1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H 3 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H 4 /* 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/cpumask.h> 9 #include <linux/kmemleak.h> 10 #include <linux/percpu.h> 11 12 struct vmemmap_backing { 13 struct vmemmap_backing *list; 14 unsigned long phys; 15 unsigned long virt_addr; 16 }; 17 extern struct vmemmap_backing *vmemmap_list; 18 19 extern pmd_t *pmd_fragment_alloc(struct mm_struct *, unsigned long); 20 extern void pmd_fragment_free(unsigned long *); 21 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); 22 extern void __tlb_remove_table(void *_table); 23 void pte_frag_destroy(void *pte_frag); 24 25 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) 26 { 27 #ifdef CONFIG_PPC_64K_PAGES 28 return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP)); 29 #else 30 struct page *page; 31 page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL), 32 4); 33 if (!page) 34 return NULL; 35 return (pgd_t *) page_address(page); 36 #endif 37 } 38 39 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) 40 { 41 #ifdef CONFIG_PPC_64K_PAGES 42 free_page((unsigned long)pgd); 43 #else 44 free_pages((unsigned long)pgd, 4); 45 #endif 46 } 47 48 static inline pgd_t *pgd_alloc(struct mm_struct *mm) 49 { 50 pgd_t *pgd; 51 52 if (radix_enabled()) 53 return radix__pgd_alloc(mm); 54 55 pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), 56 pgtable_gfp_flags(mm, GFP_KERNEL)); 57 if (unlikely(!pgd)) 58 return pgd; 59 60 /* 61 * Don't scan the PGD for pointers, it contains references to PUDs but 62 * those references are not full pointers and so can't be recognised by 63 * kmemleak. 64 */ 65 kmemleak_no_scan(pgd); 66 67 /* 68 * With hugetlb, we don't clear the second half of the page table. 69 * If we share the same slab cache with the pmd or pud level table, 70 * we need to make sure we zero out the full table on alloc. 71 * With 4K we don't store slot in the second half. Hence we don't 72 * need to do this for 4k. 73 */ 74 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_PPC_64K_PAGES) && \ 75 (H_PGD_INDEX_SIZE == H_PUD_CACHE_INDEX) 76 memset(pgd, 0, PGD_TABLE_SIZE); 77 #endif 78 return pgd; 79 } 80 81 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) 82 { 83 if (radix_enabled()) 84 return radix__pgd_free(mm, pgd); 85 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); 86 } 87 88 static inline void p4d_populate(struct mm_struct *mm, p4d_t *pgd, pud_t *pud) 89 { 90 *pgd = __p4d(__pgtable_ptr_val(pud) | PGD_VAL_BITS); 91 } 92 93 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) 94 { 95 pud_t *pud; 96 97 pud = kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX), 98 pgtable_gfp_flags(mm, GFP_KERNEL)); 99 /* 100 * Tell kmemleak to ignore the PUD, that means don't scan it for 101 * pointers and don't consider it a leak. PUDs are typically only 102 * referred to by their PGD, but kmemleak is not able to recognise those 103 * as pointers, leading to false leak reports. 104 */ 105 kmemleak_ignore(pud); 106 107 return pud; 108 } 109 110 static inline void __pud_free(pud_t *pud) 111 { 112 struct page *page = virt_to_page(pud); 113 114 /* 115 * Early pud pages allocated via memblock allocator 116 * can't be directly freed to slab. KFENCE pages have 117 * both reserved and slab flags set so need to be freed 118 * kmem_cache_free. 119 */ 120 if (PageReserved(page) && !PageSlab(page)) 121 free_reserved_page(page); 122 else 123 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud); 124 } 125 126 static inline void pud_free(struct mm_struct *mm, pud_t *pud) 127 { 128 return __pud_free(pud); 129 } 130 131 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) 132 { 133 *pud = __pud(__pgtable_ptr_val(pmd) | PUD_VAL_BITS); 134 } 135 136 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, 137 unsigned long address) 138 { 139 pgtable_free_tlb(tlb, pud, PUD_INDEX); 140 } 141 142 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) 143 { 144 return pmd_fragment_alloc(mm, addr); 145 } 146 147 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) 148 { 149 pmd_fragment_free((unsigned long *)pmd); 150 } 151 152 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, 153 unsigned long address) 154 { 155 return pgtable_free_tlb(tlb, pmd, PMD_INDEX); 156 } 157 158 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, 159 pte_t *pte) 160 { 161 *pmd = __pmd(__pgtable_ptr_val(pte) | PMD_VAL_BITS); 162 } 163 164 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, 165 pgtable_t pte_page) 166 { 167 *pmd = __pmd(__pgtable_ptr_val(pte_page) | PMD_VAL_BITS); 168 } 169 170 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, 171 unsigned long address) 172 { 173 pgtable_free_tlb(tlb, table, PTE_INDEX); 174 } 175 176 extern atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 177 static inline void update_page_count(int psize, long count) 178 { 179 if (IS_ENABLED(CONFIG_PROC_FS)) 180 atomic_long_add(count, &direct_pages_count[psize]); 181 } 182 183 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ 184