xref: /openbmc/linux/arch/powerpc/include/asm/book3s/64/hash-64k.h (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4 
5 #define H_PTE_INDEX_SIZE  8
6 #define H_PMD_INDEX_SIZE  10
7 #define H_PUD_INDEX_SIZE  7
8 #define H_PGD_INDEX_SIZE  8
9 
10 /*
11  * 64k aligned address free up few of the lower bits of RPN for us
12  * We steal that here. For more deatils look at pte_pfn/pfn_pte()
13  */
14 #define H_PAGE_COMBO	_RPAGE_RPN0 /* this is a combo 4k page */
15 #define H_PAGE_4K_PFN	_RPAGE_RPN1 /* PFN is for a single 4k page */
16 #define H_PAGE_BUSY	_RPAGE_RPN44     /* software: PTE & hash are busy */
17 #define H_PAGE_HASHPTE	_RPAGE_RPN43	/* PTE has associated HPTE */
18 
19 /*
20  * We need to differentiate between explicit huge page and THP huge
21  * page, since THP huge page also need to track real subpage details
22  */
23 #define H_PAGE_THP_HUGE  H_PAGE_4K_PFN
24 
25 /* PTE flags to conserve for HPTE identification */
26 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
27 /*
28  * we support 16 fragments per PTE page of 64K size.
29  */
30 #define H_PTE_FRAG_NR	16
31 /*
32  * We use a 2K PTE page fragment and another 2K for storing
33  * real_pte_t hash index
34  */
35 #define H_PTE_FRAG_SIZE_SHIFT  12
36 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
37 
38 #ifndef __ASSEMBLY__
39 #include <asm/errno.h>
40 
41 /*
42  * With 64K pages on hash table, we have a special PTE format that
43  * uses a second "half" of the page table to encode sub-page information
44  * in order to deal with 64K made of 4K HW pages. Thus we override the
45  * generic accessors and iterators here
46  */
47 #define __real_pte __real_pte
48 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep)
49 {
50 	real_pte_t rpte;
51 	unsigned long *hidxp;
52 
53 	rpte.pte = pte;
54 
55 	/*
56 	 * Ensure that we do not read the hidx before we read the PTE. Because
57 	 * the writer side is expected to finish writing the hidx first followed
58 	 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
59 	 */
60 	smp_rmb();
61 
62 	hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
63 	rpte.hidx = *hidxp;
64 	return rpte;
65 }
66 
67 /*
68  * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
69  * as 1, 1 as 2,... , and 0xf as 0.  This convention lets us represent a
70  * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
71  * allocated. We dont have to zero them gain; thus save on the initialization.
72  */
73 #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
74 #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL)   /* shift forward by one */
75 #define HIDX_BITS(x, index)  (x << (index << 2))
76 #define BITS_TO_HIDX(x, index)  ((x >> (index << 2)) & 0xfUL)
77 #define INVALID_RPTE_HIDX  0x0UL
78 
79 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
80 {
81 	return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
82 }
83 
84 /*
85  * Commit the hidx and return PTE bits that needs to be modified. The caller is
86  * expected to modify the PTE bits accordingly and commit the PTE to memory.
87  */
88 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
89 		unsigned int subpg_index, unsigned long hidx)
90 {
91 	unsigned long *hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
92 
93 	rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
94 	*hidxp = rpte.hidx  | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
95 
96 	/*
97 	 * Anyone reading PTE must ensure hidx bits are read after reading the
98 	 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
99 	 * used for that.
