1 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3 /*
4  * PowerPC64 memory management structures
5  *
6  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7  *   PPC64 rework.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 #include <asm/bug.h>
18 
19 /*
20  * This is necessary to get the definition of PGTABLE_RANGE which we
21  * need for various slices related matters. Note that this isn't the
22  * complete pgtable.h but only a portion of it.
23  */
24 #include <asm/book3s/64/pgtable.h>
25 #include <asm/bug.h>
26 #include <asm/processor.h>
27 
28 /*
29  * SLB
30  */
31 
32 #define SLB_NUM_BOLTED		3
33 #define SLB_CACHE_ENTRIES	8
34 #define SLB_MIN_SIZE		32
35 
36 /* Bits in the SLB ESID word */
37 #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
38 
39 /* Bits in the SLB VSID word */
40 #define SLB_VSID_SHIFT		12
41 #define SLB_VSID_SHIFT_1T	24
42 #define SLB_VSID_SSIZE_SHIFT	62
43 #define SLB_VSID_B		ASM_CONST(0xc000000000000000)
44 #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
45 #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
46 #define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
47 #define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
48 #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
49 #define SLB_VSID_L		ASM_CONST(0x0000000000000100)
50 #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
51 #define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
52 #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
53 #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
54 #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
55 #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
56 #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
57 
58 #define SLB_VSID_KERNEL		(SLB_VSID_KP)
59 #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
60 
61 #define SLBIE_C			(0x08000000)
62 #define SLBIE_SSIZE_SHIFT	25
63 
64 /*
65  * Hash table
66  */
67 
68 #define HPTES_PER_GROUP 8
69 
70 #define HPTE_V_SSIZE_SHIFT	62
71 #define HPTE_V_AVPN_SHIFT	7
72 #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
73 #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
74 #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
75 #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
76 #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
77 #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
78 #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
79 #define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
80 
81 /*
82  * ISA 3.0 have a different HPTE format.
83  */
84 #define HPTE_R_3_0_SSIZE_SHIFT	58
85 #define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
86 #define HPTE_R_TS		ASM_CONST(0x4000000000000000)
87 #define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
88 #define HPTE_R_RPN_SHIFT	12
89 #define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
90 #define HPTE_R_PP		ASM_CONST(0x0000000000000003)
91 #define HPTE_R_N		ASM_CONST(0x0000000000000004)
92 #define HPTE_R_G		ASM_CONST(0x0000000000000008)
93 #define HPTE_R_M		ASM_CONST(0x0000000000000010)
94 #define HPTE_R_I		ASM_CONST(0x0000000000000020)
95 #define HPTE_R_W		ASM_CONST(0x0000000000000040)
96 #define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
97 #define HPTE_R_C		ASM_CONST(0x0000000000000080)
98 #define HPTE_R_R		ASM_CONST(0x0000000000000100)
99 #define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
100 
101 #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
102 #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
103 
104 /* Values for PP (assumes Ks=0, Kp=1) */
105 #define PP_RWXX	0	/* Supervisor read/write, User none */
106 #define PP_RWRX 1	/* Supervisor read/write, User read */
107 #define PP_RWRW 2	/* Supervisor read/write, User read/write */
108 #define PP_RXRX 3	/* Supervisor read,       User read */
109 #define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
110 
111 /* Fields for tlbiel instruction in architecture 2.06 */
112 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
113 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
114 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
115 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
116 #define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
117 #define TLBIEL_INVAL_SET_SHIFT	12
118 
119 #define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
120 #define POWER8_TLB_SETS		512	/* # sets in POWER8 TLB */
121 #define POWER9_TLB_SETS_HASH	256	/* # sets in POWER9 TLB Hash mode */
122 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
123 
124 #ifndef __ASSEMBLY__
125 
126 struct hash_pte {
127 	__be64 v;
128 	__be64 r;
129 };
130 
131 extern struct hash_pte *htab_address;
132 extern unsigned long htab_size_bytes;
133 extern unsigned long htab_hash_mask;
134 
135 
136 static inline int shift_to_mmu_psize(unsigned int shift)
137 {
138 	int psize;
139 
140 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
141 		if (mmu_psize_defs[psize].shift == shift)
142 			return psize;
143 	return -1;
144 }
145 
146 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
147 {
148 	if (mmu_psize_defs[mmu_psize].shift)
149 		return mmu_psize_defs[mmu_psize].shift;
150 	BUG();
151 }
152 
153 #endif /* __ASSEMBLY__ */
154 
155 /*
156  * Segment sizes.
