user addresses or kernel virtual
366  * addresses other than the linear mapping.
367  */
368 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
369 
370 #endif /* __real_pte */
371 
372 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
373 				       pte_t *ptep, unsigned long clr,
374 				       unsigned long set, int huge)
375 {
376 	if (radix_enabled())
377 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
378 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
379 }
380 /*
381  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
382  * We currently remove entries from the hashtable regardless of whether
383  * the entry was young or dirty.
384  *
385  * We should be more intelligent about this but for the moment we override
386  * these functions and force a tlb flush unconditionally
387  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
388  * function for both hash and radix.
389  */
390 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
391 					      unsigned long addr, pte_t *ptep)
392 {
393 	unsigned long old;
394 
395 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
396 		return 0;
397 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
398 	return (old & _PAGE_ACCESSED) != 0;
399 }
400 
401 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
402 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
403 ({								\
404 	int __r;						\
405 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
406 	__r;							\
407 })
408 
409 static inline int __pte_write(pte_t pte)
410 {
411 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
412 }
413 
414 #ifdef CONFIG_NUMA_BALANCING
415 #define pte_savedwrite pte_savedwrite
416 static inline bool pte_savedwrite(pte_t pte)
417 {
418 	/*
419 	 * Saved write ptes are prot none ptes that doesn't have
420 	 * privileged bit sit. We mark prot none as one which has
421 	 * present and pviliged bit set and RWX cleared. To mark
422 	 * protnone which used to have _PAGE_WRITE set we clear
423 	 * the privileged bit.
424 	 */
425 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
426 }
427 #else
428 #define pte_savedwrite pte_savedwrite
429 static inline bool pte_savedwrite(pte_t pte)
430 {
431 	return false;
432 }
433 #endif
434 
435 static inline int pte_write(pte_t pte)
436 {
437 	return __pte_write(pte) || pte_savedwrite(pte);
438 }
439 
440 static inline int pte_read(pte_t pte)
441 {
442 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
443 }
444 
445 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
446 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
447 				      pte_t *ptep)
448 {
449 	if (__pte_write(*ptep))
450 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
451 	else if (unlikely(pte_savedwrite(*ptep)))
452 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
453 }
454 
455 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
456 					   unsigned long addr, pte_t *ptep)
457 {
458 	/*
459 	 * We should not find protnone for hugetlb, but this complete the
460 	 * interface.
461 	 */
462 	if (__pte_write(*ptep))
463 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
464 	else if (unlikely(pte_savedwrite(*ptep)))
465 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
466 }
467 
468 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
469 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
470 				       unsigned long addr, pte_t *ptep)
471 {
472 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
473 	return __pte(old);
474 }
475 
476 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
477 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
478 					    unsigned long addr,
479 					    pte_t *ptep, int full)
480 {
481 	if (full && radix_enabled()) {
482 		/*
483 		 * Let's skip the DD1 style pte update here. We know that
484 		 * this is a full mm pte clear and hence can be sure there is
485 		 * no parallel set_pte.
486 		 */
487 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
488 	}
489 	return ptep_get_and_clear(mm, addr, ptep);
490 }
491 
492 
493 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
494 			     pte_t * ptep)
495 {
496 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
497 }
498 
499 static inline int pte_dirty(pte_t pte)
500 {
501 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
502 }
503 
504 static inline int pte_young(pte_t pte)
505 {
506 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
507 }
508 
509 static inline int pte_special(pte_t pte)
510 {
511 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
512 }
513 
514 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
515 
516 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
517 static inline bool pte_soft_dirty(pte_t pte)
518 {
519 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
520 }
521 
522 static inline pte_t pte_mksoft_dirty(pte_t pte)
523 {
524 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
525 }
526 
527 static inline pte_t pte_clear_soft_dirty(pte_t pte)
528 {
529 	return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
530 }
531 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
532 
533 #ifdef CONFIG_NUMA_BALANCING
534 static inline int pte_protnone(pte_t pte)
535 {
536 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
537 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
538 }
539 
540 #define pte_mk_savedwrite pte_mk_savedwrite
541 static inline pte_t pte_mk_savedwrite(pte_t pte)
542 {
543 	/*
544 	 * Used by Autonuma subsystem to preserve the write bit
545 	 * while marking the pte PROT_NONE. Only allow this
546 	 * on PROT_NONE pte
547 	 */
548 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
549 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
550 	return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
551 }
552 
553 #define pte_clear_savedwrite pte_clear_savedwrite
554 static inline pte_t pte_clear_savedwrite(pte_t pte)
555 {
556 	/*
557 	 * Used by KSM subsystem to make a protnone pte readonly.
