1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ 3 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ 4 /* 5 * PowerPC64 memory management structures 6 * 7 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> 8 * PPC64 rework. 9 */ 10 11 #include <asm/page.h> 12 #include <asm/bug.h> 13 #include <asm/asm-const.h> 14 15 /* 16 * This is necessary to get the definition of PGTABLE_RANGE which we 17 * need for various slices related matters. Note that this isn't the 18 * complete pgtable.h but only a portion of it. 19 */ 20 #include <asm/book3s/64/pgtable.h> 21 #include <asm/bug.h> 22 #include <asm/task_size_64.h> 23 #include <asm/cpu_has_feature.h> 24 25 /* 26 * SLB 27 */ 28 29 #define SLB_NUM_BOLTED 2 30 #define SLB_CACHE_ENTRIES 8 31 #define SLB_MIN_SIZE 32 32 33 /* Bits in the SLB ESID word */ 34 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ 35 36 /* Bits in the SLB VSID word */ 37 #define SLB_VSID_SHIFT 12 38 #define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT 39 #define SLB_VSID_SHIFT_1T 24 40 #define SLB_VSID_SSIZE_SHIFT 62 41 #define SLB_VSID_B ASM_CONST(0xc000000000000000) 42 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) 43 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) 44 #define SLB_VSID_KS ASM_CONST(0x0000000000000800) 45 #define SLB_VSID_KP ASM_CONST(0x0000000000000400) 46 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ 47 #define SLB_VSID_L ASM_CONST(0x0000000000000100) 48 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ 49 #define SLB_VSID_LP ASM_CONST(0x0000000000000030) 50 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) 51 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) 52 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) 53 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) 54 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) 55 56 #define SLB_VSID_KERNEL (SLB_VSID_KP) 57 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) 58 59 #define SLBIE_C (0x08000000) 60 #define SLBIE_SSIZE_SHIFT 25 61 62 /* 63 * Hash table 64 */ 65 66 #define HPTES_PER_GROUP 8 67 68 #define HPTE_V_SSIZE_SHIFT 62 69 #define HPTE_V_AVPN_SHIFT 7 70 #define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff) 71 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) 72 #define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80) 73 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) 74 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) 75 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) 76 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) 77 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) 78 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) 79 #define HPTE_V_VALID ASM_CONST(0x0000000000000001) 80 81 /* 82 * ISA 3.0 has a different HPTE format. 83 */ 84 #define HPTE_R_3_0_SSIZE_SHIFT 58 85 #define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT) 86 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) 87 #define HPTE_R_TS ASM_CONST(0x4000000000000000) 88 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000) 89 #define HPTE_R_KEY_BIT0 ASM_CONST(0x2000000000000000) 90 #define HPTE_R_KEY_BIT1 ASM_CONST(0x1000000000000000) 91 #define HPTE_R_RPN_SHIFT 12 92 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000) 93 #define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000) 94 #define HPTE_R_PP ASM_CONST(0x0000000000000003) 95 #define HPTE_R_PPP ASM_CONST(0x8000000000000003) 96 #define HPTE_R_N ASM_CONST(0x0000000000000004) 97 #define HPTE_R_G ASM_CONST(0x0000000000000008) 98 #define HPTE_R_M ASM_CONST(0x0000000000000010) 99 #define HPTE_R_I ASM_CONST(0x0000000000000020) 100 #define HPTE_R_W ASM_CONST(0x0000000000000040) 101 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078) 102 #define HPTE_R_C ASM_CONST(0x0000000000000080) 103 #define HPTE_R_R ASM_CONST(0x0000000000000100) 104 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00) 105 #define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800) 106 #define HPTE_R_KEY_BIT3 ASM_CONST(0x0000000000000400) 107 #define HPTE_R_KEY_BIT4 ASM_CONST(0x0000000000000200) 108 #define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI) 