157  * These are the values used by hardware in the B field of
158  * SLB entries and the first dword of MMU hashtable entries.
159  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
160  */
161 #define MMU_SEGSIZE_256M	0
162 #define MMU_SEGSIZE_1T		1
163 
164 /*
165  * encode page number shift.
166  * in order to fit the 78 bit va in a 64 bit variable we shift the va by
167  * 12 bits. This enable us to address upto 76 bit va.
168  * For hpt hash from a va we can ignore the page size bits of va and for
169  * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
170  * we work in all cases including 4k page size.
171  */
172 #define VPN_SHIFT	12
173 
174 /*
175  * HPTE Large Page (LP) details
176  */
177 #define LP_SHIFT	12
178 #define LP_BITS		8
179 #define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
180 
181 #ifndef __ASSEMBLY__
182 
183 static inline int slb_vsid_shift(int ssize)
184 {
185 	if (ssize == MMU_SEGSIZE_256M)
186 		return SLB_VSID_SHIFT;
187 	return SLB_VSID_SHIFT_1T;
188 }
189 
190 static inline int segment_shift(int ssize)
191 {
192 	if (ssize == MMU_SEGSIZE_256M)
193 		return SID_SHIFT;
194 	return SID_SHIFT_1T;
195 }
196 
197 /*
198  * The current system page and segment sizes
199  */
200 extern int mmu_kernel_ssize;
201 extern int mmu_highuser_ssize;
202 extern u16 mmu_slb_size;
203 extern unsigned long tce_alloc_start, tce_alloc_end;
204 
205 /*
206  * If the processor supports 64k normal pages but not 64k cache
207  * inhibited pages, we have to be prepared to switch processes
208  * to use 4k pages when they create cache-inhibited mappings.
209  * If this is the case, mmu_ci_restrictions will be set to 1.
210  */
211 extern int mmu_ci_restrictions;
212 
213 /*
214  * This computes the AVPN and B fields of the first dword of a HPTE,
215  * for use when we want to match an existing PTE.  The bottom 7 bits
216  * of the returned value are zero.
217  */
218 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
219 					     int ssize)
220 {
221 	unsigned long v;
222 	/*
223 	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
224 	 * These bits are not needed in the PTE, because the
225 	 * low-order b of these bits are part of the byte offset
226 	 * into the virtual page and, if b < 23, the high-order
227 	 * 23-b of these bits are always used in selecting the
228 	 * PTEGs to be searched
229 	 */
230 	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
231 	v <<= HPTE_V_AVPN_SHIFT;
232 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
233 		v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
234 	return v;
235 }
236 
237 /*
238  * This function sets the AVPN and L fields of the HPTE  appropriately
239  * using the base page size and actual page size.
240  */
241 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
242 					  int actual_psize, int ssize)
243 {
244 	unsigned long v;
245 	v = hpte_encode_avpn(vpn, base_psize, ssize);
246 	if (actual_psize != MMU_PAGE_4K)
247 		v |= HPTE_V_LARGE;
248 	return v;
249 }
250 
251 /*
252  * This function sets the ARPN, and LP fields of the HPTE appropriately
253  * for the page size. We assume the pa is already "clean" that is properly
254  * aligned for the requested page size
255  */
256 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
257 					  int actual_psize, int ssize)
258 {
259 
260 	if (cpu_has_feature(CPU_FTR_ARCH_300))
261 		pa |= ((unsigned long) ssize) << HPTE_R_3_0_SSIZE_SHIFT;
262 
263 	/* A 4K page needs no special encoding */
264 	if (actual_psize == MMU_PAGE_4K)
265 		return pa & HPTE_R_RPN;
266 	else {
267 		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
268 		unsigned int shift = mmu_psize_defs[actual_psize].shift;
269 		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
270 	}
271 }
272 
273 /*
274  * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
275  */
276 static inline unsigned long hpt_vpn(unsigned long ea,
277 				    unsigned long vsid, int ssize)
278 {
279 	unsigned long mask;
280 	int s_shift = segment_shift(ssize);
281 
282 	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
283 	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
284 }
285 
286 /*
287  * This hashes a virtual address
288  */
289 static inline unsigned long hpt_hash(unsigned long vpn,
290 				     unsigned int shift, int ssize)
291 {
292 	int mask;
293 	unsigned long hash, vsid;
294 
295 	/* VPN_SHIFT can be atmost 12 */
296 	if (ssize == MMU_SEGSIZE_256M) {
297 		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
298 		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
299 			((vpn & mask) >> (shift - VPN_SHIFT));
300 	} else {
301 		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
302 		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
303 		hash = vsid ^ (vsid << 25) ^
304 			((vpn & mask) >> (shift - VPN_SHIFT)) ;
305 	}
306 	return hash & 0x7fffffffffUL;
307 }
308 
309 #define HPTE_LOCAL_UPDATE	0x1
310 #define HPTE_NOHPTE_UPDATE	0x2
311 
312 extern int __hash_page_4K(unsigned long ea, unsigned long access,
313 			  unsigned long vsid, pte_t *ptep, unsigned long trap,
314 			  unsigned long flags, int ssize, int subpage_prot);
315 extern int __hash_page_64K(unsigned long ea, unsigned long access,
316 			   unsigned long vsid, pte_t *ptep, unsigned long trap,