558 	 */
559 	VM_BUG_ON(!pte_protnone(pte));
560 	return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
561 }
562 #else
563 #define pte_clear_savedwrite pte_clear_savedwrite
564 static inline pte_t pte_clear_savedwrite(pte_t pte)
565 {
566 	VM_WARN_ON(1);
567 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
568 }
569 #endif /* CONFIG_NUMA_BALANCING */
570 
571 static inline int pte_present(pte_t pte)
572 {
573 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
574 }
575 
576 #ifdef CONFIG_PPC_MEM_KEYS
577 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
578 #else
579 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
580 {
581 	return true;
582 }
583 #endif /* CONFIG_PPC_MEM_KEYS */
584 
585 #define pte_access_permitted pte_access_permitted
586 static inline bool pte_access_permitted(pte_t pte, bool write)
587 {
588 	unsigned long pteval = pte_val(pte);
589 	/* Also check for pte_user */
590 	unsigned long clear_pte_bits = _PAGE_PRIVILEGED;
591 	/*
592 	 * _PAGE_READ is needed for any access and will be
593 	 * cleared for PROT_NONE
594 	 */
595 	unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ;
596 
597 	if (write)
598 		need_pte_bits |= _PAGE_WRITE;
599 
600 	if ((pteval & need_pte_bits) != need_pte_bits)
601 		return false;
602 
603 	if ((pteval & clear_pte_bits) == clear_pte_bits)
604 		return false;
605 
606 	return arch_pte_access_permitted(pte_val(pte), write, 0);
607 }
608 
609 /*
610  * Conversion functions: convert a page and protection to a page entry,
611  * and a page entry and page directory to the page they refer to.
612  *
613  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
614  * long for now.
615  */
616 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
617 {
618 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
619 		     pgprot_val(pgprot));
620 }
621 
622 static inline unsigned long pte_pfn(pte_t pte)
623 {
624 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
625 }
626 
627 /* Generic modifiers for PTE bits */
628 static inline pte_t pte_wrprotect(pte_t pte)
629 {
630 	if (unlikely(pte_savedwrite(pte)))
631 		return pte_clear_savedwrite(pte);
632 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
633 }
634 
635 static inline pte_t pte_mkclean(pte_t pte)
636 {
637 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
638 }
639 
640 static inline pte_t pte_mkold(pte_t pte)
641 {
642 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
643 }
644 
645 static inline pte_t pte_mkwrite(pte_t pte)
646 {
647 	/*
648 	 * write implies read, hence set both
649 	 */
650 	return __pte(pte_val(pte) | _PAGE_RW);
651 }
652 
653 static inline pte_t pte_mkdirty(pte_t pte)
654 {
655 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
656 }
657 
658 static inline pte_t pte_mkyoung(pte_t pte)
659 {
660 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
661 }
662 
663 static inline pte_t pte_mkspecial(pte_t pte)
664 {
665 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
666 }
667 
668 static inline pte_t pte_mkhuge(pte_t pte)
669 {
670 	return pte;
671 }
672 
673 static inline pte_t pte_mkdevmap(pte_t pte)
674 {
675 	return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
676 }
677 
678 /*
679  * This is potentially called with a pmd as the argument, in which case it's not
680  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
681  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
682  * use in page directory entries (ie. non-ptes).
683  */
684 static inline int pte_devmap(pte_t pte)
685 {
686 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
687 
688 	return (pte_raw(pte) & mask) == mask;
689 }
690 
691 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
692 {
693 	/* FIXME!! check whether this need to be a conditional */
694 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
695 }
696 
697 static inline bool pte_user(pte_t pte)
698 {
699 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
700 }
701 
702 /* Encode and de-code a swap entry */
703 #define MAX_SWAPFILES_CHECK() do { \
704 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
705 	/*							\
706 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
707 	 * We filter HPTEFLAGS on set_pte.			\
708 	 */							\
709 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
710 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
711 	} while (0)
712 /*
713  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
714  */
715 #define SWP_TYPE_BITS 5
716 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
717 				& ((1UL << SWP_TYPE_BITS) - 1))
718 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
719 #define __swp_entry(type, offset)	((swp_entry_t) { \
720 				((type) << _PAGE_BIT_SWAP_TYPE) \
721 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
722 /*
723  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
724  * swap type and offset we get from swap and convert that to pte to find a
725  * matching pte in linux page table.
726  * Clear bits not found in swap entries here.
