1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4 
5 #define H_PTE_INDEX_SIZE  8
6 #define H_PMD_INDEX_SIZE  10
7 #define H_PUD_INDEX_SIZE  10
8 #define H_PGD_INDEX_SIZE  8
9 
10 /*
11  * Each context is 512TB size. SLB miss for first context/default context
12  * is handled in the hotpath.
13  */
14 #define MAX_EA_BITS_PER_CONTEXT		49
15 
16 /*
17  * 64k aligned address free up few of the lower bits of RPN for us
18  * We steal that here. For more deatils look at pte_pfn/pfn_pte()
19  */
20 #define H_PAGE_COMBO	_RPAGE_RPN0 /* this is a combo 4k page */
21 #define H_PAGE_4K_PFN	_RPAGE_RPN1 /* PFN is for a single 4k page */
22 #define H_PAGE_BUSY	_RPAGE_RPN44     /* software: PTE & hash are busy */
23 #define H_PAGE_HASHPTE	_RPAGE_RPN43	/* PTE has associated HPTE */
24 
25 /* memory key bits. */
26 #define H_PTE_PKEY_BIT0	_RPAGE_RSV1
27 #define H_PTE_PKEY_BIT1	_RPAGE_RSV2
28 #define H_PTE_PKEY_BIT2	_RPAGE_RSV3
29 #define H_PTE_PKEY_BIT3	_RPAGE_RSV4
30 #define H_PTE_PKEY_BIT4	_RPAGE_RSV5
31 
32 /*
33  * We need to differentiate between explicit huge page and THP huge
34  * page, since THP huge page also need to track real subpage details
35  */
36 #define H_PAGE_THP_HUGE  H_PAGE_4K_PFN
37 
38 /* PTE flags to conserve for HPTE identification */
39 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
40 /*
41  * We use a 2K PTE page fragment and another 2K for storing
42  * real_pte_t hash index
43  * 8 bytes per each pte entry and another 8 bytes for storing
44  * slot details.
45  */
46 #define H_PTE_FRAG_SIZE_SHIFT  (H_PTE_INDEX_SIZE + 3 + 1)
47 #define H_PTE_FRAG_NR	(PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
48 
49 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
50 #define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3 + 1)
51 #else
52 #define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3)
53 #endif
54 #define H_PMD_FRAG_NR	(PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
55 
56 #ifndef __ASSEMBLY__
57 #include <asm/errno.h>
58 
59 /*
60  * With 64K pages on hash table, we have a special PTE format that
61  * uses a second "half" of the page table to encode sub-page information
62  * in order to deal with 64K made of 4K HW pages. Thus we override the
63  * generic accessors and iterators here
64  */
65 #define __real_pte __real_pte
66 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
67 {
68 	real_pte_t rpte;
69 	unsigned long *hidxp;
70 
71 	rpte.pte = pte;
72 
73 	/*
74 	 * Ensure that we do not read the hidx before we read the PTE. Because
75 	 * the writer side is expected to finish writing the hidx first followed
76 	 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
77 	 */
78 	smp_rmb();
79 
80 	hidxp = (unsigned long *)(ptep + offset);
81 	rpte.hidx = *hidxp;
82 	return rpte;
83 }
84 
85 /*
86  * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
87  * as 1, 1 as 2,... , and 0xf as 0.  This convention lets us represent a
88  * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
89  * allocated. We dont have to zero them gain; thus save on the initialization.
90  */
91 #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
92 #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL)   /* shift forward by one */
93 #define HIDX_BITS(x, index)  (x << (index << 2))
94 #define BITS_TO_HIDX(x, index)  ((x >> (index << 2)) & 0xfUL)
95 #define INVALID_RPTE_HIDX  0x0UL
96 
97 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
98 {
99 	return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
100 }
101 
102 /*
103  * Commit the hidx and return PTE bits that needs to be modified. The caller is
104  * expected to modify the PTE bits accordingly and commit the PTE to memory.
105  */
106 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
107 					 unsigned int subpg_index,
108 					 unsigned long hidx, int offset)
109 {
110 	unsigned long *hidxp = (unsigned long *)(ptep + offset);
111 
112 	rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
113 	*hidxp = rpte.hidx  | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
114 
115 	/*
116 	 * Anyone reading PTE must ensure hidx bits are read after reading the
117 	 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
118 	 * used for that.