317 			   unsigned long flags, int ssize);
318 struct mm_struct;
319 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
320 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
321 			unsigned long access, unsigned long trap,
322 			unsigned long flags);
323 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
324 		     unsigned long dsisr);
325 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
326 		     pte_t *ptep, unsigned long trap, unsigned long flags,
327 		     int ssize, unsigned int shift, unsigned int mmu_psize);
328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
329 extern int __hash_page_thp(unsigned long ea, unsigned long access,
330 			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
331 			   unsigned long flags, int ssize, unsigned int psize);
332 #else
333 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
334 				  unsigned long vsid, pmd_t *pmdp,
335 				  unsigned long trap, unsigned long flags,
336 				  int ssize, unsigned int psize)
337 {
338 	BUG();
339 	return -1;
340 }
341 #endif
342 extern void hash_failure_debug(unsigned long ea, unsigned long access,
343 			       unsigned long vsid, unsigned long trap,
344 			       int ssize, int psize, int lpsize,
345 			       unsigned long pte);
346 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
347 			     unsigned long pstart, unsigned long prot,
348 			     int psize, int ssize);
349 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
350 			int psize, int ssize);
351 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
352 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
353 
354 extern void hpte_init_native(void);
355 extern void hpte_init_lpar(void);
356 extern void hpte_init_beat(void);
357 extern void hpte_init_beat_v3(void);
358 
359 extern void slb_initialize(void);
360 extern void slb_flush_and_rebolt(void);
361 
362 extern void slb_vmalloc_update(void);
363 extern void slb_set_size(u16 size);
364 #endif /* __ASSEMBLY__ */
365 
366 /*
367  * VSID allocation (256MB segment)
368  *
369  * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
370  * from mmu context id and effective segment id of the address.
371  *
372  * For user processes max context id is limited to ((1ul << 19) - 5)
373  * for kernel space, we use the top 4 context ids to map address as below
374  * NOTE: each context only support 64TB now.
375  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
376  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
377  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
378  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
379  *
380  * The proto-VSIDs are then scrambled into real VSIDs with the
381  * multiplicative hash:
382  *
383  *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
384  *
385  * VSID_MULTIPLIER is prime, so in particular it is
386  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
387  * Because the modulus is 2^n-1 we can compute it efficiently without
388  * a divide or extra multiply (see below). The scramble function gives
389  * robust scattering in the hash table (at least based on some initial
390  * results).
391  *
392  * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
393  * bad address. This enables us to consolidate bad address handling in
394  * hash_page.
395  *
396  * We also need to avoid the last segment of the last context, because that
397  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
398  * because of the modulo operation in vsid scramble. But the vmemmap
399  * (which is what uses region 0xf) will never be close to 64TB in size
400  * (it's 56 bytes per page of system memory).
401  */
402 
403 #define CONTEXT_BITS		19
404 #define ESID_BITS		18
405 #define ESID_BITS_1T		6
406 
407 /*
408  * 256MB segment
409  * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
410  * available for user + kernel mapping. The top 4 contexts are used for
411  * kernel mapping. Each segment contains 2^28 bytes. Each
412  * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
413  * (19 == 37 + 28 - 46).
414  */
415 #define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 5)
416 
417 /*
418  * This should be computed such that protovosid * vsid_mulitplier
419  * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
420  */
421 #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
422 #define VSID_BITS_256M		(CONTEXT_BITS + ESID_BITS)
423 #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
424 
425 #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
426 #define VSID_BITS_1T		(CONTEXT_BITS + ESID_BITS_1T)
427 #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
428 
429 
430 #define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
431 
432 /*
433  * This macro generates asm code to compute the VSID scramble
434  * function.  Used in slb_allocate() and do_stab_bolted.  The function
435  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
436  *
437  *	rt = register continaing the proto-VSID and into which the
438  *		VSID will be stored
439  *	rx = scratch register (clobbered)
440  *
441  * 	- rt and rx must be different registers
442  * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
443  * 	  bits may contain other garbage, so you may need to mask the
444  * 	  result.
