1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ 3 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ 4 /* 5 * PowerPC64 memory management structures 6 * 7 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> 8 * PPC64 rework. 9 */ 10 11 #include <asm/page.h> 12 #include <asm/bug.h> 13 #include <asm/asm-const.h> 14 15 /* 16 * This is necessary to get the definition of PGTABLE_RANGE which we 17 * need for various slices related matters. Note that this isn't the 18 * complete pgtable.h but only a portion of it. 19 */ 20 #include <asm/book3s/64/pgtable.h> 21 #include <asm/task_size_64.h> 22 #include <asm/cpu_has_feature.h> 23 24 /* 25 * SLB 26 */ 27 28 #define SLB_NUM_BOLTED 2 29 #define SLB_CACHE_ENTRIES 8 30 #define SLB_MIN_SIZE 32 31 32 /* Bits in the SLB ESID word */ 33 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ 34 35 /* Bits in the SLB VSID word */ 36 #define SLB_VSID_SHIFT 12 37 #define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT 38 #define SLB_VSID_SHIFT_1T 24 39 #define SLB_VSID_SSIZE_SHIFT 62 40 #define SLB_VSID_B ASM_CONST(0xc000000000000000) 41 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) 42 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) 43 #define SLB_VSID_KS ASM_CONST(0x0000000000000800) 44 #define SLB_VSID_KP ASM_CONST(0x0000000000000400) 45 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ 46 #define SLB_VSID_L ASM_CONST(0x0000000000000100) 47 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ 48 #define SLB_VSID_LP ASM_CONST(0x0000000000000030) 49 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) 50 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) 51 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) 52 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) 53 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) 54 55 #define SLB_VSID_KERNEL (SLB_VSID_KP) 56 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) 57 58 #define SLBIE_C (0x08000000) 59 #define SLBIE_SSIZE_SHIFT 25 60 61 /* 62 * Hash table 63 */ 64 65 #define HPTES_PER_GROUP 8 66 67 #define HPTE_V_SSIZE_SHIFT 62 68 #define HPTE_V_AVPN_SHIFT 7 69 #define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff) 70 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) 71 #define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80) 72 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) 73 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) 74 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) 75 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) 76 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) 77 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) 78 #define HPTE_V_VALID ASM_CONST(0x0000000000000001) 79 80 /* 81 * ISA 3.0 has a different HPTE format. 82 */ 83 #define HPTE_R_3_0_SSIZE_SHIFT 58 84 #define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT) 85 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) 86 #define HPTE_R_TS ASM_CONST(0x4000000000000000) 87 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000) 88 #define HPTE_R_KEY_BIT4 ASM_CONST(0x2000000000000000) 89 #define HPTE_R_KEY_BIT3 ASM_CONST(0x1000000000000000) 90 #define HPTE_R_RPN_SHIFT 12 91 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000) 92 #define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000) 93 #define HPTE_R_PP ASM_CONST(0x0000000000000003) 94 #define HPTE_R_PPP ASM_CONST(0x8000000000000003) 95 #define HPTE_R_N ASM_CONST(0x0000000000000004) 96 #define HPTE_R_G ASM_CONST(0x0000000000000008) 97 #define HPTE_R_M ASM_CONST(0x0000000000000010) 98 #define HPTE_R_I ASM_CONST(0x0000000000000020) 99 #define HPTE_R_W ASM_CONST(0x0000000000000040) 100 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078) 101 #define HPTE_R_C ASM_CONST(0x0000000000000080) 102 #define HPTE_R_R ASM_CONST(0x0000000000000100) 103 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00) 104 #define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800) 105 #define HPTE_R_KEY_BIT1 ASM_CONST(0x0000000000000400) 106 #define HPTE_R_KEY_BIT0 ASM_CONST(0x0000000000000200) 107 #define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI) 108 109 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) 110 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) 111 112 /* Values for PP (assumes Ks=0, Kp=1) */ 113 #define PP_RWXX 0 /* Supervisor read/write, User none */ 114 #define PP_RWRX 1 /* Supervisor read/write, User read */ 115 #define PP_RWRW 2 /* Supervisor read/write, User read/write */ 116 #define PP_RXRX 3 /* Supervisor read, User read */ 117 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */ 118 119 /* Fields for tlbiel instruction in architecture 2.06 */ 120 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */ 121 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */ 122 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */ 123 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */ 124 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */ 125 #define TLBIEL_INVAL_SET_SHIFT 12 126 127 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */ 128 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */ 129 #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */ 130 #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */ 131 132 #ifndef __ASSEMBLY__ 133 134 struct mmu_hash_ops { 135 void (*hpte_invalidate)(unsigned long slot, 136 unsigned long vpn, 137 int bpsize, int apsize, 138 int ssize, int local); 139 long (*hpte_updatepp)(unsigned long slot, 140 unsigned long newpp, 141 unsigned long vpn, 142 int bpsize, int apsize, 143 int ssize, unsigned long flags); 144 void (*hpte_updateboltedpp)(unsigned long newpp, 145 unsigned long ea, 146 int psize, int ssize); 147 long (*hpte_insert)(unsigned long hpte_group, 148 unsigned long vpn, 149 unsigned long prpn, 150 unsigned long rflags, 151 unsigned long vflags, 152 int psize, int apsize, 153 int ssize); 154 long (*hpte_remove)(unsigned long hpte_group); 155 int (*hpte_removebolted)(unsigned long ea, 156 int psize, int ssize); 157 void (*flush_hash_range)(unsigned long number, int local); 158 void (*hugepage_invalidate)(unsigned long vsid, 159 unsigned long addr, 160 unsigned char *hpte_slot_array, 161 int psize, int ssize, int local); 162 int (*resize_hpt)(unsigned long shift); 163 /* 164 * Special for kexec. 165 * To be called in real mode with interrupts disabled. No locks are 166 * taken as such, concurrent access on pre POWER5 hardware could result 167 * in a deadlock. 168 * The linear mapping is destroyed as well. 169 */ 170 void (*hpte_clear_all)(void); 171 }; 172 extern struct mmu_hash_ops mmu_hash_ops; 173 174 struct hash_pte { 175 __be64 v; 176 __be64 r; 177 }; 178 179 extern struct hash_pte *htab_address; 180 extern unsigned long htab_size_bytes; 181 extern unsigned long htab_hash_mask; 182 183 184 static inline int shift_to_mmu_psize(unsigned int shift) 185 { 186 int psize; 187 188 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) 189 if (mmu_psize_defs[psize].shift == shift) 190 return psize; 191 return -1; 192 } 193 194 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) 195 { 196 if (mmu_psize_defs[mmu_psize].shift) 197 return mmu_psize_defs[mmu_psize].shift; 198 BUG(); 199 } 200 201 static inline unsigned int ap_to_shift(unsigned long ap) 202 { 203 int psize; 204 205 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 206 if (mmu_psize_defs[psize].ap == ap) 207 return mmu_psize_defs[psize].shift; 208 } 209 210 return -1; 211 } 212 213 static inline unsigned long get_sllp_encoding(int psize) 214 { 215 unsigned long sllp; 216 217 sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) | 218 ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4); 219 return sllp; 220 } 221 222 #endif /* __ASSEMBLY__ */ 223 224 /* 225 * Segment sizes. 226 * These are the values used by hardware in the B field of 227 * SLB entries and the first dword of MMU hashtable entries. 228 * The B field is 2 bits; the values 2 and 3 are unused and reserved. 229 */ 230 #define MMU_SEGSIZE_256M 0 231 #define MMU_SEGSIZE_1T 1 232 233 /* 234 * encode page number shift. 235 * in order to fit the 78 bit va in a 64 bit variable we shift the va by 236 * 12 bits. This enable us to address upto 76 bit va. 237 * For hpt hash from a va we can ignore the page size bits of va and for 238 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure 239 * we work in all cases including 4k page size. 240 */ 241 #define VPN_SHIFT 12 242 243 /* 244 * HPTE Large Page (LP) details 245 */ 246 #define LP_SHIFT 12 247 #define LP_BITS 8 248 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT) 249 250 #ifndef __ASSEMBLY__ 251 252 static inline int slb_vsid_shift(int ssize) 253 { 254 if (ssize == MMU_SEGSIZE_256M) 255 return SLB_VSID_SHIFT; 256 return SLB_VSID_SHIFT_1T; 257 } 258 259 static inline int segment_shift(int ssize) 260 { 261 if (ssize == MMU_SEGSIZE_256M) 262 return SID_SHIFT; 263 return SID_SHIFT_1T; 264 } 265 266 /* 267 * This array is indexed by the LP field of the HPTE second dword. 