109 110 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) 111 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) 112 113 /* Values for PP (assumes Ks=0, Kp=1) */ 114 #define PP_RWXX 0 /* Supervisor read/write, User none */ 115 #define PP_RWRX 1 /* Supervisor read/write, User read */ 116 #define PP_RWRW 2 /* Supervisor read/write, User read/write */ 117 #define PP_RXRX 3 /* Supervisor read, User read */ 118 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */ 119 120 /* Fields for tlbiel instruction in architecture 2.06 */ 121 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */ 122 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */ 123 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */ 124 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */ 125 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */ 126 #define TLBIEL_INVAL_SET_SHIFT 12 127 128 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */ 129 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */ 130 #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */ 131 #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */ 132 133 #ifndef __ASSEMBLY__ 134 135 struct mmu_hash_ops { 136 void (*hpte_invalidate)(unsigned long slot, 137 unsigned long vpn, 138 int bpsize, int apsize, 139 int ssize, int local); 140 long (*hpte_updatepp)(unsigned long slot, 141 unsigned long newpp, 142 unsigned long vpn, 143 int bpsize, int apsize, 144 int ssize, unsigned long flags); 145 void (*hpte_updateboltedpp)(unsigned long newpp, 146 unsigned long ea, 147 int psize, int ssize); 148 long (*hpte_insert)(unsigned long hpte_group, 149 unsigned long vpn, 150 unsigned long prpn, 151 unsigned long rflags, 152 unsigned long vflags, 153 int psize, int apsize, 154 int ssize); 155 long (*hpte_remove)(unsigned long hpte_group); 156 int (*hpte_removebolted)(unsigned long ea, 157 int psize, int ssize); 158 void (*flush_hash_range)(unsigned long number, int local); 159 void (*hugepage_invalidate)(unsigned long vsid, 160 unsigned long addr, 161 unsigned char *hpte_slot_array, 162 int psize, int ssize, int local); 163 int (*resize_hpt)(unsigned long shift); 164 /* 165 * Special for kexec. 166 * To be called in real mode with interrupts disabled. No locks are 167 * taken as such, concurrent access on pre POWER5 hardware could result 168 * in a deadlock. 169 * The linear mapping is destroyed as well. 170 */ 171 void (*hpte_clear_all)(void); 172 }; 173 extern struct mmu_hash_ops mmu_hash_ops; 174 175 struct hash_pte { 176 __be64 v; 177 __be64 r; 178 }; 179 180 extern struct hash_pte *htab_address; 181 extern unsigned long htab_size_bytes; 182 extern unsigned long htab_hash_mask; 183 184 185 static inline int shift_to_mmu_psize(unsigned int shift) 186 { 187 int psize; 188 189 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) 190 if (mmu_psize_defs[psize].shift == shift) 191 return psize; 192 return -1; 193 } 194 195 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) 196 { 197 if (mmu_psize_defs[mmu_psize].shift) 198 return mmu_psize_defs[mmu_psize].shift; 199 BUG(); 200 } 201 202 static inline unsigned int ap_to_shift(unsigned long ap) 203 { 204 int psize; 205 206 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 207 if (mmu_psize_defs[psize].ap == ap) 208 return mmu_psize_defs[psize].shift; 209 } 210 211 return -1; 212 } 213 214 static inline unsigned long get_sllp_encoding(int psize) 215 { 216 unsigned long sllp; 217 218 sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) | 219 ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4); 220 return sllp; 221 } 222 223 #endif /* __ASSEMBLY__ */ 224 225 /* 226 * Segment sizes. 227 * These are the values used by hardware in the B field of 228 * SLB entries and the first dword of MMU hashtable entries. 229 * The B field is 2 bits; the values 2 and 3 are unused and reserved. 230 */ 231 #define MMU_SEGSIZE_256M 0 232 #define MMU_SEGSIZE_1T 1 233 234 /* 235 * encode page number shift. 