727  */
728 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
729 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
730 
731 #ifdef CONFIG_MEM_SOFT_DIRTY
732 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
733 #else
734 #define _PAGE_SWP_SOFT_DIRTY	0UL
735 #endif /* CONFIG_MEM_SOFT_DIRTY */
736 
737 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
738 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
739 {
740 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
741 }
742 
743 static inline bool pte_swp_soft_dirty(pte_t pte)
744 {
745 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
746 }
747 
748 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
749 {
750 	return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
751 }
752 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
753 
754 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
755 {
756 	/*
757 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
758 	 */
759 	if (access & ~ptev)
760 		return false;
761 	/*
762 	 * This check for access to privilege space
763 	 */
764 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
765 		return false;
766 
767 	return true;
768 }
769 /*
770  * Generic functions with hash/radix callbacks
771  */
772 
773 static inline void __ptep_set_access_flags(struct mm_struct *mm,
774 					   pte_t *ptep, pte_t entry,
775 					   unsigned long address)
776 {
777 	if (radix_enabled())
778 		return radix__ptep_set_access_flags(mm, ptep, entry, address);
779 	return hash__ptep_set_access_flags(ptep, entry);
780 }
781 
782 #define __HAVE_ARCH_PTE_SAME
783 static inline int pte_same(pte_t pte_a, pte_t pte_b)
784 {
785 	if (radix_enabled())
786 		return radix__pte_same(pte_a, pte_b);
787 	return hash__pte_same(pte_a, pte_b);
788 }
789 
790 static inline int pte_none(pte_t pte)
791 {
792 	if (radix_enabled())
793 		return radix__pte_none(pte);
794 	return hash__pte_none(pte);
795 }
796 
797 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
798 				pte_t *ptep, pte_t pte, int percpu)
799 {
800 	if (radix_enabled())
801 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
802 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
803 }
804 
805 #define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
806 
807 #define pgprot_noncached pgprot_noncached
808 static inline pgprot_t pgprot_noncached(pgprot_t prot)
809 {
810 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
811 			_PAGE_NON_IDEMPOTENT);
812 }
813 
814 #define pgprot_noncached_wc pgprot_noncached_wc
815 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
816 {
817 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
818 			_PAGE_TOLERANT);
819 }
820 
821 #define pgprot_cached pgprot_cached
822 static inline pgprot_t pgprot_cached(pgprot_t prot)
823 {
824 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
825 }
826 
827 #define pgprot_writecombine pgprot_writecombine
828 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
829 {
830 	return pgprot_noncached_wc(prot);
831 }
832 /*
833  * check a pte mapping have cache inhibited property
834  */
835 static inline bool pte_ci(pte_t pte)
836 {
837 	unsigned long pte_v = pte_val(pte);
838 
839 	if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
840 	    ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
841 		return true;
842 	return false;
843 }
844 
845 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
846 {
847 	*pmdp = __pmd(val);
848 }
849 
850 static inline void pmd_clear(pmd_t *pmdp)
851 {
852 	*pmdp = __pmd(0);
853 }
854 
855 static inline int pmd_none(pmd_t pmd)
856 {
857 	return !pmd_raw(pmd);
858 }
859 
860 static inline int pmd_present(pmd_t pmd)
861 {
862 
863 	return !pmd_none(pmd);
864 }
865 
866 static inline int pmd_bad(pmd_t pmd)
867 {
868 	if (radix_enabled())
869 		return radix__pmd_bad(pmd);
870 	return hash__pmd_bad(pmd);
871 }
872 
873 static inline void pud_set(pud_t *pudp, unsigned long val)
874 {
875 	*pudp = __pud(val);
876 }
877 
878 static inline void pud_clear(pud_t *pudp)
879 {
880 	*pudp = __pud(0);
881 }
882 
883 static inline int pud_none(pud_t pud)
884 {
885 	return !pud_raw(pud);
886 }
887 
888 static inline int pud_present(pud_t pud)
889 {
890 	return !pud_none(pud);
891 }
892 
893 extern struct page *pud_page(pud_t pud);
894 extern struct page *pmd_page(pmd_t pmd);
895 static inline pte_t pud_pte(pud_t pud)
896 {
897 	return __pte_raw(pud_raw(pud));
898 }
899 
900 static inline pud_t pte_pud(pte_t pte)
901 {
902 	return __pud_raw(pte_raw(pte));
903 }
904 #define pud_write(pud)		pte_write(pud_pte(pud))
905 
906 static inline int pud_bad(pud_t pud)
907 {
908 	if (radix_enabled())
909 		return radix__pud_bad(pud);
910 	return hash__pud_bad(pud);
911 }
912 
913 #define pud_access_permitted pud_access_permitted
914 static inline bool pud_access_permitted(pud_t pud, bool write)
915 {
916 	return pte_access_permitted(pud_pte(pud), write);
917 }
918 
919 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
920 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
921 {
922 	*pgdp = __pgd(val);
923 }
924 
925 static inline void pgd_clear(pgd_t *pgdp)
926 {
927 	*pgdp = __pgd(0);
928 }
929 
930 static inline int pgd_none(pgd_t pgd)
931 {
932 	return !pgd_raw(pgd);
933 }
934 
935 static inline int pgd_present(pgd_t pgd)
936 {
937 	return !pgd_none(pgd);
938 }
939 
940 static inline pte_t pgd_pte(pgd_t pgd)
941 {
942 	return __pte_raw(pgd_raw(pgd));
943 }
944 
945 static inline pgd_t pte_pgd(pte_t pte)
946 {
947 	return __pgd_raw(pte_raw(pte));
948 }
949 