100 	 */
101 	smp_wmb();
102 
103 	/* No PTE bits to be modified, return 0x0UL */
104 	return 0x0UL;
105 }
106 
107 #define __rpte_to_pte(r)	((r).pte)
108 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
109 /*
110  * Trick: we set __end to va + 64k, which happens works for
111  * a 16M page as well as we want only one iteration
112  */
113 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift)	\
114 	do {								\
115 		unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT));	\
116 		unsigned __split = (psize == MMU_PAGE_4K ||		\
117 				    psize == MMU_PAGE_64K_AP);		\
118 		shift = mmu_psize_defs[psize].shift;			\
119 		for (index = 0; vpn < __end; index++,			\
120 			     vpn += (1L << (shift - VPN_SHIFT))) {	\
121 			if (!__split || __rpte_sub_valid(rpte, index))	\
122 				do {
123 
124 #define pte_iterate_hashed_end() } while(0); } } while(0)
125 
126 #define pte_pagesize_index(mm, addr, pte)	\
127 	(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
128 
129 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
130 			   unsigned long pfn, unsigned long size, pgprot_t);
131 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
132 				 unsigned long pfn, pgprot_t prot)
133 {
134 	if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
135 		WARN(1, "remap_4k_pfn called with wrong pfn value\n");
136 		return -EINVAL;
137 	}
138 	return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
139 			       __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
140 }
141 
142 #define H_PTE_TABLE_SIZE	PTE_FRAG_SIZE
143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
144 #define H_PMD_TABLE_SIZE	((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
145 				 (sizeof(unsigned long) << PMD_INDEX_SIZE))
146 #else
147 #define H_PMD_TABLE_SIZE	(sizeof(pmd_t) << PMD_INDEX_SIZE)
148 #endif
149 #define H_PUD_TABLE_SIZE	(sizeof(pud_t) << PUD_INDEX_SIZE)
150 #define H_PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
151 
152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
153 static inline char *get_hpte_slot_array(pmd_t *pmdp)
154 {
155 	/*
156 	 * The hpte hindex is stored in the pgtable whose address is in the
157 	 * second half of the PMD
158 	 *
159 	 * Order this load with the test for pmd_trans_huge in the caller
160 	 */
161 	smp_rmb();
162 	return *(char **)(pmdp + PTRS_PER_PMD);
163 
164 
165 }
166 /*
167  * The linux hugepage PMD now include the pmd entries followed by the address
168  * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
169  * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
170  * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
171  * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
172  *
173  * The top three bits are intentionally left as zero. This memory location
174  * are also used as normal page PTE pointers. So if we have any pointers
175  * left around while we collapse a hugepage, we need to make sure
176  * _PAGE_PRESENT bit of that is zero when we look at them
177  */
178 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
179 {
180 	return hpte_slot_array[index] & 0x1;
181 }
182 
183 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
184 					   int index)
185 {
186 	return hpte_slot_array[index] >> 1;
187 }
188 
189 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
190 					unsigned int index, unsigned int hidx)
191 {
192 	hpte_slot_array[index] = (hidx << 1) | 0x1;
193 }
194 
195 /*
196  *
197  * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
198  * page. The hugetlbfs page table walking and mangling paths are totally
199  * separated form the core VM paths and they're differentiated by
200  *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
201  *
202  * pmd_trans_huge() is defined as false at build time if
203  * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
204  * time in such case.
205  *
206  * For ppc64 we need to differntiate from explicit hugepages from THP, because
207  * for THP we also track the subpage details at the pmd level. We don't do
208  * that for explicit huge pages.
209  *
210  */
211 static inline int hash__pmd_trans_huge(pmd_t pmd)
212 {
213 	return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
214 		  (_PAGE_PTE | H_PAGE_THP_HUGE));
215 }
216 
217 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
218 {
219 	return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
220 }
221 
222 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
223 {
224 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
225 }
226 
227 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
228 					   unsigned long addr, pmd_t *pmdp,
229 					   unsigned long clr, unsigned long set);
230 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
231 				   unsigned long address, pmd_t *pmdp);
232 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
233 					 pgtable_t pgtable);
234 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
235 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
236 				       unsigned long addr, pmd_t *pmdp);
237 extern int hash__has_transparent_hugepage(void);
238 #endif /*  CONFIG_TRANSPARENT_HUGEPAGE */
239 #endif	/* __ASSEMBLY__ */
240 
241 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
242