1 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3 /*
4  * PowerPC64 memory management structures
5  *
6  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7  *   PPC64 rework.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 #include <asm/bug.h>
18 
19 /*
20  * This is necessary to get the definition of PGTABLE_RANGE which we
21  * need for various slices related matters. Note that this isn't the
22  * complete pgtable.h but only a portion of it.
23  */
24 #include <asm/book3s/64/pgtable.h>
25 #include <asm/bug.h>
26 #include <asm/processor.h>
27 #include <asm/cpu_has_feature.h>
28 
29 /*
30  * SLB
31  */
32 
33 #define SLB_NUM_BOLTED		3
34 #define SLB_CACHE_ENTRIES	8
35 #define SLB_MIN_SIZE		32
36 
37 /* Bits in the SLB ESID word */
38 #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
39 
40 /* Bits in the SLB VSID word */
41 #define SLB_VSID_SHIFT		12
42 #define SLB_VSID_SHIFT_256M	SLB_VSID_SHIFT
43 #define SLB_VSID_SHIFT_1T	24
44 #define SLB_VSID_SSIZE_SHIFT	62
45 #define SLB_VSID_B		ASM_CONST(0xc000000000000000)
46 #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
47 #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
48 #define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
49 #define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
50 #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
51 #define SLB_VSID_L		ASM_CONST(0x0000000000000100)
52 #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
53 #define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
54 #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
55 #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
56 #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
57 #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
58 #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
59 
60 #define SLB_VSID_KERNEL		(SLB_VSID_KP)
61 #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
62 
63 #define SLBIE_C			(0x08000000)
64 #define SLBIE_SSIZE_SHIFT	25
65 
66 /*
67  * Hash table
68  */
69 
70 #define HPTES_PER_GROUP 8
71 
72 #define HPTE_V_SSIZE_SHIFT	62
73 #define HPTE_V_AVPN_SHIFT	7
74 #define HPTE_V_COMMON_BITS	ASM_CONST(0x000fffffffffffff)
75 #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
76 #define HPTE_V_AVPN_3_0		ASM_CONST(0x000fffffffffff80)
77 #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
78 #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
79 #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
80 #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
81 #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
82 #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
83 #define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
84 
85 /*
86  * ISA 3.0 has a different HPTE format.
87  */
88 #define HPTE_R_3_0_SSIZE_SHIFT	58
89 #define HPTE_R_3_0_SSIZE_MASK	(3ull << HPTE_R_3_0_SSIZE_SHIFT)
90 #define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
91 #define HPTE_R_TS		ASM_CONST(0x4000000000000000)
92 #define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
93 #define HPTE_R_RPN_SHIFT	12
94 #define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
95 #define HPTE_R_RPN_3_0		ASM_CONST(0x01fffffffffff000)
96 #define HPTE_R_PP		ASM_CONST(0x0000000000000003)
97 #define HPTE_R_PPP		ASM_CONST(0x8000000000000003)
98 #define HPTE_R_N		ASM_CONST(0x0000000000000004)
99 #define HPTE_R_G		ASM_CONST(0x0000000000000008)
100 #define HPTE_R_M		ASM_CONST(0x0000000000000010)
101 #define HPTE_R_I		ASM_CONST(0x0000000000000020)
102 #define HPTE_R_W		ASM_CONST(0x0000000000000040)
103 #define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
104 #define HPTE_R_C		ASM_CONST(0x0000000000000080)
105 #define HPTE_R_R		ASM_CONST(0x0000000000000100)
106 #define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
107 #define HPTE_R_KEY		(HPTE_R_KEY_LO | HPTE_R_KEY_HI)
108 
109 #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
110 #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
111 
112 /* Values for PP (assumes Ks=0, Kp=1) */
113 #define PP_RWXX	0	/* Supervisor read/write, User none */
114 #define PP_RWRX 1	/* Supervisor read/write, User read */
115 #define PP_RWRW 2	/* Supervisor read/write, User read/write */
116 #define PP_RXRX 3	/* Supervisor read,       User read */
117 #define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
118 
119 /* Fields for tlbiel instruction in architecture 2.06 */