119 	 */
120 	smp_wmb();
121 
122 	/* No PTE bits to be modified, return 0x0UL */
123 	return 0x0UL;
124 }
125 
126 #define __rpte_to_pte(r)	((r).pte)
127 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
128 /*
129  * Trick: we set __end to va + 64k, which happens works for
130  * a 16M page as well as we want only one iteration
131  */
132 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift)	\
133 	do {								\
134 		unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT));	\
135 		unsigned __split = (psize == MMU_PAGE_4K ||		\
136 				    psize == MMU_PAGE_64K_AP);		\
137 		shift = mmu_psize_defs[psize].shift;			\
138 		for (index = 0; vpn < __end; index++,			\
139 			     vpn += (1L << (shift - VPN_SHIFT))) {	\
140 			if (!__split || __rpte_sub_valid(rpte, index))	\
141 				do {
142 
143 #define pte_iterate_hashed_end() } while(0); } } while(0)
144 
145 #define pte_pagesize_index(mm, addr, pte)	\
146 	(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
147 
148 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
149 			   unsigned long pfn, unsigned long size, pgprot_t);
150 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
151 				 unsigned long pfn, pgprot_t prot)
152 {
153 	if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
154 		WARN(1, "remap_4k_pfn called with wrong pfn value\n");
155 		return -EINVAL;
156 	}
157 	return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
158 			       __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
159 }
160 
161 #define H_PTE_TABLE_SIZE	PTE_FRAG_SIZE
162 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
163 #define H_PMD_TABLE_SIZE	((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
164 				 (sizeof(unsigned long) << PMD_INDEX_SIZE))
165 #else
166 #define H_PMD_TABLE_SIZE	(sizeof(pmd_t) << PMD_INDEX_SIZE)
167 #endif
168 #ifdef CONFIG_HUGETLB_PAGE
169 #define H_PUD_TABLE_SIZE	((sizeof(pud_t) << PUD_INDEX_SIZE) +	\
170 				 (sizeof(unsigned long) << PUD_INDEX_SIZE))
171 #else
172 #define H_PUD_TABLE_SIZE	(sizeof(pud_t) << PUD_INDEX_SIZE)
173 #endif
174 #define H_PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
175 
176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
177 static inline char *get_hpte_slot_array(pmd_t *pmdp)
178 {
179 	/*
180 	 * The hpte hindex is stored in the pgtable whose address is in the
181 	 * second half of the PMD
182 	 *
183 	 * Order this load with the test for pmd_trans_huge in the caller
184 	 */
185 	smp_rmb();
186 	return *(char **)(pmdp + PTRS_PER_PMD);
187 
188 
189 }
190 /*
191  * The linux hugepage PMD now include the pmd entries followed by the address
192  * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
193  * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
194  * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
195  * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
196  *
197  * The top three bits are intentionally left as zero. This memory location
198  * are also used as normal page PTE pointers. So if we have any pointers
199  * left around while we collapse a hugepage, we need to make sure
200  * _PAGE_PRESENT bit of that is zero when we look at them
201  */
202 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
203 {
204 	return hpte_slot_array[index] & 0x1;
205 }
206 
207 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
208 					   int index)
209 {
210 	return hpte_slot_array[index] >> 1;
211 }
212 
213 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
214 					unsigned int index, unsigned int hidx)
215 {
216 	hpte_slot_array[index] = (hidx << 1) | 0x1;
217 }
218 
219 /*
220  *
221  * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
222  * page. The hugetlbfs page table walking and mangling paths are totally
223  * separated form the core VM paths and they're differentiated by
224  *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
225  *
226  * pmd_trans_huge() is defined as false at build time if
227  * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
228  * time in such case.
229  *
230  * For ppc64 we need to differntiate from explicit hugepages from THP, because
231  * for THP we also track the subpage details at the pmd level. We don't do
232  * that for explicit huge pages.
233  *
234  */
235 static inline int hash__pmd_trans_huge(pmd_t pmd)
236 {
237 	return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
238 		  (_PAGE_PTE | H_PAGE_THP_HUGE));
239 }
240 
241 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
242 {
243 	return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
244 }
245 
246 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
247 {
248 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
249 }
250 
251 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
252 					   unsigned long addr, pmd_t *pmdp,
253 					   unsigned long clr, unsigned long set);
254 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
255 				   unsigned long address, pmd_t *pmdp);
256 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
257 					 pgtable_t pgtable);
258 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
259 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
260 				       unsigned long addr, pmd_t *pmdp);
261 extern int hash__has_transparent_hugepage(void);
262 #endif /*  CONFIG_TRANSPARENT_HUGEPAGE */
263 #endif	/* __ASSEMBLY__ */
264 
265 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
266