1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4 
5 #define H_PTE_INDEX_SIZE  8
6 #define H_PMD_INDEX_SIZE  10
7 #define H_PUD_INDEX_SIZE  7
8 #define H_PGD_INDEX_SIZE  8
9 
10 /*
11  * Each context is 512TB size. SLB miss for first context/default context
12  * is handled in the hotpath.
13  */
14 #define MAX_EA_BITS_PER_CONTEXT		49
15 
16 /*
17  * 64k aligned address free up few of the lower bits of RPN for us
18  * We steal that here. For more deatils look at pte_pfn/pfn_pte()
19  */
20 #define H_PAGE_COMBO	_RPAGE_RPN0 /* this is a combo 4k page */
21 #define H_PAGE_4K_PFN	_RPAGE_RPN1 /* PFN is for a single 4k page */
22 #define H_PAGE_BUSY	_RPAGE_RPN44     /* software: PTE & hash are busy */
23 #define H_PAGE_HASHPTE	_RPAGE_RPN43	/* PTE has associated HPTE */
24 
25 /* memory key bits. */
26 #define H_PTE_PKEY_BIT0	_RPAGE_RSV1
27 #define H_PTE_PKEY_BIT1	_RPAGE_RSV2
28 #define H_PTE_PKEY_BIT2	_RPAGE_RSV3
29 #define H_PTE_PKEY_BIT3	_RPAGE_RSV4
30 #define H_PTE_PKEY_BIT4	_RPAGE_RSV5
31 
32 /*
33  * We need to differentiate between explicit huge page and THP huge
34  * page, since THP huge page also need to track real subpage details
35  */
36 #define H_PAGE_THP_HUGE  H_PAGE_4K_PFN
37 
38 /* PTE flags to conserve for HPTE identification */
39 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
40 /*
41  * we support 16 fragments per PTE page of 64K size.
42  */
43 #define H_PTE_FRAG_NR	16
44 /*
45  * We use a 2K PTE page fragment and another 2K for storing
46  * real_pte_t hash index
47  */
48 #define H_PTE_FRAG_SIZE_SHIFT  12
49 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
50 
51 #ifndef __ASSEMBLY__
52 #include <asm/errno.h>
53 
54 /*
55  * With 64K pages on hash table, we have a special PTE format that
56  * uses a second "half" of the page table to encode sub-page information
57  * in order to deal with 64K made of 4K HW pages. Thus we override the
58  * generic accessors and iterators here
59  */
60 #define __real_pte __real_pte
61 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
62 {
63 	real_pte_t rpte;
64 	unsigned long *hidxp;
65 
66 	rpte.pte = pte;
67 
68 	/*
69 	 * Ensure that we do not read the hidx before we read the PTE. Because
70 	 * the writer side is expected to finish writing the hidx first followed
71 	 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
72 	 */
73 	smp_rmb();
74 
75 	hidxp = (unsigned long *)(ptep + offset);
76 	rpte.hidx = *hidxp;
77 	return rpte;
78 }
79 
80 /*
81  * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
82  * as 1, 1 as 2,... , and 0xf as 0.  This convention lets us represent a
83  * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
84  * allocated. We dont have to zero them gain; thus save on the initialization.
85  */
86 #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
87 #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL)   /* shift forward by one */
88 #define HIDX_BITS(x, index)  (x << (index << 2))
89 #define BITS_TO_HIDX(x, index)  ((x >> (index << 2)) & 0xfUL)
90 #define INVALID_RPTE_HIDX  0x0UL
91 
92 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
93 {
94 	return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
95 }
96 
97 /*
98  * Commit the hidx and return PTE bits that needs to be modified. The caller is
99  * expected to modify the PTE bits accordingly and commit the PTE to memory.
100  */
101 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
102 					 unsigned int subpg_index,
103 					 unsigned long hidx, int offset)
104 {
105 	unsigned long *hidxp = (unsigned long *)(ptep + offset);
106 
107 	rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
108 	*hidxp = rpte.hidx  | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
109 
110 	/*
111 	 * Anyone reading PTE must ensure hidx bits are read after reading the
112 	 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
113 	 * used for that.
