1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H 2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H 3 /* 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/cpumask.h> 12 #include <linux/percpu.h> 13 14 struct vmemmap_backing { 15 struct vmemmap_backing *list; 16 unsigned long phys; 17 unsigned long virt_addr; 18 }; 19 extern struct vmemmap_backing *vmemmap_list; 20 21 /* 22 * Functions that deal with pagetables that could be at any level of 23 * the table need to be passed an "index_size" so they know how to 24 * handle allocation. For PTE pages (which are linked to a struct 25 * page for now, and drawn from the main get_free_pages() pool), the 26 * allocation size will be (2^index_size * sizeof(pointer)) and 27 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size). 28 * 29 * The maximum index size needs to be big enough to allow any 30 * pagetable sizes we need, but small enough to fit in the low bits of 31 * any page table pointer. In other words all pagetables, even tiny 32 * ones, must be aligned to allow at least enough low 0 bits to 33 * contain this value. This value is also used as a mask, so it must 34 * be one less than a power of two. 35 */ 36 #define MAX_PGTABLE_INDEX_SIZE 0xf 37 38 extern struct kmem_cache *pgtable_cache[]; 39 #define PGT_CACHE(shift) ({ \ 40 BUG_ON(!(shift)); \ 41 pgtable_cache[(shift) - 1]; \ 42 }) 43 44 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int); 45 extern void pte_fragment_free(unsigned long *, int); 46 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); 47 #ifdef CONFIG_SMP 48 extern void __tlb_remove_table(void *_table); 49 #endif 50 51 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) 52 { 53 #ifdef CONFIG_PPC_64K_PAGES 54 return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP)); 55 #else 56 struct page *page; 57 page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL), 58 4); 59 if (!page) 60 return NULL; 61 return (pgd_t *) page_address(page); 62 #endif 63 } 64 65 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) 66 { 67 #ifdef CONFIG_PPC_64K_PAGES 68 free_page((unsigned long)pgd); 69 #else 70 free_pages((unsigned long)pgd, 4); 71 #endif 72 } 73 74 static inline pgd_t *pgd_alloc(struct mm_struct *mm) 75 { 76 pgd_t *pgd; 77 78 if (radix_enabled()) 79 return radix__pgd_alloc(mm); 80 81 pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), 82 pgtable_gfp_flags(mm, GFP_KERNEL)); 83 /* 84 * With hugetlb, we don't clear the second half of the page table. 85 * If we share the same slab cache with the pmd or pud level table, 86 * we need to make sure we zero out the full table on alloc. 87 * With 4K we don't store slot in the second half. Hence we don't 88 * need to do this for 4k. 89 */ 90 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_PPC_64K_PAGES) && \ 91 ((H_PGD_INDEX_SIZE == H_PUD_CACHE_INDEX) || \ 92 (H_PGD_INDEX_SIZE == H_PMD_CACHE_INDEX)) 93 memset(pgd, 0, PGD_TABLE_SIZE); 94 #endif 95 return pgd; 96 } 97 98 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) 99 { 100 if (radix_enabled()) 101 return radix__pgd_free(mm, pgd); 102 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); 103 } 104 105 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud) 106 { 107 pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS); 108 } 109 110 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) 111 { 112 return kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX), 113 pgtable_gfp_flags(mm, GFP_KERNEL)); 114 } 115 116 static inline void pud_free(struct mm_struct *mm, pud_t *pud) 117 { 118 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud); 119 } 120 121 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) 122 { 123 pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS); 124 } 125 126 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, 127 unsigned long address) 128 { 129 /* 130 * By now all the pud entries should be none entries. So go 131 * ahead and flush the page walk cache 132 */ 133 flush_tlb_pgtable(tlb, address); 134 pgtable_free_tlb(tlb, pud, PUD_CACHE_INDEX); 135 } 136 137 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) 138 { 139 return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), 140 pgtable_gfp_flags(mm, GFP_KERNEL)); 141 } 142 143 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) 144 { 145 kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd); 146 } 147 148 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, 149 unsigned long address) 150 { 151 /* 152 * By now all the pud entries should be none entries. So go 153 * ahead and flush the page walk cache 154 */ 155 flush_tlb_pgtable(tlb, address); 156 return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX); 157 } 158 159 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, 160 pte_t *pte) 161 { 162 pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS); 163 } 164 165 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, 166 pgtable_t pte_page) 167 { 168 pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS); 169 } 170 171 static inline pgtable_t pmd_pgtable(pmd_t pmd) 172 { 173 return (pgtable_t)pmd_page_vaddr(pmd); 174 } 175 176 #ifdef CONFIG_PPC_4K_PAGES 177 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 178 unsigned long address) 179 { 180 return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 181 } 182 183 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 184 unsigned long address) 185 { 186 struct page *page; 187 pte_t *pte; 188 189 pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT); 190 if (!pte) 191 return NULL; 192 page = virt_to_page(pte); 193 if (!pgtable_page_ctor(page)) { 194 __free_page(page); 195 return NULL; 196 } 197 return pte; 198 } 199 #else /* if CONFIG_PPC_64K_PAGES */ 200 201 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 202 unsigned long address) 203 { 204 return (pte_t *)pte_fragment_alloc(mm, address, 1); 205 } 206 207 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 208 unsigned long address) 209 { 210 return (pgtable_t)pte_fragment_alloc(mm, address, 0); 211 } 212 #endif 213 214 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 215 { 216 pte_fragment_free((unsigned long *)pte, 1); 217 } 218 219 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) 220 { 221 pte_fragment_free((unsigned long *)ptepage, 0); 222 } 223 224 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 225 unsigned long address) 226 { 227 /* 228 * By now all the pud entries should be none entries. So go 229 * ahead and flush the page walk cache 230 */ 231 flush_tlb_pgtable(tlb, address); 232 pgtable_free_tlb(tlb, table, 0); 233 } 234 235 #define check_pgt_cache() do { } while (0) 236 237 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ 238