1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H 3 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H 4 /* 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/cpumask.h> 9 #include <linux/kmemleak.h> 10 #include <linux/percpu.h> 11 12 struct vmemmap_backing { 13 struct vmemmap_backing *list; 14 unsigned long phys; 15 unsigned long virt_addr; 16 }; 17 extern struct vmemmap_backing *vmemmap_list; 18 19 extern pmd_t *pmd_fragment_alloc(struct mm_struct *, unsigned long); 20 extern void pmd_fragment_free(unsigned long *); 21 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); 22 #ifdef CONFIG_SMP 23 extern void __tlb_remove_table(void *_table); 24 #endif 25 void pte_frag_destroy(void *pte_frag); 26 27 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) 28 { 29 #ifdef CONFIG_PPC_64K_PAGES 30 return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP)); 31 #else 32 struct page *page; 33 page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL), 34 4); 35 if (!page) 36 return NULL; 37 return (pgd_t *) page_address(page); 38 #endif 39 } 40 41 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) 42 { 43 #ifdef CONFIG_PPC_64K_PAGES 44 free_page((unsigned long)pgd); 45 #else 46 free_pages((unsigned long)pgd, 4); 47 #endif 48 } 49 50 static inline pgd_t *pgd_alloc(struct mm_struct *mm) 51 { 52 pgd_t *pgd; 53 54 if (radix_enabled()) 55 return radix__pgd_alloc(mm); 56 57 pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), 58 pgtable_gfp_flags(mm, GFP_KERNEL)); 59 if (unlikely(!pgd)) 60 return pgd; 61 62 /* 63 * Don't scan the PGD for pointers, it contains references to PUDs but 64 * those references are not full pointers and so can't be recognised by 65 * kmemleak. 66 */ 67 kmemleak_no_scan(pgd); 68 69 /* 70 * With hugetlb, we don't clear the second half of the page table. 71 * If we share the same slab cache with the pmd or pud level table, 72 * we need to make sure we zero out the full table on alloc. 73 * With 4K we don't store slot in the second half. Hence we don't 74 * need to do this for 4k. 75 */ 76 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_PPC_64K_PAGES) && \ 77 (H_PGD_INDEX_SIZE == H_PUD_CACHE_INDEX) 78 memset(pgd, 0, PGD_TABLE_SIZE); 79 #endif 80 return pgd; 81 } 82 83 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) 84 { 85 if (radix_enabled()) 86 return radix__pgd_free(mm, pgd); 87 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); 88 } 89 90 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud) 91 { 92 *pgd = __pgd(__pgtable_ptr_val(pud) | PGD_VAL_BITS); 93 } 94 95 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) 96 { 97 pud_t *pud; 98 99 pud = kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX), 100 pgtable_gfp_flags(mm, GFP_KERNEL)); 101 /* 102 * Tell kmemleak to ignore the PUD, that means don't scan it for 103 * pointers and don't consider it a leak. PUDs are typically only 104 * referred to by their PGD, but kmemleak is not able to recognise those 105 * as pointers, leading to false leak reports. 106 */ 107 kmemleak_ignore(pud); 108 109 return pud; 110 } 111 112 static inline void pud_free(struct mm_struct *mm, pud_t *pud) 113 { 114 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud); 115 } 116 117 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) 118 { 119 *pud = __pud(__pgtable_ptr_val(pmd) | PUD_VAL_BITS); 120 } 121 122 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, 123 unsigned long address) 124 { 125 /* 126 * By now all the pud entries should be none entries. So go 127 * ahead and flush the page walk cache 128 */ 129 flush_tlb_pgtable(tlb, address); 130 pgtable_free_tlb(tlb, pud, PUD_INDEX); 131 } 132 133 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) 134 { 135 return pmd_fragment_alloc(mm, addr); 136 } 137 138 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) 139 { 140 pmd_fragment_free((unsigned long *)pmd); 141 } 142 143 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, 144 unsigned long address) 145 { 146 /* 147 * By now all the pud entries should be none entries. So go 148 * ahead and flush the page walk cache 149 */ 150 flush_tlb_pgtable(tlb, address); 151 return pgtable_free_tlb(tlb, pmd, PMD_INDEX); 152 } 153 154 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, 155 pte_t *pte) 156 { 157 *pmd = __pmd(__pgtable_ptr_val(pte) | PMD_VAL_BITS); 158 } 159 160 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, 161 pgtable_t pte_page) 162 { 163 *pmd = __pmd(__pgtable_ptr_val(pte_page) | PMD_VAL_BITS); 164 } 165 166 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 167 unsigned long address) 168 { 169 /* 170 * By now all the pud entries should be none entries. So go 171 * ahead and flush the page walk cache 172 */ 173 flush_tlb_pgtable(tlb, address); 174 pgtable_free_tlb(tlb, table, PTE_INDEX); 175 } 176 177 extern atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 178 static inline void update_page_count(int psize, long count) 179 { 180 if (IS_ENABLED(CONFIG_PROC_FS)) 181 atomic_long_add(count, &direct_pages_count[psize]); 182 } 183 184 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ 185