xref: /openbmc/linux/arch/powerpc/include/asm/book3s/64/pgalloc.h (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H
2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H
3 /*
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/cpumask.h>
12 #include <linux/percpu.h>
13 
14 struct vmemmap_backing {
15 	struct vmemmap_backing *list;
16 	unsigned long phys;
17 	unsigned long virt_addr;
18 };
19 extern struct vmemmap_backing *vmemmap_list;
20 
21 /*
22  * Functions that deal with pagetables that could be at any level of
23  * the table need to be passed an "index_size" so they know how to
24  * handle allocation.  For PTE pages (which are linked to a struct
25  * page for now, and drawn from the main get_free_pages() pool), the
26  * allocation size will be (2^index_size * sizeof(pointer)) and
27  * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
28  *
29  * The maximum index size needs to be big enough to allow any
30  * pagetable sizes we need, but small enough to fit in the low bits of
31  * any page table pointer.  In other words all pagetables, even tiny
32  * ones, must be aligned to allow at least enough low 0 bits to
33  * contain this value.  This value is also used as a mask, so it must
34  * be one less than a power of two.
35  */
36 #define MAX_PGTABLE_INDEX_SIZE	0xf
37 
38 extern struct kmem_cache *pgtable_cache[];
39 #define PGT_CACHE(shift) ({				\
40 			BUG_ON(!(shift));		\
41 			pgtable_cache[(shift) - 1];	\
42 		})
43 
44 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
45 extern void pte_fragment_free(unsigned long *, int);
46 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
47 #ifdef CONFIG_SMP
48 extern void __tlb_remove_table(void *_table);
49 #endif
50 
51 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm)
52 {
53 #ifdef CONFIG_PPC_64K_PAGES
54 	return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP));
55 #else
56 	struct page *page;
57 	page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL),
58 				4);
59 	if (!page)
60 		return NULL;
61 	return (pgd_t *) page_address(page);
62 #endif
63 }
64 
65 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd)
66 {
67 #ifdef CONFIG_PPC_64K_PAGES
68 	free_page((unsigned long)pgd);
69 #else
70 	free_pages((unsigned long)pgd, 4);
71 #endif
72 }
73 
74 static inline pgd_t *pgd_alloc(struct mm_struct *mm)
75 {
76 	pgd_t *pgd;
77 
78 	if (radix_enabled())
79 		return radix__pgd_alloc(mm);
80 
81 	pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE),
82 			       pgtable_gfp_flags(mm, GFP_KERNEL));
83 	memset(pgd, 0, PGD_TABLE_SIZE);
84 
85 	return pgd;
86 }
87 
88 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
89 {
90 	if (radix_enabled())
91 		return radix__pgd_free(mm, pgd);
92 	kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
93 }
94 
95 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud)
96 {
97 	pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS);
98 }
99 
100 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
101 {
102 	return kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX),
103 		pgtable_gfp_flags(mm, GFP_KERNEL));
104 }
105 
106 static inline void pud_free(struct mm_struct *mm, pud_t *pud)
107 {
108 	kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud);
109 }
110 
111 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
112 {
113 	pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS);
114 }
115 
116 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
117                                   unsigned long address)
118 {
119 	/*
120 	 * By now all the pud entries should be none entries. So go
121 	 * ahead and flush the page walk cache
122 	 */
123 	flush_tlb_pgtable(tlb, address);
124 	pgtable_free_tlb(tlb, pud, PUD_CACHE_INDEX);
125 }
126 
127 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
128 {
129 	return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
130 		pgtable_gfp_flags(mm, GFP_KERNEL));
131 }
132 
133 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
134 {
135 	kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
136 }
137 
138 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
139                                   unsigned long address)
140 {
141 	/*
142 	 * By now all the pud entries should be none entries. So go
143 	 * ahead and flush the page walk cache
144 	 */
145 	flush_tlb_pgtable(tlb, address);
146         return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX);
147 }
148 
149 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
150 				       pte_t *pte)
151 {
152 	pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS);
153 }
154 
155 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
156 				pgtable_t pte_page)
157 {
158 	pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS);
159 }
160 
161 static inline pgtable_t pmd_pgtable(pmd_t pmd)
162 {
163 	return (pgtable_t)pmd_page_vaddr(pmd);
164 }
165 
166 #ifdef CONFIG_PPC_4K_PAGES
167 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
168 					  unsigned long address)
169 {
170 	return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
171 }
172 
173 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
174 				      unsigned long address)
175 {
176 	struct page *page;
177 	pte_t *pte;
178 
179 	pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT);
180 	if (!pte)
181 		return NULL;
182 	page = virt_to_page(pte);
183 	if (!pgtable_page_ctor(page)) {
184 		__free_page(page);
185 		return NULL;
186 	}
187 	return pte;
188 }
189 #else /* if CONFIG_PPC_64K_PAGES */
190 
191 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
192 					  unsigned long address)
193 {
194 	return (pte_t *)pte_fragment_alloc(mm, address, 1);
195 }
196 
197 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
198 				      unsigned long address)
199 {
200 	return (pgtable_t)pte_fragment_alloc(mm, address, 0);
201 }
202 #endif
203 
204 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
205 {
206 	pte_fragment_free((unsigned long *)pte, 1);
207 }
208 
209 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
210 {
211 	pte_fragment_free((unsigned long *)ptepage, 0);
212 }
213 
214 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
215 				  unsigned long address)
216 {
217 	/*
218 	 * By now all the pud entries should be none entries. So go
219 	 * ahead and flush the page walk cache
220 	 */
221 	flush_tlb_pgtable(tlb, address);
222 	pgtable_free_tlb(tlb, table, 0);
223 }
224 
225 #define check_pgt_cache()	do { } while (0)
226 
227 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */
228