268 * Since this field may contain some RPN bits, some entries are 269 * replicated so that we get the same value irrespective of RPN. 270 * The top 4 bits are the page size index (MMU_PAGE_*) for the 271 * actual page size, the bottom 4 bits are the base page size. 272 */ 273 extern u8 hpte_page_sizes[1 << LP_BITS]; 274 275 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l, 276 bool is_base_size) 277 { 278 unsigned int i, lp; 279 280 if (!(h & HPTE_V_LARGE)) 281 return 1ul << 12; 282 283 /* Look at the 8 bit LP value */ 284 lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1); 285 i = hpte_page_sizes[lp]; 286 if (!i) 287 return 0; 288 if (!is_base_size) 289 i >>= 4; 290 return 1ul << mmu_psize_defs[i & 0xf].shift; 291 } 292 293 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l) 294 { 295 return __hpte_page_size(h, l, 0); 296 } 297 298 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l) 299 { 300 return __hpte_page_size(h, l, 1); 301 } 302 303 /* 304 * The current system page and segment sizes 305 */ 306 extern int mmu_kernel_ssize; 307 extern int mmu_highuser_ssize; 308 extern u16 mmu_slb_size; 309 extern unsigned long tce_alloc_start, tce_alloc_end; 310 311 /* 312 * If the processor supports 64k normal pages but not 64k cache 313 * inhibited pages, we have to be prepared to switch processes 314 * to use 4k pages when they create cache-inhibited mappings. 315 * If this is the case, mmu_ci_restrictions will be set to 1. 316 */ 317 extern int mmu_ci_restrictions; 318 319 /* 320 * This computes the AVPN and B fields of the first dword of a HPTE, 321 * for use when we want to match an existing PTE. The bottom 7 bits 322 * of the returned value are zero. 323 */ 324 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize, 325 int ssize) 326 { 327 unsigned long v; 328 /* 329 * The AVA field omits the low-order 23 bits of the 78 bits VA. 330 * These bits are not needed in the PTE, because the 331 * low-order b of these bits are part of the byte offset 332 * into the virtual page and, if b < 23, the high-order 333 * 23-b of these bits are always used in selecting the 334 * PTEGs to be searched 335 */ 336 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm); 337 v <<= HPTE_V_AVPN_SHIFT; 338 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; 339 return v; 340 } 341 342 /* 343 * ISA v3.0 defines a new HPTE format, which differs from the old 344 * format in having smaller AVPN and ARPN fields, and the B field 345 * in the second dword instead of the first. 346 */ 347 static inline unsigned long hpte_old_to_new_v(unsigned long v) 348 { 349 /* trim AVPN, drop B */ 350 return v & HPTE_V_COMMON_BITS; 351 } 352 353 static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r) 354 { 355 /* move B field from 1st to 2nd dword, trim ARPN */ 356 return (r & ~HPTE_R_3_0_SSIZE_MASK) | 357 (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT); 358 } 359 360 static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r) 361 { 362 /* insert B field */ 363 return (v & HPTE_V_COMMON_BITS) | 364 ((r & HPTE_R_3_0_SSIZE_MASK) << 365 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT)); 366 } 367 368 static inline unsigned long hpte_new_to_old_r(unsigned long r) 369 { 370 /* clear out B field */ 371 return r & ~HPTE_R_3_0_SSIZE_MASK; 372 } 373 374 static inline unsigned long hpte_get_old_v(struct hash_pte *hptep) 375 { 376 unsigned long hpte_v; 377 378 hpte_v = be64_to_cpu(hptep->v); 379 if (cpu_has_feature(CPU_FTR_ARCH_300)) 380 hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r)); 381 return hpte_v; 382 } 383 384 /* 385 * This function sets the AVPN and L fields of the HPTE appropriately 386 * using the base page size and actual page size. 387 */ 388 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize, 389 int actual_psize, int ssize) 390 { 391 unsigned long v; 392 v = hpte_encode_avpn(vpn, base_psize, ssize); 393 if (actual_psize != MMU_PAGE_4K) 394 v |= HPTE_V_LARGE; 395 return v; 396 } 397 398 /* 399 * This function sets the