236 * in order to fit the 78 bit va in a 64 bit variable we shift the va by 237 * 12 bits. This enable us to address upto 76 bit va. 238 * For hpt hash from a va we can ignore the page size bits of va and for 239 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure 240 * we work in all cases including 4k page size. 241 */ 242 #define VPN_SHIFT 12 243 244 /* 245 * HPTE Large Page (LP) details 246 */ 247 #define LP_SHIFT 12 248 #define LP_BITS 8 249 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT) 250 251 #ifndef __ASSEMBLY__ 252 253 static inline int slb_vsid_shift(int ssize) 254 { 255 if (ssize == MMU_SEGSIZE_256M) 256 return SLB_VSID_SHIFT; 257 return SLB_VSID_SHIFT_1T; 258 } 259 260 static inline int segment_shift(int ssize) 261 { 262 if (ssize == MMU_SEGSIZE_256M) 263 return SID_SHIFT; 264 return SID_SHIFT_1T; 265 } 266 267 /* 268 * This array is indexed by the LP field of the HPTE second dword. 269 * Since this field may contain some RPN bits, some entries are 270 * replicated so that we get the same value irrespective of RPN. 271 * The top 4 bits are the page size index (MMU_PAGE_*) for the 272 * actual page size, the bottom 4 bits are the base page size. 273 */ 274 extern u8 hpte_page_sizes[1 << LP_BITS]; 275 276 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l, 277 bool is_base_size) 278 { 279 unsigned int i, lp; 280 281 if (!(h & HPTE_V_LARGE)) 282 return 1ul << 12; 283 284 /* Look at the 8 bit LP value */ 285 lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1); 286 i = hpte_page_sizes[lp]; 287 if (!i) 288 return 0; 289 if (!is_base_size) 290 i >>= 4; 291 return 1ul << mmu_psize_defs[i & 0xf].shift; 292 } 293 294 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l) 295 { 296 return __hpte_page_size(h, l, 0); 297 } 298 299 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l) 300 { 301 return __hpte_page_size(h, l, 1); 302 } 303 304 /* 305 * The current system page and segment sizes 306 */ 307 extern int mmu_kernel_ssize; 308 extern int mmu_highuser_ssize; 309 extern u16 mmu_slb_size; 310 extern unsigned long tce_alloc_start, tce_alloc_end; 311 312 /* 313 * If the processor supports 64k normal pages but not 64k cache 314 * inhibited pages, we have to be prepared to switch processes 315 * to use 4k pages when they create cache-inhibited mappings. 316 * If this is the case, mmu_ci_restrictions will be set to 1. 317 */ 318 extern int mmu_ci_restrictions; 319 320 /* 321 * This computes the AVPN and B fields of the first dword of a HPTE, 322 * for use when we want to match an existing PTE. The bottom 7 bits 323 * of the returned value are zero. 324 */ 325 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize, 326 int ssize) 327 { 328 unsigned long v; 329 /* 330 * The AVA field omits the low-order 23 bits of the 78 bits VA. 331 * These bits are not needed in the PTE, because the 332 * low-order b of these bits are part of the byte offset 333 * into the virtual page and, if b < 23, the high-order 334 * 23-b of these bits are always used in selecting the 335 * PTEGs to be searched 336 */ 337 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm); 338 v <<= HPTE_V_AVPN_SHIFT; 339 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; 340 return v; 341 } 342 343 /* 344 * ISA v3.0 defines a new HPTE format, which differs from the old 345 * format in having smaller AVPN and ARPN fields, and the B field 346 * in the second dword instead of the first. 347 */ 348 static inline unsigned long hpte_old_to_new_v(unsigned long v) 349 { 350 /* trim AVPN, drop B */ 351 return v & HPTE_V_COMMON_BITS; 352 } 353 354 static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r) 355 { 356 /* move B field from 1st to 2nd dword, trim ARPN */ 357 return (r & ~HPTE_R_3_0_SSIZE_MASK) | 358 (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT); 359 } 360 361 static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r) 362 { 363 /* insert B field */ 364 return (v & HPTE_V_COMMON_BITS) | 365 ((r & HPTE_R_3_0_SSIZE_MASK) << 366 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT)); 367 } 368 369 static inline unsigned long hpte_new_to_old_r(unsigned long r) 370 { 371 /* clear out B field */ 372 return r & ~HPTE_R_3_0_SSIZE_MASK; 373 } 374 375 static inline unsigned long hpte_get_old_v(struct hash_pte *hptep) 376 { 377 unsigned long hpte_v; 378 379 hpte_v = be64_to_cpu(hptep->v); 