120 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
121 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
122 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
123 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
124 #define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
125 #define TLBIEL_INVAL_SET_SHIFT	12
126 
127 #define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
128 #define POWER8_TLB_SETS		512	/* # sets in POWER8 TLB */
129 #define POWER9_TLB_SETS_HASH	256	/* # sets in POWER9 TLB Hash mode */
130 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
131 
132 #ifndef __ASSEMBLY__
133 
134 struct mmu_hash_ops {
135 	void            (*hpte_invalidate)(unsigned long slot,
136 					   unsigned long vpn,
137 					   int bpsize, int apsize,
138 					   int ssize, int local);
139 	long		(*hpte_updatepp)(unsigned long slot,
140 					 unsigned long newpp,
141 					 unsigned long vpn,
142 					 int bpsize, int apsize,
143 					 int ssize, unsigned long flags);
144 	void            (*hpte_updateboltedpp)(unsigned long newpp,
145 					       unsigned long ea,
146 					       int psize, int ssize);
147 	long		(*hpte_insert)(unsigned long hpte_group,
148 				       unsigned long vpn,
149 				       unsigned long prpn,
150 				       unsigned long rflags,
151 				       unsigned long vflags,
152 				       int psize, int apsize,
153 				       int ssize);
154 	long		(*hpte_remove)(unsigned long hpte_group);
155 	int             (*hpte_removebolted)(unsigned long ea,
156 					     int psize, int ssize);
157 	void		(*flush_hash_range)(unsigned long number, int local);
158 	void		(*hugepage_invalidate)(unsigned long vsid,
159 					       unsigned long addr,
160 					       unsigned char *hpte_slot_array,
161 					       int psize, int ssize, int local);
162 	int		(*resize_hpt)(unsigned long shift);
163 	/*
164 	 * Special for kexec.
165 	 * To be called in real mode with interrupts disabled. No locks are
166 	 * taken as such, concurrent access on pre POWER5 hardware could result
167 	 * in a deadlock.
168 	 * The linear mapping is destroyed as well.
169 	 */
170 	void		(*hpte_clear_all)(void);
171 };
172 extern struct mmu_hash_ops mmu_hash_ops;
173 
174 struct hash_pte {
175 	__be64 v;
176 	__be64 r;
177 };
178 
179 extern struct hash_pte *htab_address;
180 extern unsigned long htab_size_bytes;
181 extern unsigned long htab_hash_mask;
182 
183 
184 static inline int shift_to_mmu_psize(unsigned int shift)
185 {
186 	int psize;
187 
188 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
189 		if (mmu_psize_defs[psize].shift == shift)
190 			return psize;
191 	return -1;
192 }
193 
194 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
195 {
196 	if (mmu_psize_defs[mmu_psize].shift)
197 		return mmu_psize_defs[mmu_psize].shift;
198 	BUG();
199 }
200 
201 static inline unsigned long get_sllp_encoding(int psize)
202 {
203 	unsigned long sllp;
204 
205 	sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
206 		((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
207 	return sllp;
208 }
209 
210 #endif /* __ASSEMBLY__ */
211 
212 /*
213  * Segment sizes.
214  * These are the values used by hardware in the B field of
215  * SLB entries and the first dword of MMU hashtable entries.
216  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
217  */
218 #define MMU_SEGSIZE_256M	0
219 #define MMU_SEGSIZE_1T		1
220 
221 /*
222  * encode page number shift.
223  * in order to fit the 78 bit va in a 64 bit variable we shift the va by
224  * 12 bits. This enable us to address upto 76 bit va.
225  * For hpt hash from a va we can ignore the page size bits of va and for
226  * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
227  * we work in all cases including 4k page size.
228  */
229 #define VPN_SHIFT	12
230 
231 /*
232  * HPTE Large Page (LP) details
233  */
234 #define LP_SHIFT	12
235 #define LP_BITS		8
236 #define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
237 
238 #ifndef __ASSEMBLY__
239 
240 static inline int slb_vsid_shift(int ssize)
241 {
242 	if (ssize == MMU_SEGSIZE_256M)
243 		return SLB_VSID_SHIFT;
244 	return SLB_VSID_SHIFT_1T;
245 }
246 
247 static inline int segment_shift(int ssize)
248 {
249 	if (ssize == MMU_SEGSIZE_256M)
250 		return SID_SHIFT;
251 	return SID_SHIFT_1T;
252 }
253 
254 /*
255  * This array is indexed by the LP field of the HPTE second dword.