ARPN, and LP fields of the HPTE appropriately 400 * for the page size. We assume the pa is already "clean" that is properly 401 * aligned for the requested page size 402 */ 403 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize, 404 int actual_psize) 405 { 406 /* A 4K page needs no special encoding */ 407 if (actual_psize == MMU_PAGE_4K) 408 return pa & HPTE_R_RPN; 409 else { 410 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize]; 411 unsigned int shift = mmu_psize_defs[actual_psize].shift; 412 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT); 413 } 414 } 415 416 /* 417 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size. 418 */ 419 static inline unsigned long hpt_vpn(unsigned long ea, 420 unsigned long vsid, int ssize) 421 { 422 unsigned long mask; 423 int s_shift = segment_shift(ssize); 424 425 mask = (1ul << (s_shift - VPN_SHIFT)) - 1; 426 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask); 427 } 428 429 /* 430 * This hashes a virtual address 431 */ 432 static inline unsigned long hpt_hash(unsigned long vpn, 433 unsigned int shift, int ssize) 434 { 435 unsigned long mask; 436 unsigned long hash, vsid; 437 438 /* VPN_SHIFT can be atmost 12 */ 439 if (ssize == MMU_SEGSIZE_256M) { 440 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1; 441 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^ 442 ((vpn & mask) >> (shift - VPN_SHIFT)); 443 } else { 444 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1; 445 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT); 446 hash = vsid ^ (vsid << 25) ^ 447 ((vpn & mask) >> (shift - VPN_SHIFT)) ; 448 } 449 return hash & 0x7fffffffffUL; 450 } 451 452 #define HPTE_LOCAL_UPDATE 0x1 453 #define HPTE_NOHPTE_UPDATE 0x2 454 #define HPTE_USE_KERNEL_KEY 0x4 455 456 long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa, 457 unsigned long rlags, unsigned long vflags, int psize, int ssize); 458 extern int __hash_page_4K(unsigned long ea, unsigned long access, 459 unsigned long vsid, pte_t *ptep, unsigned long trap, 460 unsigned long flags, int ssize, int subpage_prot); 461 extern int __hash_page_64K(unsigned long ea, unsigned long access, 462 unsigned long vsid, pte_t *ptep, unsigned long trap, 463 unsigned long flags, int ssize); 464 struct mm_struct; 465 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap); 466 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea, 467 unsigned long access, unsigned long trap, 468 unsigned long flags); 469 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap, 470 unsigned long dsisr); 471 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc); 472 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr); 473 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid, 474 pte_t *ptep, unsigned long trap, unsigned long flags, 475 int ssize, unsigned int shift, unsigned int mmu_psize); 476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 477 extern int __hash_page_thp(unsigned long ea, unsigned long access, 478 unsigned long vsid, pmd_t *pmdp, unsigned long trap, 479 unsigned long flags, int ssize, unsigned int psize); 480 #else 481 static inline int __hash_page_thp(unsigned long ea, unsigned long access, 482 unsigned long vsid, pmd_t *pmdp, 483 unsigned long trap, unsigned long flags, 484 int ssize, unsigned int psize) 485 { 486 BUG(); 487 return -1; 488 } 489 #endif 490 extern void hash_failure_debug(unsigned long ea, unsigned long access, 491 unsigned long vsid, unsigned long trap, 492 int ssize, int psize, int lpsize, 493 unsigned long pte); 494 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, 495 unsigned long pstart, unsigned long prot, 496 int psize, int ssize); 497 int htab_remove_mapping(unsigned long vstart, unsigned long vend, 498 int psize, int ssize); 499 extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages); 500 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); 501 502 extern void hash__setup_new_exec(void); 503 504 #ifdef CONFIG_PPC_PSERIES 505 void hpte_init_pseries(void); 506 #else 507 static inline void hpte_init_pseries(void) { } 508 #endif 509 510 extern void hpte_init_native(void); 511 512 struct slb_entry { 513 u64 esid; 514 u64 vsid; 515 }; 516 517 extern void slb_initialize(void); 518 void slb_flush_and_restore_bolted(void); 519 void slb_flush_all_realmode(void); 520 void __slb_restore_bolted_realmode(void); 521 void slb_restore_bolted_realmode(void); 522 void slb_save_contents(struct slb_entry *slb_ptr); 523 void slb_dump_contents(struct slb_entry *slb_ptr); 524 525 extern void slb_vmalloc_update(void); 526 void preload_new_slb_context(unsigned long start, unsigned long sp); 527 528 #ifdef CONFIG_PPC_64S_HASH_MMU 529 void slb_set_size(u16 size); 530 #else 531 static inline void slb_set_size(u16 size) { } 532 #endif 533 534 #endif /* __ASSEMBLY__ */ 535 536 /* 537 * VSID allocation (256MB segment) 538 * 539 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated 540 * from mmu context id and effective segment id of the address. 