1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4 
5 #define H_PTE_INDEX_SIZE  8
6 #define H_PMD_INDEX_SIZE  10
7 #define H_PUD_INDEX_SIZE  7
8 #define H_PGD_INDEX_SIZE  8
9 
10 /*
11  * 64k aligned address free up few of the lower bits of RPN for us
12  * We steal that here. For more deatils look at pte_pfn/pfn_pte()
13  */
14 #define H_PAGE_COMBO	_RPAGE_RPN0 /* this is a combo 4k page */
15 #define H_PAGE_4K_PFN	_RPAGE_RPN1 /* PFN is for a single 4k page */
16 /*
17  * We need to differentiate between explicit huge page and THP huge
18  * page, since THP huge page also need to track real subpage details
19  */
20 #define H_PAGE_THP_HUGE  H_PAGE_4K_PFN
21 
22 /*
23  * Used to track subpage group valid if H_PAGE_COMBO is set
24  * This overloads H_PAGE_F_GIX and H_PAGE_F_SECOND
25  */
26 #define H_PAGE_COMBO_VALID	(H_PAGE_F_GIX | H_PAGE_F_SECOND)
27 
28 /* PTE flags to conserve for HPTE identification */
29 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_F_SECOND | \
30 			 H_PAGE_F_GIX | H_PAGE_HASHPTE | H_PAGE_COMBO)
31 /*
32  * we support 16 fragments per PTE page of 64K size.
33  */
34 #define H_PTE_FRAG_NR	16
35 /*
36  * We use a 2K PTE page fragment and another 2K for storing
37  * real_pte_t hash index
38  */
39 #define H_PTE_FRAG_SIZE_SHIFT  12
40 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
41 
42 #ifndef __ASSEMBLY__
43 #include <asm/errno.h>
44 
45 /*
46  * With 64K pages on hash table, we have a special PTE format that
47  * uses a second "half" of the page table to encode sub-page information
48  * in order to deal with 64K made of 4K HW pages. Thus we override the
49  * generic accessors and iterators here
50  */
51 #define __real_pte __real_pte
52 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep)
53 {
54 	real_pte_t rpte;
55 	unsigned long *hidxp;
56 
57 	rpte.pte = pte;
58 	rpte.hidx = 0;
59 	if (pte_val(pte) & H_PAGE_COMBO) {
60 		/*
61 		 * Make sure we order the hidx load against the H_PAGE_COMBO
62 		 * check. The store side ordering is done in __hash_page_4K
63 		 */
64 		smp_rmb();
65 		hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
66 		rpte.hidx = *hidxp;
67 	}
68 	return rpte;
69 }
70 
71 #define HIDX_BITS(x, index)  (x << (index << 2))
72 
73 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
74 {
75 	if ((pte_val(rpte.pte) & H_PAGE_COMBO))
76 		return (rpte.hidx >> (index<<2)) & 0xf;
77 	return (pte_val(rpte.pte) >> H_PAGE_F_GIX_SHIFT) & 0xf;
78 }
79 
80 /*
81  * Commit the hidx and return PTE bits that needs to be modified. The caller is
82  * expected to modify the PTE bits accordingly and commit the PTE to memory.
83  */
84 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
85 		unsigned int subpg_index, unsigned long hidx)
86 {
87 	unsigned long *hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
88 
89 	rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
90 	*hidxp = rpte.hidx  | HIDX_BITS(hidx, subpg_index);
91 
92 	/*
93 	 * Anyone reading PTE must ensure hidx bits are read after reading the
94 	 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
95 	 * used for that.