380 if (cpu_has_feature(CPU_FTR_ARCH_300)) 381 hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r)); 382 return hpte_v; 383 } 384 385 /* 386 * This function sets the AVPN and L fields of the HPTE appropriately 387 * using the base page size and actual page size. 388 */ 389 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize, 390 int actual_psize, int ssize) 391 { 392 unsigned long v; 393 v = hpte_encode_avpn(vpn, base_psize, ssize); 394 if (actual_psize != MMU_PAGE_4K) 395 v |= HPTE_V_LARGE; 396 return v; 397 } 398 399 /* 400 * This function sets the ARPN, and LP fields of the HPTE appropriately 401 * for the page size. We assume the pa is already "clean" that is properly 402 * aligned for the requested page size 403 */ 404 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize, 405 int actual_psize) 406 { 407 /* A 4K page needs no special encoding */ 408 if (actual_psize == MMU_PAGE_4K) 409 return pa & HPTE_R_RPN; 410 else { 411 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize]; 412 unsigned int shift = mmu_psize_defs[actual_psize].shift; 413 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT); 414 } 415 } 416 417 /* 418 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size. 419 */ 420 static inline unsigned long hpt_vpn(unsigned long ea, 421 unsigned long vsid, int ssize) 422 { 423 unsigned long mask; 424 int s_shift = segment_shift(ssize); 425 426 mask = (1ul << (s_shift - VPN_SHIFT)) - 1; 427 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask); 428 } 429 430 /* 431 * This hashes a virtual address 432 */ 433 static inline unsigned long hpt_hash(unsigned long vpn, 434 unsigned int shift, int ssize) 435 { 436 unsigned long mask; 437 unsigned long hash, vsid; 438 439 /* VPN_SHIFT can be atmost 12 */ 440 if (ssize == MMU_SEGSIZE_256M) { 441 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1; 442 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^ 443 ((vpn & mask) >> (shift - VPN_SHIFT)); 444 } else { 445 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1; 446 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT); 447 hash = vsid ^ (vsid << 25) ^ 448 ((vpn & mask) >> (shift - VPN_SHIFT)) ; 449 } 450 return hash & 0x7fffffffffUL; 451 } 452 453 #define HPTE_LOCAL_UPDATE 0x1 454 #define HPTE_NOHPTE_UPDATE 0x2 455 456 extern int __hash_page_4K(unsigned long ea, unsigned long access, 457 unsigned long vsid, pte_t *ptep, unsigned long trap, 458 unsigned long flags, int ssize, int subpage_prot); 459 extern int __hash_page_64K(unsigned long ea, unsigned long access, 460 unsigned long vsid, pte_t *ptep, unsigned long trap, 461 unsigned long flags, int ssize); 462 struct mm_struct; 463 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap); 464 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea, 465 unsigned long access, unsigned long trap, 466 unsigned long flags); 467 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap, 468 unsigned long dsisr); 469 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid, 470 pte_t *ptep, unsigned long trap, unsigned long flags, 471 int ssize, unsigned int shift, unsigned int mmu_psize); 472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 473 extern int __hash_page_thp(unsigned long ea, unsigned long access, 474 unsigned long vsid, pmd_t *pmdp, unsigned long trap, 475 unsigned long flags, int ssize, unsigned int psize); 476 #else 477 static inline int __hash_page_thp(unsigned long ea, unsigned long access, 478 unsigned long vsid, pmd_t *pmdp, 479 unsigned long trap, unsigned long flags, 480 int ssize, unsigned int psize) 481 { 482 BUG(); 483 return -1; 484 } 485 #endif 486 extern void hash_failure_debug(unsigned long ea, unsigned long access, 487 unsigned long vsid, unsigned long trap, 488 int ssize, int psize, int lpsize, 489 unsigned long pte); 490 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, 491 unsigned long pstart, unsigned long prot, 492 int psize, int ssize); 493 int htab_remove_mapping(unsigned long vstart, unsigned long vend, 494 int psize, int ssize); 495 extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages); 496 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); 