445  */
446 #define ASM_VSID_SCRAMBLE(rt, rx, size)					\
447 	lis	rx,VSID_MULTIPLIER_##size@h;				\
448 	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
449 	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
450 									\
451 	srdi	rx,rt,VSID_BITS_##size;					\
452 	clrldi	rt,rt,(64-VSID_BITS_##size);				\
453 	add	rt,rt,rx;		/* add high and low bits */	\
454 	/* NOTE: explanation based on VSID_BITS_##size = 36		\
455 	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
456 	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
457 	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
458 	 * the bit clear, r3 already has the answer we want, if it	\
459 	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
460 	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
461 	addi	rx,rt,1;						\
462 	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
463 	add	rt,rt,rx
464 
465 /* 4 bits per slice and we have one slice per 1TB */
466 #define SLICE_ARRAY_SIZE  (H_PGTABLE_RANGE >> 41)
467 
468 #ifndef __ASSEMBLY__
469 
470 #ifdef CONFIG_PPC_SUBPAGE_PROT
471 /*
472  * For the sub-page protection option, we extend the PGD with one of
473  * these.  Basically we have a 3-level tree, with the top level being
474  * the protptrs array.  To optimize speed and memory consumption when
475  * only addresses < 4GB are being protected, pointers to the first
476  * four pages of sub-page protection words are stored in the low_prot
477  * array.
478  * Each page of sub-page protection words protects 1GB (4 bytes
479  * protects 64k).  For the 3-level tree, each page of pointers then
480  * protects 8TB.
481  */
482 struct subpage_prot_table {
483 	unsigned long maxaddr;	/* only addresses < this are protected */
484 	unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
485 	unsigned int *low_prot[4];
486 };
487 
488 #define SBP_L1_BITS		(PAGE_SHIFT - 2)
489 #define SBP_L2_BITS		(PAGE_SHIFT - 3)
490 #define SBP_L1_COUNT		(1 << SBP_L1_BITS)
491 #define SBP_L2_COUNT		(1 << SBP_L2_BITS)
492 #define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
493 #define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
494 
495 extern void subpage_prot_free(struct mm_struct *mm);
496 extern void subpage_prot_init_new_context(struct mm_struct *mm);
497 #else
498 static inline void subpage_prot_free(struct mm_struct *mm) {}
499 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
500 #endif /* CONFIG_PPC_SUBPAGE_PROT */
501 
502 #if 0
503 /*
504  * The code below is equivalent to this function for arguments
505  * < 2^VSID_BITS, which is all this should ever be called
506  * with.  However gcc is not clever enough to compute the
507  * modulus (2^n-1) without a second multiply.
508  */
509 #define vsid_scramble(protovsid, size) \
510 	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
511 
512 #else /* 1 */
513 #define vsid_scramble(protovsid, size) \
514 	({								 \
515 		unsigned long x;					 \
516 		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
517 		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
518 		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
519 	})
520 #endif /* 1 */
521 
522 /* Returns the segment size indicator for a user address */
523 static inline int user_segment_size(unsigned long addr)
524 {
525 	/* Use 1T segments if possible for addresses >= 1T */
526 	if (addr >= (1UL << SID_SHIFT_1T))
527 		return mmu_highuser_ssize;
528 	return MMU_SEGSIZE_256M;
529 }
530 
531 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
532 				     int ssize)
533 {
534 	/*
535 	 * Bad address. We return VSID 0 for that
536 	 */
537 	if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
538 		return 0;
539 
540 	if (ssize == MMU_SEGSIZE_256M)
541 		return vsid_scramble((context << ESID_BITS)
542 				     | (ea >> SID_SHIFT), 256M);
543 	return vsid_scramble((context << ESID_BITS_1T)
544 			     | (ea >> SID_SHIFT_1T), 1T);
545 }
546 
547 /*
548  * This is only valid for addresses >= PAGE_OFFSET
549  *
550  * For kernel space, we use the top 4 context ids to map address as below
551  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
552  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
553  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
554  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
555  */
556 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
557 {
558 	unsigned long context;
559 
560 	/*
561 	 * kernel take the top 4 context from the available range
562 	 */
563 	context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
564 	return get_vsid(context, ea, ssize);
565 }
566 
567 unsigned htab_shift_for_mem_size(unsigned long mem_size);
568 
569 #endif /* __ASSEMBLY__ */
570 
571 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
572