96 	 */
97 	smp_wmb();
98 
99 	/* No PTE bits to be modified, return 0x0UL */
100 	return 0x0UL;
101 }
102 
103 #define __rpte_to_pte(r)	((r).pte)
104 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
105 /*
106  * Trick: we set __end to va + 64k, which happens works for
107  * a 16M page as well as we want only one iteration
108  */
109 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift)	\
110 	do {								\
111 		unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT));	\
112 		unsigned __split = (psize == MMU_PAGE_4K ||		\
113 				    psize == MMU_PAGE_64K_AP);		\
114 		shift = mmu_psize_defs[psize].shift;			\
115 		for (index = 0; vpn < __end; index++,			\
116 			     vpn += (1L << (shift - VPN_SHIFT))) {	\
117 			if (!__split || __rpte_sub_valid(rpte, index))	\
118 				do {
119 
120 #define pte_iterate_hashed_end() } while(0); } } while(0)
121 
122 #define pte_pagesize_index(mm, addr, pte)	\
123 	(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
124 
125 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
126 			   unsigned long pfn, unsigned long size, pgprot_t);
127 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
128 				 unsigned long pfn, pgprot_t prot)
129 {
130 	if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
131 		WARN(1, "remap_4k_pfn called with wrong pfn value\n");
132 		return -EINVAL;
133 	}
134 	return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
135 			       __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
136 }
137 
138 #define H_PTE_TABLE_SIZE	PTE_FRAG_SIZE
139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
140 #define H_PMD_TABLE_SIZE	((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
141 				 (sizeof(unsigned long) << PMD_INDEX_SIZE))
142 #else
143 #define H_PMD_TABLE_SIZE	(sizeof(pmd_t) << PMD_INDEX_SIZE)
144 #endif
145 #define H_PUD_TABLE_SIZE	(sizeof(pud_t) << PUD_INDEX_SIZE)
146 #define H_PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
147 
148 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
149 static inline char *get_hpte_slot_array(pmd_t *pmdp)
150 {
151 	/*
152 	 * The hpte hindex is stored in the pgtable whose address is in the
153 	 * second half of the PMD
154 	 *
155 	 * Order this load with the test for pmd_trans_huge in the caller
156 	 */
157 	smp_rmb();
158 	return *(char **)(pmdp + PTRS_PER_PMD);
159 
160 
161 }
162 /*
163  * The linux hugepage PMD now include the pmd entries followed by the address
164  * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
165  * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
166  * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
167  * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
168  *
169  * The top three bits are intentionally left as zero. This memory location
170  * are also used as normal page PTE pointers. So if we have any pointers
171  * left around while we collapse a hugepage, we need to make sure
172  * _PAGE_PRESENT bit of that is zero when we look at them
173  */
174 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
175 {
176 	return hpte_slot_array[index] & 0x1;
177 }
178 
179 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
180 					   int index)
181 {
182 	return hpte_slot_array[index] >> 1;
183 }
184 
185 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
186 					unsigned int index, unsigned int hidx)
187 {
188 	hpte_slot_array[index] = (hidx << 1) | 0x1;
189 }
190 
191 /*
192  *
193  * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
194  * page. The hugetlbfs page table walking and mangling paths are totally
195  * separated form the core VM paths and they're differentiated by
196  *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
197  *
198  * pmd_trans_huge() is defined as false at build time if
199  * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
200  * time in such case.
201  *
202  * For ppc64 we need to differntiate from explicit hugepages from THP, because
203  * for THP we also track the subpage details at the pmd level. We don't do
204  * that for explicit huge pages.
205  *
206  */
207 static inline int hash__pmd_trans_huge(pmd_t pmd)
208 {
209 	return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
210 		  (_PAGE_PTE | H_PAGE_THP_HUGE));
211 }
212 
213 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
214 {
215 	return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
216 }
217 
218 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
219 {
220 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
221 }
222 
223 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
224 					   unsigned long addr, pmd_t *pmdp,
225 					   unsigned long clr, unsigned long set);
226 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
227 				   unsigned long address, pmd_t *pmdp);
228 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
229 					 pgtable_t pgtable);
230 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
231 extern void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
232 				      unsigned long address, pmd_t *pmdp);
233 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
234 				       unsigned long addr, pmd_t *pmdp);
235 extern int hash__has_transparent_hugepage(void);
236 #endif /*  CONFIG_TRANSPARENT_HUGEPAGE */
237 #endif	/* __ASSEMBLY__ */
238 
239 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
240