497 498 extern void hash__setup_new_exec(void); 499 500 #ifdef CONFIG_PPC_PSERIES 501 void hpte_init_pseries(void); 502 #else 503 static inline void hpte_init_pseries(void) { } 504 #endif 505 506 extern void hpte_init_native(void); 507 508 struct slb_entry { 509 u64 esid; 510 u64 vsid; 511 }; 512 513 extern void slb_initialize(void); 514 void slb_flush_and_restore_bolted(void); 515 void slb_flush_all_realmode(void); 516 void __slb_restore_bolted_realmode(void); 517 void slb_restore_bolted_realmode(void); 518 void slb_save_contents(struct slb_entry *slb_ptr); 519 void slb_dump_contents(struct slb_entry *slb_ptr); 520 521 extern void slb_vmalloc_update(void); 522 extern void slb_set_size(u16 size); 523 #endif /* __ASSEMBLY__ */ 524 525 /* 526 * VSID allocation (256MB segment) 527 * 528 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated 529 * from mmu context id and effective segment id of the address. 530 * 531 * For user processes max context id is limited to MAX_USER_CONTEXT. 532 * more details in get_user_context 533 * 534 * For kernel space get_kernel_context 535 * 536 * The proto-VSIDs are then scrambled into real VSIDs with the 537 * multiplicative hash: 538 * 539 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS 540 * 541 * VSID_MULTIPLIER is prime, so in particular it is 542 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. 543 * Because the modulus is 2^n-1 we can compute it efficiently without 544 * a divide or extra multiply (see below). The scramble function gives 545 * robust scattering in the hash table (at least based on some initial 546 * results). 547 * 548 * We use VSID 0 to indicate an invalid VSID. The means we can't use context id 549 * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which 550 * will produce a VSID of 0. 551 * 552 * We also need to avoid the last segment of the last context, because that 553 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0 554 * because of the modulo operation in vsid scramble. 555 */ 556 557 /* 558 * Max Va bits we support as of now is 68 bits. We want 19 bit 559 * context ID. 560 * Restrictions: 561 * GPU has restrictions of not able to access beyond 128TB 562 * (47 bit effective address). We also cannot do more than 20bit PID. 563 * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS 564 * to 16 bits (ie, we can only have 2^16 pids at the same time). 565 */ 566 #define VA_BITS 68 567 #define CONTEXT_BITS 19 568 #define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS)) 569 #define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS)) 570 571 #define ESID_BITS_MASK ((1 << ESID_BITS) - 1) 572 #define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1) 573 574 /* 575 * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need 576 * to use more than one context for linear mapping the kernel. 577 * For vmalloc and memmap, we use just one context with 512TB. With 64 byte 578 * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)). 579 */ 580 #if (MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT) 581 #define MAX_KERNEL_CTX_CNT (1UL << (MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT)) 582 #else 583 #define MAX_KERNEL_CTX_CNT 1 584 #endif 585 586 #define MAX_VMALLOC_CTX_CNT 1 587 #define MAX_IO_CTX_CNT 1 588 #define MAX_VMEMMAP_CTX_CNT 1 589 590 /* 591 * 256MB segment 592 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments 593 * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts 594 * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each 595 * context maps 2^49 bytes (512TB). 596 * 597 * We also need to avoid the last segment of the last context, because that 598 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0 599 * because of the modulo operation in vsid scramble. 