256  * Since this field may contain some RPN bits, some entries are
257  * replicated so that we get the same value irrespective of RPN.
258  * The top 4 bits are the page size index (MMU_PAGE_*) for the
259  * actual page size, the bottom 4 bits are the base page size.
260  */
261 extern u8 hpte_page_sizes[1 << LP_BITS];
262 
263 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
264 					     bool is_base_size)
265 {
266 	unsigned int i, lp;
267 
268 	if (!(h & HPTE_V_LARGE))
269 		return 1ul << 12;
270 
271 	/* Look at the 8 bit LP value */
272 	lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
273 	i = hpte_page_sizes[lp];
274 	if (!i)
275 		return 0;
276 	if (!is_base_size)
277 		i >>= 4;
278 	return 1ul << mmu_psize_defs[i & 0xf].shift;
279 }
280 
281 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
282 {
283 	return __hpte_page_size(h, l, 0);
284 }
285 
286 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
287 {
288 	return __hpte_page_size(h, l, 1);
289 }
290 
291 /*
292  * The current system page and segment sizes
293  */
294 extern int mmu_kernel_ssize;
295 extern int mmu_highuser_ssize;
296 extern u16 mmu_slb_size;
297 extern unsigned long tce_alloc_start, tce_alloc_end;
298 
299 /*
300  * If the processor supports 64k normal pages but not 64k cache
301  * inhibited pages, we have to be prepared to switch processes
302  * to use 4k pages when they create cache-inhibited mappings.
303  * If this is the case, mmu_ci_restrictions will be set to 1.
304  */
305 extern int mmu_ci_restrictions;
306 
307 /*
308  * This computes the AVPN and B fields of the first dword of a HPTE,
309  * for use when we want to match an existing PTE.  The bottom 7 bits
310  * of the returned value are zero.
311  */
312 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
313 					     int ssize)
314 {
315 	unsigned long v;
316 	/*
317 	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
318 	 * These bits are not needed in the PTE, because the
319 	 * low-order b of these bits are part of the byte offset
320 	 * into the virtual page and, if b < 23, the high-order
321 	 * 23-b of these bits are always used in selecting the
322 	 * PTEGs to be searched
323 	 */
324 	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
325 	v <<= HPTE_V_AVPN_SHIFT;
326 	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
327 	return v;
328 }
329 
330 /*
331  * ISA v3.0 defines a new HPTE format, which differs from the old
332  * format in having smaller AVPN and ARPN fields, and the B field
333  * in the second dword instead of the first.
334  */
335 static inline unsigned long hpte_old_to_new_v(unsigned long v)
336 {
337 	/* trim AVPN, drop B */
338 	return v & HPTE_V_COMMON_BITS;
339 }
340 
341 static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
342 {
343 	/* move B field from 1st to 2nd dword, trim ARPN */
344 	return (r & ~HPTE_R_3_0_SSIZE_MASK) |
345 		(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
346 }
347 
348 static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
349 {
350 	/* insert B field */
351 	return (v & HPTE_V_COMMON_BITS) |
352 		((r & HPTE_R_3_0_SSIZE_MASK) <<
353 		 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
354 }
355 
356 static inline unsigned long hpte_new_to_old_r(unsigned long r)
357 {
358 	/* clear out B field */
359 	return r & ~HPTE_R_3_0_SSIZE_MASK;
360 }
361 
362 /*
363  * This function sets the AVPN and L fields of the HPTE  appropriately
364  * using the base page size and actual page size.
