1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H 2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H 3 /* 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/cpumask.h> 12 #include <linux/percpu.h> 13 14 struct vmemmap_backing { 15 struct vmemmap_backing *list; 16 unsigned long phys; 17 unsigned long virt_addr; 18 }; 19 extern struct vmemmap_backing *vmemmap_list; 20 21 /* 22 * Functions that deal with pagetables that could be at any level of 23 * the table need to be passed an "index_size" so they know how to 24 * handle allocation. For PTE pages (which are linked to a struct 25 * page for now, and drawn from the main get_free_pages() pool), the 26 * allocation size will be (2^index_size * sizeof(pointer)) and 27 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size). 28 * 29 * The maximum index size needs to be big enough to allow any 30 * pagetable sizes we need, but small enough to fit in the low bits of 31 * any page table pointer. In other words all pagetables, even tiny 32 * ones, must be aligned to allow at least enough low 0 bits to 33 * contain this value. This value is also used as a mask, so it must 34 * be one less than a power of two. 35 */ 36 #define MAX_PGTABLE_INDEX_SIZE 0xf 37 38 extern struct kmem_cache *pgtable_cache[]; 39 #define PGT_CACHE(shift) ({ \ 40 BUG_ON(!(shift)); \ 41 pgtable_cache[(shift) - 1]; \ 42 }) 43 44 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int); 45 extern void pte_fragment_free(unsigned long *, int); 46 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); 47 #ifdef CONFIG_SMP 48 extern void __tlb_remove_table(void *_table); 49 #endif 50 51 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) 52 { 53 #ifdef CONFIG_PPC_64K_PAGES 54 return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP)); 55 #else 56 struct page *page; 57 page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL), 58 4); 59 if (!page) 60 return NULL; 61 return (pgd_t *) page_address(page); 62 #endif 63 } 64 65 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) 66 { 67 #ifdef CONFIG_PPC_64K_PAGES 68 free_page((unsigned long)pgd); 69 #else 70 free_pages((unsigned long)pgd, 4); 71 #endif 72 } 73 74 static inline pgd_t *pgd_alloc(struct mm_struct *mm) 75 { 76 if (radix_enabled()) 77 return radix__pgd_alloc(mm); 78 return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), 79 pgtable_gfp_flags(mm, GFP_KERNEL)); 80 } 81 82 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) 83 { 84 if (radix_enabled()) 85 return radix__pgd_free(mm, pgd); 86 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); 87 } 88 89 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud) 90 { 91 pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS); 92 } 93 94 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) 95 { 96 return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), 97 pgtable_gfp_flags(mm, GFP_KERNEL)); 98 } 99 100 static inline void pud_free(struct mm_struct *mm, pud_t *pud) 101 { 102 kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud); 103 } 104 105 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) 106 { 107 pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS); 108 } 109 110 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, 111 unsigned long address) 112 { 113 /* 114 * By now all the pud entries should be none entries. So go 115 * ahead and flush the page walk cache 116 */ 117 flush_tlb_pgtable(tlb, address); 118 pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE); 119 } 120 121 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) 122 { 123 return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), 124 pgtable_gfp_flags(mm, GFP_KERNEL)); 125 } 126 127 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) 128 { 129 kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd); 130 } 131 132 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, 133 unsigned long address) 134 { 135 /* 136 * By now all the pud entries should be none entries. So go 137 * ahead and flush the page walk cache 138 */ 139 flush_tlb_pgtable(tlb, address); 140 return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX); 141 } 142 143 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, 144 pte_t *pte) 145 { 146 pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS); 147 } 148 149 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, 150 pgtable_t pte_page) 151 { 152 pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS); 153 } 154 155 static inline pgtable_t pmd_pgtable(pmd_t pmd) 156 { 157 return (pgtable_t)pmd_page_vaddr(pmd); 158 } 159 160 #ifdef CONFIG_PPC_4K_PAGES 161 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 162 unsigned long address) 163 { 164 return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 165 } 166 167 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 168 unsigned long address) 169 { 170 struct page *page; 171 pte_t *pte; 172 173 pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT); 174 if (!pte) 175 return NULL; 176 page = virt_to_page(pte); 177 if (!pgtable_page_ctor(page)) { 178 __free_page(page); 179 return NULL; 180 } 181 return pte; 182 } 183 #else /* if CONFIG_PPC_64K_PAGES */ 184 185 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 186 unsigned long address) 187 { 188 return (pte_t *)pte_fragment_alloc(mm, address, 1); 189 } 190 191 static inline pgtable_t pte_alloc_one(struct mm_struct *mm, 192 unsigned long address) 193 { 194 return (pgtable_t)pte_fragment_alloc(mm, address, 0); 195 } 196 #endif 197 198 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 199 { 200 pte_fragment_free((unsigned long *)pte, 1); 201 } 202 203 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) 204 { 205 pte_fragment_free((unsigned long *)ptepage, 0); 206 } 207 208 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 209 unsigned long address) 210 { 211 /* 212 * By now all the pud entries should be none entries. So go 213 * ahead and flush the page walk cache 214 */ 215 flush_tlb_pgtable(tlb, address); 216 pgtable_free_tlb(tlb, table, 0); 217 } 218 219 #define check_pgt_cache() do { } while (0) 220 221 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ 222