114 	 */
115 	smp_wmb();
116 
117 	/* No PTE bits to be modified, return 0x0UL */
118 	return 0x0UL;
119 }
120 
121 #define __rpte_to_pte(r)	((r).pte)
122 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
123 /*
124  * Trick: we set __end to va + 64k, which happens works for
125  * a 16M page as well as we want only one iteration
126  */
127 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift)	\
128 	do {								\
129 		unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT));	\
130 		unsigned __split = (psize == MMU_PAGE_4K ||		\
131 				    psize == MMU_PAGE_64K_AP);		\
132 		shift = mmu_psize_defs[psize].shift;			\
133 		for (index = 0; vpn < __end; index++,			\
134 			     vpn += (1L << (shift - VPN_SHIFT))) {	\
135 			if (!__split || __rpte_sub_valid(rpte, index))	\
136 				do {
137 
138 #define pte_iterate_hashed_end() } while(0); } } while(0)
139 
140 #define pte_pagesize_index(mm, addr, pte)	\
141 	(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
142 
143 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
144 			   unsigned long pfn, unsigned long size, pgprot_t);
145 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
146 				 unsigned long pfn, pgprot_t prot)
147 {
148 	if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
149 		WARN(1, "remap_4k_pfn called with wrong pfn value\n");
150 		return -EINVAL;
151 	}
152 	return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
153 			       __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
154 }
155 
156 #define H_PTE_TABLE_SIZE	PTE_FRAG_SIZE
157 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
158 #define H_PMD_TABLE_SIZE	((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
159 				 (sizeof(unsigned long) << PMD_INDEX_SIZE))
160 #else
161 #define H_PMD_TABLE_SIZE	(sizeof(pmd_t) << PMD_INDEX_SIZE)
162 #endif
163 #ifdef CONFIG_HUGETLB_PAGE
164 #define H_PUD_TABLE_SIZE	((sizeof(pud_t) << PUD_INDEX_SIZE) +	\
165 				 (sizeof(unsigned long) << PUD_INDEX_SIZE))
166 #else
167 #define H_PUD_TABLE_SIZE	(sizeof(pud_t) << PUD_INDEX_SIZE)
168 #endif
169 #define H_PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
170 
171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
172 static inline char *get_hpte_slot_array(pmd_t *pmdp)
173 {
174 	/*
175 	 * The hpte hindex is stored in the pgtable whose address is in the
176 	 * second half of the PMD
177 	 *
178 	 * Order this load with the test for pmd_trans_huge in the caller
179 	 */
180 	smp_rmb();
181 	return *(char **)(pmdp + PTRS_PER_PMD);
182 
183 
184 }
185 /*
186  * The linux hugepage PMD now include the pmd entries followed by the address
187  * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
188  * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
189  * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
190  * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
191  *
192  * The top three bits are intentionally left as zero. This memory location
193  * are also used as normal page PTE pointers. So if we have any pointers
194  * left around while we collapse a hugepage, we need to make sure
195  * _PAGE_PRESENT bit of that is zero when we look at them
196  */
197 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
198 {
199 	return hpte_slot_array[index] & 0x1;
200 }
201 
202 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
203 					   int index)
204 {
205 	return hpte_slot_array[index] >> 1;
206 }
207 
208 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
209 					unsigned int index, unsigned int hidx)
210 {
211 	hpte_slot_array[index] = (hidx << 1) | 0x1;
212 }
213 
214 /*
215  *
216  * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
217  * page. The hugetlbfs page table walking and mangling paths are totally
218  * separated form the core VM paths and they're differentiated by
219  *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
220  *
221  * pmd_trans_huge() is defined as false at build time if
222  * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
223  * time in such case.
224  *
225  * For ppc64 we need to differntiate from explicit hugepages from THP, because
226  * for THP we also track the subpage details at the pmd level. We don't do
227  * that for explicit huge pages.
228  *
229  */
230 static inline int hash__pmd_trans_huge(pmd_t pmd)
231 {
232 	return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
233 		  (_PAGE_PTE | H_PAGE_THP_HUGE));
234 }
235 
236 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
237 {
238 	return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
239 }
240 
241 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
242 {
243 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
244 }
245 
246 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
247 					   unsigned long addr, pmd_t *pmdp,
248 					   unsigned long clr, unsigned long set);
249 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
250 				   unsigned long address, pmd_t *pmdp);
251 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
252 					 pgtable_t pgtable);
253 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
254 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
255 				       unsigned long addr, pmd_t *pmdp);
256 extern int hash__has_transparent_hugepage(void);
257 #endif /*  CONFIG_TRANSPARENT_HUGEPAGE */
258 #endif	/* __ASSEMBLY__ */
259 
260 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
261