1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H 2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H 3 /* 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/cpumask.h> 12 #include <linux/percpu.h> 13 14 struct vmemmap_backing { 15 struct vmemmap_backing *list; 16 unsigned long phys; 17 unsigned long virt_addr; 18 }; 19 extern struct vmemmap_backing *vmemmap_list; 20 21 /* 22 * Functions that deal with pagetables that could be at any level of 23 * the table need to be passed an "index_size" so they know how to 24 * handle allocation. For PTE pages (which are linked to a struct 25 * page for now, and drawn from the main get_free_pages() pool), the 26 * allocation size will be (2^index_size * sizeof(pointer)) and 27 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size). 28 * 29 * The maximum index size needs to be big enough to allow any 30 * pagetable sizes we need, but small enough to fit in the low bits of 31 * any page table pointer. In other words all pagetables, even tiny 32 * ones, must be aligned to allow at least enough low 0 bits to 33 * contain this value. This value is also used as a mask, so it must 34 * be one less than a power of two. 35 */ 36 #define MAX_PGTABLE_INDEX_SIZE 0xf 37 38 extern struct kmem_cache *pgtable_cache[]; 39 #define PGT_CACHE(shift) ({ \ 40 BUG_ON(!(shift)); \ 41 pgtable_cache[(shift) - 1]; \ 42 }) 43 44 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO 45 46 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int); 47 extern void pte_fragment_free(unsigned long *, int); 48 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); 49 #ifdef CONFIG_SMP 50 extern void __tlb_remove_table(void *_table); 51 #endif 52 53 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) 54 { 55 #ifdef CONFIG_PPC_64K_PAGES 56 return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP)); 57 #else 58 struct page *page; 59 page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL), 60 4); 61 if (!page) 62 return NULL; 63 return (pgd_t *) page_address(page); 64 #endif 65 } 66 67 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) 68 { 69 #ifdef CONFIG_PPC_64K_PAGES 70 free_page((unsigned long)pgd); 71 #else 72 free_pages((unsigned long)pgd, 4); 73 #endif 74 } 75 76 static inline pgd_t *pgd_alloc(struct mm_struct *mm) 77 { 78 if (radix_enabled()) 79 return radix__pgd_alloc(mm); 80 return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), 81 pgtable_gfp_flags(mm, GFP_KERNEL)); 82 } 83 84 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) 85 { 86 if (radix_enabled()) 87 return radix__pgd_free(mm, pgd); 88 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); 89 } 90 91 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud) 92 { 93 pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS); 94 } 95 96 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) 97 { 98 return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), 99 pgtable_gfp_flags(mm, GFP_KERNEL)); 100 } 101 102 static inline void pud_free(struct mm_struct *mm, pud_t *pud) 103 { 104 kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud); 105 } 106 107 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) 108 { 109 pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS); 110 } 111 112 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, 113 unsigned long address) 114 { 115 /* 116 * By now all the pud entries should be none entries. So go 117 * ahead and flush the page walk cache 118 */ 119 flush_tlb_pgtable(tlb, address); 120 pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE); 121 } 122 123 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) 124 { 125 return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), 126 pgtable_gfp_flags(mm, GFP_KERNEL)); 127 } 128 129 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) 130 { 131 kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd); 132 } 133 134 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, 135 unsigned long address) 136 { 137 /* 138 * By now all the pud entries should be none entries. So go 139 * ahead and flush the page walk cache 140 */ 141 flush_tlb_pgtable(tlb, address); 142 return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX); 143 } 144 145 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, 146 pte_t *pte) 147 { 148 pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS); 149 } 150 151 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, 152 pgtable_t pte_page) 153 { 154 pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS); 155 } 156 157 static inline pgtable_t pmd_pgtable(pmd_t pmd) 158 { 159 return (pgtable_t)pmd_page_vaddr(pmd); 160 } 161 162 #ifdef CONFIG_PPC_4K_PAGES 163 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 164 unsigned long address) 165 { 166 return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 167 } 168 169 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 170 unsigned long address) 171 { 172 struct page *page; 173 pte_t *pte; 174 175 pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT); 176 if (!pte) 177 return NULL; 178 page = virt_to_page(pte); 179 if (!pgtable_page_ctor(page)) { 180 __free_page(page); 181 return NULL; 182 } 183 return pte; 184 } 185 #else /* if CONFIG_PPC_64K_PAGES */ 186 187 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 188 unsigned long address) 189 { 190 return (pte_t *)pte_fragment_alloc(mm, address, 1); 191 } 192 193 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 194 unsigned long address) 195 { 196 return (pgtable_t)pte_fragment_alloc(mm, address, 0); 197 } 198 #endif 199 200 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 201 { 202 pte_fragment_free((unsigned long *)pte, 1); 203 } 204 205 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) 206 { 207 pte_fragment_free((unsigned long *)ptepage, 0); 208 } 209 210 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 211 unsigned long address) 212 { 213 /* 214 * By now all the pud entries should be none entries. So go 215 * ahead and flush the page walk cache 216 */ 217 flush_tlb_pgtable(tlb, address); 218 pgtable_free_tlb(tlb, table, 0); 219 } 220 221 #define check_pgt_cache() do { } while (0) 222 223 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ 224