541 * 542 * For user processes max context id is limited to MAX_USER_CONTEXT. 543 * more details in get_user_context 544 * 545 * For kernel space get_kernel_context 546 * 547 * The proto-VSIDs are then scrambled into real VSIDs with the 548 * multiplicative hash: 549 * 550 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS 551 * 552 * VSID_MULTIPLIER is prime, so in particular it is 553 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. 554 * Because the modulus is 2^n-1 we can compute it efficiently without 555 * a divide or extra multiply (see below). The scramble function gives 556 * robust scattering in the hash table (at least based on some initial 557 * results). 558 * 559 * We use VSID 0 to indicate an invalid VSID. The means we can't use context id 560 * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which 561 * will produce a VSID of 0. 562 * 563 * We also need to avoid the last segment of the last context, because that 564 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0 565 * because of the modulo operation in vsid scramble. 566 */ 567 568 /* 569 * Max Va bits we support as of now is 68 bits. We want 19 bit 570 * context ID. 571 * Restrictions: 572 * GPU has restrictions of not able to access beyond 128TB 573 * (47 bit effective address). We also cannot do more than 20bit PID. 574 * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS 575 * to 16 bits (ie, we can only have 2^16 pids at the same time). 576 */ 577 #define VA_BITS 68 578 #define CONTEXT_BITS 19 579 #define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS)) 580 #define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS)) 581 582 #define ESID_BITS_MASK ((1 << ESID_BITS) - 1) 583 #define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1) 584 585 /* 586 * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need 587 * to use more than one context for linear mapping the kernel. 588 * For vmalloc and memmap, we use just one context with 512TB. With 64 byte 589 * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)). 590 */ 591 #if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT) 592 #define MAX_KERNEL_CTX_CNT (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT)) 593 #else 594 #define MAX_KERNEL_CTX_CNT 1 595 #endif 596 597 #define MAX_VMALLOC_CTX_CNT 1 598 #define MAX_IO_CTX_CNT 1 599 #define MAX_VMEMMAP_CTX_CNT 1 600 601 /* 602 * 256MB segment 603 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments 604 * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts 605 * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each 606 * context maps 2^49 bytes (512TB). 607 * 608 * We also need to avoid the last segment of the last context, because that 609 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0 610 * because of the modulo operation in vsid scramble. 611 * 612 */ 613 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2) 614 615 // The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel 616 #define MIN_USER_CONTEXT (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \ 617 MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2) 618 619 /* 620 * For platforms that support on 65bit VA we limit the context bits 621 */ 622 #define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2) 623 624 /* 625 * This should be computed such that protovosid * vsid_mulitplier 626 * doesn't overflow 64 bits. The vsid_mutliplier should also be 627 * co-prime to vsid_modulus. We also need to make sure that number 628 * of bits in multiplied result (dividend) is less than twice the number of 629 * protovsid bits for our modulus optmization to work. 630 * 631 * The below table shows the current values used. 632 * |-------+------------+----------------------+------------+-------------------| 633 * | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS | 634 * |-------+------------+----------------------+------------+-------------------| 635 * | 1T | 24 | 25 | 49 | 50 | 636 * |-------+------------+----------------------+------------+-------------------| 637 * | 256MB | 24 | 37 | 61 | 74 | 638 * |-------+------------+----------------------+------------+-------------------| 639 * 640 * |-------+------------+----------------------+------------+--------------------| 641 * | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS | 642 * |-------+------------+----------------------+------------+--------------------| 643 * | 1T | 24 | 28 | 52 | 56 | 644 * |-------+------------+----------------------+------------+--------------------| 645 * | 256MB | 24 | 40 | 64 | 80 | 646 * |-------+------------+----------------------+------------+--------------------| 647 * 648 */ 649 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */ 650 #define VSID_BITS_256M (VA_BITS - SID_SHIFT) 651 #define VSID_BITS_65_256M (65 - SID_SHIFT) 652 /* 653 * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS 654 */ 655 #define VSID_MULINV_256M ASM_CONST(665548017062) 656 657 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ 658 #define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T) 659 #define VSID_BITS_65_1T (65 - SID_SHIFT_1T) 660 #define VSID_MULINV_1T ASM_CONST(209034062) 661 662 /* 1TB VSID reserved for VRMA */ 663 #define VRMA_VSID 0x1ffffffUL 664 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT)) 665 666 /* 4 bits per slice and we have one slice per 1TB */ 667 #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41) 668 #define LOW_SLICE_ARRAY_SZ (BITS_PER_LONG / BITS_PER_BYTE) 669 #define TASK_SLICE_ARRAY_SZ(x) ((x)->hash_context->slb_addr_limit >> 41) 670 #ifndef __ASSEMBLY__ 671 672 #ifdef CONFIG_PPC_SUBPAGE_PROT 673 /* 674 * For the sub-page protection option, we extend the PGD with one of 675 * these. Basically we have a 3-level tree, with the top level being 676 * the protptrs array. To optimize speed and memory consumption when 677 * only addresses < 4GB are being protected, pointers to the first 678 * four pages of sub-page protection words are stored in the low_prot 679 * array. 680 * Each page of sub-page protection words protects 1GB (4 bytes 681 * protects 64k). For the 3-level tree, each page of pointers then 682 * protects 8TB. 683 */ 684 struct subpage_prot_table { 685 unsigned long maxaddr; /* only addresses < this are protected */ 686 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)]; 687 unsigned int *low_prot[4]; 688 }; 689 690 #define SBP_L1_BITS (PAGE_SHIFT - 2) 691 #define SBP_L2_BITS (PAGE_SHIFT - 3) 692 #define SBP_L1_COUNT (1 << SBP_L1_BITS) 693 #define SBP_L2_COUNT (1 << SBP_L2_BITS) 694 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) 695 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) 696 697 extern void subpage_prot_free(struct mm_struct *mm); 698 #else 699 static inline void subpage_prot_free(struct mm_struct *mm) {} 700 #endif /* CONFIG_PPC_SUBPAGE_PROT */ 701 702 /* 703 * One bit per slice. We have lower slices which cover 256MB segments 704 * upto 4G range. That gets us 16 low slices. For the rest we track slices 705 * in 1TB size. 706 */ 707 struct slice_mask { 708 u64 low_slices; 709 DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH); 710 }; 711 712 struct hash_mm_context { 713 u16 user_psize; /* page size index */ 714 715 /* SLB page size encodings*/ 716 unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ]; 717 unsigned char high_slices_psize[SLICE_ARRAY_SIZE]; 718 unsigned long slb_addr_limit; 719 #ifdef CONFIG_PPC_64K_PAGES 720 struct slice_mask mask_64k; 721 #endif 722 struct slice_mask mask_4k; 723 #ifdef CONFIG_HUGETLB_PAGE 724 struct slice_mask mask_16m; 725 struct slice_mask mask_16g; 726 #endif 727 728 #ifdef CONFIG_PPC_SUBPAGE_PROT 729 struct subpage_prot_table *spt; 730 #endif /* CONFIG_PPC_SUBPAGE_PROT */ 731 }; 732 733 #if 0 734 /* 735 * The code below is equivalent to this function for arguments 736 * < 2^VSID_BITS, which is all this should ever be called 737 * with. However gcc is not clever enough to compute the 738 * modulus (2^n-1) without a second multiply. 