365  */
366 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
367 					  int actual_psize, int ssize)
368 {
369 	unsigned long v;
370 	v = hpte_encode_avpn(vpn, base_psize, ssize);
371 	if (actual_psize != MMU_PAGE_4K)
372 		v |= HPTE_V_LARGE;
373 	return v;
374 }
375 
376 /*
377  * This function sets the ARPN, and LP fields of the HPTE appropriately
378  * for the page size. We assume the pa is already "clean" that is properly
379  * aligned for the requested page size
380  */
381 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
382 					  int actual_psize)
383 {
384 	/* A 4K page needs no special encoding */
385 	if (actual_psize == MMU_PAGE_4K)
386 		return pa & HPTE_R_RPN;
387 	else {
388 		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
389 		unsigned int shift = mmu_psize_defs[actual_psize].shift;
390 		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
391 	}
392 }
393 
394 /*
395  * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
396  */
397 static inline unsigned long hpt_vpn(unsigned long ea,
398 				    unsigned long vsid, int ssize)
399 {
400 	unsigned long mask;
401 	int s_shift = segment_shift(ssize);
402 
403 	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
404 	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
405 }
406 
407 /*
408  * This hashes a virtual address
409  */
410 static inline unsigned long hpt_hash(unsigned long vpn,
411 				     unsigned int shift, int ssize)
412 {
413 	unsigned long mask;
414 	unsigned long hash, vsid;
415 
416 	/* VPN_SHIFT can be atmost 12 */
417 	if (ssize == MMU_SEGSIZE_256M) {
418 		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
419 		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
420 			((vpn & mask) >> (shift - VPN_SHIFT));
421 	} else {
422 		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
423 		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
424 		hash = vsid ^ (vsid << 25) ^
425 			((vpn & mask) >> (shift - VPN_SHIFT)) ;
426 	}
427 	return hash & 0x7fffffffffUL;
428 }
429 
430 #define HPTE_LOCAL_UPDATE	0x1
431 #define HPTE_NOHPTE_UPDATE	0x2
432 
433 extern int __hash_page_4K(unsigned long ea, unsigned long access,
434 			  unsigned long vsid, pte_t *ptep, unsigned long trap,
435 			  unsigned long flags, int ssize, int subpage_prot);
436 extern int __hash_page_64K(unsigned long ea, unsigned long access,
437 			   unsigned long vsid, pte_t *ptep, unsigned long trap,
438 			   unsigned long flags, int ssize);
439 struct mm_struct;
440 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
441 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
442 			unsigned long access, unsigned long trap,
443 			unsigned long flags);
444 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
445 		     unsigned long dsisr);
446 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
447 		     pte_t *ptep, unsigned long trap, unsigned long flags,
448 		     int ssize, unsigned int shift, unsigned int mmu_psize);
449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
450 extern int __hash_page_thp(unsigned long ea, unsigned long access,
451 			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
452 			   unsigned long flags, int ssize, unsigned int psize);
453 #else
454 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
455 				  unsigned long vsid, pmd_t *pmdp,
456 				  unsigned long trap, unsigned long flags,
457 				  int ssize, unsigned int psize)
458 {
459 	BUG();
460 	return -1;
461 }
462 #endif
463 extern void hash_failure_debug(unsigned long ea, unsigned long access,
464 			       unsigned long vsid, unsigned long trap,
465 			       int ssize, int psize, int lpsize,
466 			       unsigned long pte);
467 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
468 			     unsigned long pstart, unsigned long prot,
469 			     int psize, int ssize);
470 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
471 			int psize, int ssize);
472 extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
473 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
474 
475 #ifdef CONFIG_PPC_PSERIES
476 void hpte_init_pseries(void);
477 #else
478 static inline void hpte_init_pseries(void) { }
479 #endif
480 
481 extern void hpte_init_native(void);
482 
483 extern void slb_initialize(void);
484 extern void slb_flush_and_rebolt(void);
485 
486 extern void slb_vmalloc_update(void);
487 extern void slb_set_size(u16 size);
488 #endif /* __ASSEMBLY__ */
489 
490 /*
491  * VSID allocation (256MB segment)
492  *
493  * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
494  * from mmu context id and effective segment id of the address.
495  *
496  * For user processes max context id is limited to MAX_USER_CONTEXT.
497 
498  * For kernel space, we use context ids 1-4 to map addresses as below:
499  * NOTE: each context only support 64TB now.
500  * 0x00001 -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
501  * 0x00002 -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
502  * 0x00003 -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
503  * 0x00004 -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
504  *
505  * The proto-VSIDs are then scrambled into real VSIDs with the
506  * multiplicative hash:
507  *
508  *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
509  *
510  * VSID_MULTIPLIER is prime, so in particular it is
511  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
512  * Because the modulus is 2^n-1 we can compute it efficiently without
513  * a divide or extra multiply (see below). The scramble function gives
514  * robust scattering in the hash table (at least based on some initial
515  * results).