950 static inline int pgd_bad(pgd_t pgd)
951 {
952 	if (radix_enabled())
953 		return radix__pgd_bad(pgd);
954 	return hash__pgd_bad(pgd);
955 }
956 
957 #define pgd_access_permitted pgd_access_permitted
958 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
959 {
960 	return pte_access_permitted(pgd_pte(pgd), write);
961 }
962 
963 extern struct page *pgd_page(pgd_t pgd);
964 
965 /* Pointers in the page table tree are physical addresses */
966 #define __pgtable_ptr_val(ptr)	__pa(ptr)
967 
968 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
969 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
970 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
971 
972 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
973 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
974 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
975 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
976 
977 /*
978  * Find an entry in a page-table-directory.  We combine the address region
979  * (the high order N bits) and the pgd portion of the address.
980  */
981 
982 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
983 
984 #define pud_offset(pgdp, addr)	\
985 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
986 #define pmd_offset(pudp,addr) \
987 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
988 #define pte_offset_kernel(dir,addr) \
989 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
990 
991 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
992 #define pte_unmap(pte)			do { } while(0)
993 
994 /* to find an entry in a kernel page-table-directory */
995 /* This now only contains the vmalloc pages */
996 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
997 
998 #define pte_ERROR(e) \
999 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1000 #define pmd_ERROR(e) \
1001 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1002 #define pud_ERROR(e) \
1003 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1004 #define pgd_ERROR(e) \
1005 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1006 
1007 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
1008 				  unsigned long flags)
1009 {
1010 	if (radix_enabled()) {
1011 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1012 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1013 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1014 #endif
1015 		return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
1016 	}
1017 	return hash__map_kernel_page(ea, pa, flags);
1018 }
1019 
1020 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1021 						   unsigned long page_size,
1022 						   unsigned long phys)
1023 {
1024 	if (radix_enabled())
1025 		return radix__vmemmap_create_mapping(start, page_size, phys);
1026 	return hash__vmemmap_create_mapping(start, page_size, phys);
1027 }
1028 
1029 #ifdef CONFIG_MEMORY_HOTPLUG
1030 static inline void vmemmap_remove_mapping(unsigned long start,
1031 					  unsigned long page_size)
1032 {
1033 	if (radix_enabled())
1034 		return radix__vmemmap_remove_mapping(start, page_size);
1035 	return hash__vmemmap_remove_mapping(start, page_size);
1036 }
1037 #endif
1038 struct page *realmode_pfn_to_page(unsigned long pfn);
1039 
1040 static inline pte_t pmd_pte(pmd_t pmd)
1041 {
1042 	return __pte_raw(pmd_raw(pmd));
1043 }
1044 
1045 static inline pmd_t pte_pmd(pte_t pte)
1046 {
1047 	return __pmd_raw(pte_raw(pte));
1048 }
1049 
1050 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1051 {
1052 	return (pte_t *)pmd;
1053 }
1054 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1055 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1056 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1057 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1058 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1059 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1060 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1061 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1062 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1063 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1064 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1065 
1066 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1067 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1068 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1069 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1070 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1071 
1072 #ifdef CONFIG_NUMA_BALANCING
1073 static inline int pmd_protnone(pmd_t pmd)
1074 {
1075 	return pte_protnone(pmd_pte(pmd));
1076 }
1077 #endif /* CONFIG_NUMA_BALANCING */
1078 
1079 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1080 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1081 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1082 
1083 #define pmd_access_permitted pmd_access_permitted
1084 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1085 {
1086 	return pte_access_permitted(pmd_pte(pmd), write);
1087 }
1088 
1089 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1090 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1091 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1092 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1093 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1094 		       pmd_t *pmdp, pmd_t pmd);
1095 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1096 				 pmd_t *pmd);
1097 extern int hash__has_transparent_hugepage(void);
1098 static inline int has_transparent_hugepage(void)
1099 {