739 */ 740 #define vsid_scramble(protovsid, size) \ 741 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) 742 743 /* simplified form avoiding mod operation */ 744 #define vsid_scramble(protovsid, size) \ 745 ({ \ 746 unsigned long x; \ 747 x = (protovsid) * VSID_MULTIPLIER_##size; \ 748 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ 749 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ 750 }) 751 752 #else /* 1 */ 753 static inline unsigned long vsid_scramble(unsigned long protovsid, 754 unsigned long vsid_multiplier, int vsid_bits) 755 { 756 unsigned long vsid; 757 unsigned long vsid_modulus = ((1UL << vsid_bits) - 1); 758 /* 759 * We have same multipler for both 256 and 1T segements now 760 */ 761 vsid = protovsid * vsid_multiplier; 762 vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus); 763 return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus; 764 } 765 766 #endif /* 1 */ 767 768 /* Returns the segment size indicator for a user address */ 769 static inline int user_segment_size(unsigned long addr) 770 { 771 /* Use 1T segments if possible for addresses >= 1T */ 772 if (addr >= (1UL << SID_SHIFT_1T)) 773 return mmu_highuser_ssize; 774 return MMU_SEGSIZE_256M; 775 } 776 777 static inline unsigned long get_vsid(unsigned long context, unsigned long ea, 778 int ssize) 779 { 780 unsigned long va_bits = VA_BITS; 781 unsigned long vsid_bits; 782 unsigned long protovsid; 783 784 /* 785 * Bad address. We return VSID 0 for that 786 */ 787 if ((ea & EA_MASK) >= H_PGTABLE_RANGE) 788 return 0; 789 790 if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) 791 va_bits = 65; 792 793 if (ssize == MMU_SEGSIZE_256M) { 794 vsid_bits = va_bits - SID_SHIFT; 795 protovsid = (context << ESID_BITS) | 796 ((ea >> SID_SHIFT) & ESID_BITS_MASK); 797 return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits); 798 } 799 /* 1T segment */ 800 vsid_bits = va_bits - SID_SHIFT_1T; 801 protovsid = (context << ESID_BITS_1T) | 802 ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK); 803 return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits); 804 } 805 806 /* 807 * For kernel space, we use context ids as 808 * below. Range is 512TB per context. 809 * 810 * 0x00001 - [ 0xc000000000000000 - 0xc001ffffffffffff] 811 * 0x00002 - [ 0xc002000000000000 - 0xc003ffffffffffff] 812 * 0x00003 - [ 0xc004000000000000 - 0xc005ffffffffffff] 813 * 0x00004 - [ 0xc006000000000000 - 0xc007ffffffffffff] 814 * 815 * vmap, IO, vmemap 816 * 817 * 0x00005 - [ 0xc008000000000000 - 0xc009ffffffffffff] 818 * 0x00006 - [ 0xc00a000000000000 - 0xc00bffffffffffff] 819 * 0x00007 - [ 0xc00c000000000000 - 0xc00dffffffffffff] 820 * 821 */ 822 static inline unsigned long get_kernel_context(unsigned long ea) 823 { 824 unsigned long region_id = get_region_id(ea); 825 unsigned long ctx; 826 /* 827 * Depending on Kernel config, kernel region can have one context 828 * or more. 829 */ 830 if (region_id == LINEAR_MAP_REGION_ID) { 831 /* 832 * We already verified ea to be not beyond the addr limit. 833 */ 834 ctx = 1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT); 835 } else 836 ctx = region_id + MAX_KERNEL_CTX_CNT - 1; 837 return ctx; 838 } 839 840 /* 841 * This is only valid for addresses >= PAGE_OFFSET 842 */ 843 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) 844 { 845 unsigned long context; 846 847 if (!is_kernel_addr(ea)) 848 return 0; 849 850 context = get_kernel_context(ea); 851 return get_vsid(context, ea, ssize); 852 } 853 854 unsigned htab_shift_for_mem_size(unsigned long mem_size); 855 856 enum slb_index { 857 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ 858 KSTACK_INDEX = 1, /* Kernel stack map */ 859 }; 860 861 #define slb_esid_mask(ssize) \ 862 (((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T) 863 864 static inline unsigned long mk_esid_data(unsigned long ea, int ssize, 865 enum slb_index index) 866 { 867 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; 868 } 869 870 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize, 871 unsigned long flags) 872 { 873 return (vsid << slb_vsid_shift(ssize)) | flags | 874 ((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT); 875 } 876 877 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, 878 unsigned long flags) 879 { 880 return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags); 881 } 882 883 #endif /* __ASSEMBLY__ */ 884 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */ 885