516  *
517  * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
518  * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
519  * will produce a VSID of 0.
520  *
521  * We also need to avoid the last segment of the last context, because that
522  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
523  * because of the modulo operation in vsid scramble.
524  */
525 
526 /*
527  * Max Va bits we support as of now is 68 bits. We want 19 bit
528  * context ID.
529  * Restrictions:
530  * GPU has restrictions of not able to access beyond 128TB
531  * (47 bit effective address). We also cannot do more than 20bit PID.
532  * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
533  * to 16 bits (ie, we can only have 2^16 pids at the same time).
534  */
535 #define VA_BITS			68
536 #define CONTEXT_BITS		19
537 #define ESID_BITS		(VA_BITS - (SID_SHIFT + CONTEXT_BITS))
538 #define ESID_BITS_1T		(VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
539 
540 #define ESID_BITS_MASK		((1 << ESID_BITS) - 1)
541 #define ESID_BITS_1T_MASK	((1 << ESID_BITS_1T) - 1)
542 
543 /*
544  * 256MB segment
545  * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
546  * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
547  * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
548  * context maps 2^49 bytes (512TB).
549  *
550  * We also need to avoid the last segment of the last context, because that
551  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
552  * because of the modulo operation in vsid scramble.
553  */
554 #define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 2)
555 #define MIN_USER_CONTEXT	(5)
556 
557 /* Would be nice to use KERNEL_REGION_ID here */
558 #define KERNEL_REGION_CONTEXT_OFFSET	(0xc - 1)
559 
560 /*
561  * For platforms that support on 65bit VA we limit the context bits
562  */
563 #define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
564 
565 /*
566  * This should be computed such that protovosid * vsid_mulitplier
567  * doesn't overflow 64 bits. The vsid_mutliplier should also be
568  * co-prime to vsid_modulus. We also need to make sure that number
569  * of bits in multiplied result (dividend) is less than twice the number of
570  * protovsid bits for our modulus optmization to work.
571  *
572  * The below table shows the current values used.
573  * |-------+------------+----------------------+------------+-------------------|
574  * |       | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
575  * |-------+------------+----------------------+------------+-------------------|
576  * | 1T    |         24 |                   25 |         49 |                50 |
577  * |-------+------------+----------------------+------------+-------------------|
578  * | 256MB |         24 |                   37 |         61 |                74 |
579  * |-------+------------+----------------------+------------+-------------------|
580  *
581  * |-------+------------+----------------------+------------+--------------------|
582  * |       | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
583  * |-------+------------+----------------------+------------+--------------------|
584  * | 1T    |         24 |                   28 |         52 |                 56 |
585  * |-------+------------+----------------------+------------+--------------------|
586  * | 256MB |         24 |                   40 |         64 |                 80 |
587  * |-------+------------+----------------------+------------+--------------------|
588  *
589  */
590 #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
591 #define VSID_BITS_256M		(VA_BITS - SID_SHIFT)
592 #define VSID_BITS_65_256M	(65 - SID_SHIFT)
593 /*
594  * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
595  */
596 #define VSID_MULINV_256M	ASM_CONST(665548017062)
597 
598 #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
599 #define VSID_BITS_1T		(VA_BITS - SID_SHIFT_1T)
600 #define VSID_BITS_65_1T		(65 - SID_SHIFT_1T)
601 #define VSID_MULINV_1T		ASM_CONST(209034062)
602 
603 /* 1TB VSID reserved for VRMA */
604 #define VRMA_VSID	0x1ffffffUL
605 #define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
606 
607 /* 4 bits per slice and we have one slice per 1TB */
608 #define SLICE_ARRAY_SIZE	(H_PGTABLE_RANGE >> 41)
609 #define TASK_SLICE_ARRAY_SZ(x)	((x)->context.slb_addr_limit >> 41)
610 
611 #ifndef __ASSEMBLY__
612 
613 #ifdef CONFIG_PPC_SUBPAGE_PROT
614 /*
615  * For the sub-page protection option, we extend the PGD with one of
616  * these.  Basically we have a 3-level tree, with the top level being
617  * the protptrs array.  To optimize speed and memory consumption when
618  * only addresses < 4GB are being protected, pointers to the first
619  * four pages of sub-page protection words are stored in the low_prot
620  * array.