1100 	if (radix_enabled())
1101 		return radix__has_transparent_hugepage();
1102 	return hash__has_transparent_hugepage();
1103 }
1104 #define has_transparent_hugepage has_transparent_hugepage
1105 
1106 static inline unsigned long
1107 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1108 		    unsigned long clr, unsigned long set)
1109 {
1110 	if (radix_enabled())
1111 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1112 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1113 }
1114 
1115 static inline int pmd_large(pmd_t pmd)
1116 {
1117 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1118 }
1119 
1120 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1121 {
1122 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1123 }
1124 /*
1125  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1126  * the below will work for radix too
1127  */
1128 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1129 					      unsigned long addr, pmd_t *pmdp)
1130 {
1131 	unsigned long old;
1132 
1133 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1134 		return 0;
1135 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1136 	return ((old & _PAGE_ACCESSED) != 0);
1137 }
1138 
1139 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1140 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1141 				      pmd_t *pmdp)
1142 {
1143 	if (__pmd_write((*pmdp)))
1144 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1145 	else if (unlikely(pmd_savedwrite(*pmdp)))
1146 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1147 }
1148 
1149 static inline int pmd_trans_huge(pmd_t pmd)
1150 {
1151 	if (radix_enabled())
1152 		return radix__pmd_trans_huge(pmd);
1153 	return hash__pmd_trans_huge(pmd);
1154 }
1155 
1156 #define __HAVE_ARCH_PMD_SAME
1157 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1158 {
1159 	if (radix_enabled())
1160 		return radix__pmd_same(pmd_a, pmd_b);
1161 	return hash__pmd_same(pmd_a, pmd_b);
1162 }
1163 
1164 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1165 {
1166 	if (radix_enabled())
1167 		return radix__pmd_mkhuge(pmd);
1168 	return hash__pmd_mkhuge(pmd);
1169 }
1170 
1171 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1172 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1173 				 unsigned long address, pmd_t *pmdp,
1174 				 pmd_t entry, int dirty);
1175 
1176 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1177 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1178 				     unsigned long address, pmd_t *pmdp);
1179 
1180 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1181 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1182 					    unsigned long addr, pmd_t *pmdp)
1183 {
1184 	if (radix_enabled())
1185 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1186 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1187 }
1188 
1189 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1190 					unsigned long address, pmd_t *pmdp)
1191 {
1192 	if (radix_enabled())
1193 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1194 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1195 }
1196 #define pmdp_collapse_flush pmdp_collapse_flush
1197 
1198 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1199 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1200 					      pmd_t *pmdp, pgtable_t pgtable)
1201 {
1202 	if (radix_enabled())
1203 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1204 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1205 }
1206 
1207 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1208 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1209 						    pmd_t *pmdp)
1210 {
1211 	if (radix_enabled())
1212 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1213 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1214 }
1215 
1216 #define __HAVE_ARCH_PMDP_INVALIDATE
1217 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1218 			     pmd_t *pmdp);
1219 
1220 #define pmd_move_must_withdraw pmd_move_must_withdraw
1221 struct spinlock;
1222 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1223 					 struct spinlock *old_pmd_ptl,
1224 					 struct vm_area_struct *vma)
1225 {
1226 	if (radix_enabled())
1227 		return false;
1228 	/*
1229 	 * Archs like ppc64 use pgtable to store per pmd
1230 	 * specific information. So when we switch the pmd,
1231 	 * we should also withdraw and deposit the pgtable
1232 	 */
1233 	return true;
1234 }
1235 
1236 
1237 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1238 static inline bool arch_needs_pgtable_deposit(void)
1239 {
1240 	if (radix_enabled())
1241 		return false;
1242 	return true;
1243 }
1244 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1245 
1246 
1247 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1248 {
1249 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1250 }
1251 
1252 static inline int pmd_devmap(pmd_t pmd)
1253 {
1254 	return pte_devmap(pmd_pte(pmd));
1255 }
1256 
1257 static inline int pud_devmap(pud_t pud)
1258 {
1259 	return 0;
1260 }
1261 
1262 static inline int pgd_devmap(pgd_t pgd)
1263 {
1264 	return 0;
1265 }
1266 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1267 
1268 static inline const int pud_pfn(pud_t pud)
1269 {
1270 	/*
1271 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1272 	 * check so this should never be used. If it grows another user we
1273 	 * want to know about it.
1274 	 */
1275 	BUILD_BUG();
1276 	return 0;
1277 }
1278 
1279 #endif /* __ASSEMBLY__ */
1280 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1281