600 * 601 */ 602 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2) 603 #define MIN_USER_CONTEXT (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \ 604 MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT) 605 /* 606 * For platforms that support on 65bit VA we limit the context bits 607 */ 608 #define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2) 609 610 /* 611 * This should be computed such that protovosid * vsid_mulitplier 612 * doesn't overflow 64 bits. The vsid_mutliplier should also be 613 * co-prime to vsid_modulus. We also need to make sure that number 614 * of bits in multiplied result (dividend) is less than twice the number of 615 * protovsid bits for our modulus optmization to work. 616 * 617 * The below table shows the current values used. 618 * |-------+------------+----------------------+------------+-------------------| 619 * | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS | 620 * |-------+------------+----------------------+------------+-------------------| 621 * | 1T | 24 | 25 | 49 | 50 | 622 * |-------+------------+----------------------+------------+-------------------| 623 * | 256MB | 24 | 37 | 61 | 74 | 624 * |-------+------------+----------------------+------------+-------------------| 625 * 626 * |-------+------------+----------------------+------------+--------------------| 627 * | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS | 628 * |-------+------------+----------------------+------------+--------------------| 629 * | 1T | 24 | 28 | 52 | 56 | 630 * |-------+------------+----------------------+------------+--------------------| 631 * | 256MB | 24 | 40 | 64 | 80 | 632 * |-------+------------+----------------------+------------+--------------------| 633 * 634 */ 635 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */ 636 #define VSID_BITS_256M (VA_BITS - SID_SHIFT) 637 #define VSID_BITS_65_256M (65 - SID_SHIFT) 638 /* 639 * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS 640 */ 641 #define VSID_MULINV_256M ASM_CONST(665548017062) 642 643 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ 644 #define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T) 645 #define VSID_BITS_65_1T (65 - SID_SHIFT_1T) 646 #define VSID_MULINV_1T ASM_CONST(209034062) 647 648 /* 1TB VSID reserved for VRMA */ 649 #define VRMA_VSID 0x1ffffffUL 650 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT)) 651 652 /* 4 bits per slice and we have one slice per 1TB */ 653 #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41) 654 #define LOW_SLICE_ARRAY_SZ (BITS_PER_LONG / BITS_PER_BYTE) 655 #define TASK_SLICE_ARRAY_SZ(x) ((x)->hash_context->slb_addr_limit >> 41) 656 #ifndef __ASSEMBLY__ 657 658 #ifdef CONFIG_PPC_SUBPAGE_PROT 659 /* 660 * For the sub-page protection option, we extend the PGD with one of 661 * these. Basically we have a 3-level tree, with the top level being 662 * the protptrs array. To optimize speed and memory consumption when 663 * only addresses < 4GB are being protected, pointers to the first 664 * four pages of sub-page protection words are stored in the low_prot 665 * array. 666 * Each page of sub-page protection words protects 1GB (4 bytes 667 * protects 64k). For the 3-level tree, each page of pointers then 668 * protects 8TB. 669 */ 670 struct subpage_prot_table { 671 unsigned long maxaddr; /* only addresses < this are protected */ 672 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)]; 673 unsigned int *low_prot[4]; 674 }; 675 676 #define SBP_L1_BITS (PAGE_SHIFT - 2) 677 #define SBP_L2_BITS (PAGE_SHIFT - 3) 678 #define SBP_L1_COUNT (1 << SBP_L1_BITS) 679 #define SBP_L2_COUNT (1 << SBP_L2_BITS) 680 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) 681 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) 682 683 extern void subpage_prot_free(struct mm_struct *mm); 684 #else 685 static inline void subpage_prot_free(struct mm_struct *mm) {} 686 #endif /* CONFIG_PPC_SUBPAGE_PROT */ 687 688 /* 689 * One bit per slice. We have lower slices which cover 256MB segments 690 * upto 4G range. That gets us 16 low slices. For the rest we track slices 691 * in 1TB size. 692 */ 693 struct slice_mask { 694 u64 low_slices; 695 DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH); 696 }; 697 698 struct hash_mm_context { 699 u16 user_psize; /* page size index */ 700 701 /* SLB page size encodings*/ 702 unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ]; 703 unsigned char high_slices_psize[SLICE_ARRAY_SIZE]; 704 unsigned long slb_addr_limit; 705 #ifdef CONFIG_PPC_64K_PAGES 706 struct slice_mask mask_64k; 707 #endif 708 struct slice_mask mask_4k; 709 #ifdef CONFIG_HUGETLB_PAGE 710 struct slice_mask mask_16m; 711 struct slice_mask mask_16g; 712 #endif 713 714 #ifdef CONFIG_PPC_SUBPAGE_PROT 715 struct subpage_prot_table *spt; 716 #endif /* CONFIG_PPC_SUBPAGE_PROT */ 717 }; 718 719 #if 0 720 /* 721 * The code below is equivalent to this function for arguments 722 * < 2^VSID_BITS, which is all this should ever be called 723 * with. However gcc is not clever enough to compute the 724 * modulus (2^n-1) without a second multiply. 