621  * Each page of sub-page protection words protects 1GB (4 bytes
622  * protects 64k).  For the 3-level tree, each page of pointers then
623  * protects 8TB.
624  */
625 struct subpage_prot_table {
626 	unsigned long maxaddr;	/* only addresses < this are protected */
627 	unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
628 	unsigned int *low_prot[4];
629 };
630 
631 #define SBP_L1_BITS		(PAGE_SHIFT - 2)
632 #define SBP_L2_BITS		(PAGE_SHIFT - 3)
633 #define SBP_L1_COUNT		(1 << SBP_L1_BITS)
634 #define SBP_L2_COUNT		(1 << SBP_L2_BITS)
635 #define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
636 #define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
637 
638 extern void subpage_prot_free(struct mm_struct *mm);
639 extern void subpage_prot_init_new_context(struct mm_struct *mm);
640 #else
641 static inline void subpage_prot_free(struct mm_struct *mm) {}
642 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
643 #endif /* CONFIG_PPC_SUBPAGE_PROT */
644 
645 #if 0
646 /*
647  * The code below is equivalent to this function for arguments
648  * < 2^VSID_BITS, which is all this should ever be called
649  * with.  However gcc is not clever enough to compute the
650  * modulus (2^n-1) without a second multiply.
651  */
652 #define vsid_scramble(protovsid, size) \
653 	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
654 
655 /* simplified form avoiding mod operation */
656 #define vsid_scramble(protovsid, size) \
657 	({								 \
658 		unsigned long x;					 \
659 		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
660 		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
661 		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
662 	})
663 
664 #else /* 1 */
665 static inline unsigned long vsid_scramble(unsigned long protovsid,
666 				  unsigned long vsid_multiplier, int vsid_bits)
667 {
668 	unsigned long vsid;
669 	unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
670 	/*
671 	 * We have same multipler for both 256 and 1T segements now
672 	 */
673 	vsid = protovsid * vsid_multiplier;
674 	vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
675 	return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
676 }
677 
678 #endif /* 1 */
679 
680 /* Returns the segment size indicator for a user address */
681 static inline int user_segment_size(unsigned long addr)
682 {
683 	/* Use 1T segments if possible for addresses >= 1T */
684 	if (addr >= (1UL << SID_SHIFT_1T))
685 		return mmu_highuser_ssize;
686 	return MMU_SEGSIZE_256M;
687 }
688 
689 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
690 				     int ssize)
691 {
692 	unsigned long va_bits = VA_BITS;
693 	unsigned long vsid_bits;
694 	unsigned long protovsid;
695 
696 	/*
697 	 * Bad address. We return VSID 0 for that
698 	 */
699 	if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
700 		return 0;
701 
702 	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
703 		va_bits = 65;
704 
705 	if (ssize == MMU_SEGSIZE_256M) {
706 		vsid_bits = va_bits - SID_SHIFT;
707 		protovsid = (context << ESID_BITS) |
708 			((ea >> SID_SHIFT) & ESID_BITS_MASK);
709 		return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
710 	}
711 	/* 1T segment */
712 	vsid_bits = va_bits - SID_SHIFT_1T;
713 	protovsid = (context << ESID_BITS_1T) |
714 		((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
715 	return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
716 }
717 
718 /*
719  * This is only valid for addresses >= PAGE_OFFSET
720  */
721 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
722 {
723 	unsigned long context;
724 
725 	if (!is_kernel_addr(ea))
726 		return 0;
727 
728 	/*
729 	 * For kernel space, we use context ids 1-4 to map the address space as
730 	 * below:
731 	 *
732 	 * 0x00001 -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
733 	 * 0x00002 -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
734 	 * 0x00003 -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
735 	 * 0x00004 -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
736 	 *
737 	 * So we can compute the context from the region (top nibble) by
738 	 * subtracting 11, or 0xc - 1.
739 	 */
740 	context = (ea >> 60) - KERNEL_REGION_CONTEXT_OFFSET;
741 
742 	return get_vsid(context, ea, ssize);
743 }
744 
745 unsigned htab_shift_for_mem_size(unsigned long mem_size);
746 
747 #endif /* __ASSEMBLY__ */
748 
749 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
750