725 */ 726 #define vsid_scramble(protovsid, size) \ 727 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) 728 729 /* simplified form avoiding mod operation */ 730 #define vsid_scramble(protovsid, size) \ 731 ({ \ 732 unsigned long x; \ 733 x = (protovsid) * VSID_MULTIPLIER_##size; \ 734 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ 735 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ 736 }) 737 738 #else /* 1 */ 739 static inline unsigned long vsid_scramble(unsigned long protovsid, 740 unsigned long vsid_multiplier, int vsid_bits) 741 { 742 unsigned long vsid; 743 unsigned long vsid_modulus = ((1UL << vsid_bits) - 1); 744 /* 745 * We have same multipler for both 256 and 1T segements now 746 */ 747 vsid = protovsid * vsid_multiplier; 748 vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus); 749 return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus; 750 } 751 752 #endif /* 1 */ 753 754 /* Returns the segment size indicator for a user address */ 755 static inline int user_segment_size(unsigned long addr) 756 { 757 /* Use 1T segments if possible for addresses >= 1T */ 758 if (addr >= (1UL << SID_SHIFT_1T)) 759 return mmu_highuser_ssize; 760 return MMU_SEGSIZE_256M; 761 } 762 763 static inline unsigned long get_vsid(unsigned long context, unsigned long ea, 764 int ssize) 765 { 766 unsigned long va_bits = VA_BITS; 767 unsigned long vsid_bits; 768 unsigned long protovsid; 769 770 /* 771 * Bad address. We return VSID 0 for that 772 */ 773 if ((ea & EA_MASK) >= H_PGTABLE_RANGE) 774 return 0; 775 776 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 777 va_bits = 65; 778 779 if (ssize == MMU_SEGSIZE_256M) { 780 vsid_bits = va_bits - SID_SHIFT; 781 protovsid = (context << ESID_BITS) | 782 ((ea >> SID_SHIFT) & ESID_BITS_MASK); 783 return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits); 784 } 785 /* 1T segment */ 786 vsid_bits = va_bits - SID_SHIFT_1T; 787 protovsid = (context << ESID_BITS_1T) | 788 ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK); 789 return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits); 790 } 791 792 /* 793 * For kernel space, we use context ids as below 794 * below. Range is 512TB per context. 795 * 796 * 0x00001 - [ 0xc000000000000000 - 0xc001ffffffffffff] 797 * 0x00002 - [ 0xc002000000000000 - 0xc003ffffffffffff] 798 * 0x00003 - [ 0xc004000000000000 - 0xc005ffffffffffff] 799 * 0x00004 - [ 0xc006000000000000 - 0xc007ffffffffffff] 800 * 801 * vmap, IO, vmemap 802 * 803 * 0x00005 - [ 0xc008000000000000 - 0xc009ffffffffffff] 804 * 0x00006 - [ 0xc00a000000000000 - 0xc00bffffffffffff] 805 * 0x00007 - [ 0xc00c000000000000 - 0xc00dffffffffffff] 806 * 807 */ 808 static inline unsigned long get_kernel_context(unsigned long ea) 809 { 810 unsigned long region_id = get_region_id(ea); 811 unsigned long ctx; 812 /* 813 * Depending on Kernel config, kernel region can have one context 814 * or more. 815 */ 816 if (region_id == LINEAR_MAP_REGION_ID) { 817 /* 818 * We already verified ea to be not beyond the addr limit. 819 */ 820 ctx = 1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT); 821 } else 822 ctx = region_id + MAX_KERNEL_CTX_CNT - 1; 823 return ctx; 824 } 825 826 /* 827 * This is only valid for addresses >= PAGE_OFFSET 828 */ 829 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) 830 { 831 unsigned long context; 832 833 if (!is_kernel_addr(ea)) 834 return 0; 835 836 context = get_kernel_context(ea); 837 return get_vsid(context, ea, ssize); 838 } 839 840 unsigned htab_shift_for_mem_size(unsigned long mem_size); 841 842 #endif /* __ASSEMBLY__ */ 843 844 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */ 845