1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H 3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H 4 5 #define H_PTE_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 64KB = 16MB 6 #define H_PMD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB 7 #define H_PUD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB 8 #define H_PGD_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 16TB = 4PB 9 10 11 /* 12 * Each context is 512TB size. SLB miss for first context/default context 13 * is handled in the hotpath. 14 */ 15 #define MAX_EA_BITS_PER_CONTEXT 49 16 #define REGION_SHIFT MAX_EA_BITS_PER_CONTEXT 17 18 /* 19 * We use one context for each MAP area. 20 */ 21 #define H_KERN_MAP_SIZE (1UL << MAX_EA_BITS_PER_CONTEXT) 22 23 /* 24 * Define the address range of the kernel non-linear virtual area 25 * 2PB 26 */ 27 #define H_KERN_VIRT_START ASM_CONST(0xc008000000000000) 28 29 /* 30 * 64k aligned address free up few of the lower bits of RPN for us 31 * We steal that here. For more deatils look at pte_pfn/pfn_pte() 32 */ 33 #define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */ 34 #define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */ 35 #define H_PAGE_BUSY _RPAGE_RSV1 /* software: PTE & hash are busy */ 36 #define H_PAGE_HASHPTE _RPAGE_RPN43 /* PTE has associated HPTE */ 37 38 /* memory key bits. */ 39 #define H_PTE_PKEY_BIT4 _RPAGE_PKEY_BIT4 40 #define H_PTE_PKEY_BIT3 _RPAGE_PKEY_BIT3 41 #define H_PTE_PKEY_BIT2 _RPAGE_PKEY_BIT2 42 #define H_PTE_PKEY_BIT1 _RPAGE_PKEY_BIT1 43 #define H_PTE_PKEY_BIT0 _RPAGE_PKEY_BIT0 44 45 /* 46 * We need to differentiate between explicit huge page and THP huge 47 * page, since THP huge page also need to track real subpage details 48 */ 49 #define H_PAGE_THP_HUGE H_PAGE_4K_PFN 50 51 /* PTE flags to conserve for HPTE identification */ 52 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO) 53 /* 54 * We use a 2K PTE page fragment and another 2K for storing 55 * real_pte_t hash index 56 * 8 bytes per each pte entry and another 8 bytes for storing 57 * slot details. 58 */ 59 #define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3 + 1) 60 #define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT) 61 62 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 63 #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3 + 1) 64 #else 65 #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3) 66 #endif 67 #define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT) 68 69 #ifndef __ASSEMBLY__ 70 #include <asm/errno.h> 71 72 /* 73 * With 64K pages on hash table, we have a special PTE format that 74 * uses a second "half" of the page table to encode sub-page information 75 * in order to deal with 64K made of 4K HW pages. Thus we override the 76 * generic accessors and iterators here 77 */ 78 #define __real_pte __real_pte 79 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset) 80 { 81 real_pte_t rpte; 82 unsigned long *hidxp; 83 84 rpte.pte = pte; 85 86 /* 87 * Ensure that we do not read the hidx before we read the PTE. Because 88 * the writer side is expected to finish writing the hidx first followed 89 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that. 90 */ 91 smp_rmb(); 92 93 hidxp = (unsigned long *)(ptep + offset); 94 rpte.hidx = *hidxp; 95 return rpte; 96 } 97 98 /* 99 * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented 100 * as 1, 1 as 2,... , and 0xf as 0. This convention lets us represent a 101 * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when 102 * allocated. We dont have to zero them gain; thus save on the initialization. 103 */ 104 #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */ 105 #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL) /* shift forward by one */ 106 #define HIDX_BITS(x, index) (x << (index << 2)) 107 #define BITS_TO_HIDX(x, index) ((x >> (index << 2)) & 0xfUL) 108 #define INVALID_RPTE_HIDX 0x0UL 109 110 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index) 111 { 112 return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index)); 113 } 114 115 /* 116 * Commit the hidx and return PTE bits that needs to be modified. The caller is 117 * expected to modify the PTE bits accordingly and commit the PTE to memory. 118 */ 119 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte, 120 unsigned int subpg_index, 121 unsigned long hidx, int offset) 122 { 123 unsigned long *hidxp = (unsigned long *)(ptep + offset); 124 125 rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index); 126 *hidxp = rpte.hidx | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index); 127 128 /* 129 * Anyone reading PTE must ensure hidx bits are read after reading the 130 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be 131 * used for that. 132 */ 133 smp_wmb(); 134 135 /* No PTE bits to be modified, return 0x0UL */ 136 return 0x0UL; 137 } 138 139 #define __rpte_to_pte(r) ((r).pte) 140 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index); 141 /* 142 * Trick: we set __end to va + 64k, which happens works for 143 * a 16M page as well as we want only one iteration 144 */ 145 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \ 146 do { \ 147 unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \ 148 unsigned __split = (psize == MMU_PAGE_4K || \ 149 psize == MMU_PAGE_64K_AP); \ 150 shift = mmu_psize_defs[psize].shift; \ 151 for (index = 0; vpn < __end; index++, \ 152 vpn += (1L << (shift - VPN_SHIFT))) { \ 153 if (!__split || __rpte_sub_valid(rpte, index)) 154 155 #define pte_iterate_hashed_end() } } while(0) 156 157 #define pte_pagesize_index(mm, addr, pte) \ 158 (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K) 159 160 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 161 unsigned long pfn, unsigned long size, pgprot_t); 162 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr, 163 unsigned long pfn, pgprot_t prot) 164 { 165 if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) { 166 WARN(1, "remap_4k_pfn called with wrong pfn value\n"); 167 return -EINVAL; 168 } 169 return remap_pfn_range(vma, addr, pfn, PAGE_SIZE, 170 __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN)); 171 } 172 173 #define H_PTE_TABLE_SIZE PTE_FRAG_SIZE 174 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE) 175 #define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \ 176 (sizeof(unsigned long) << PMD_INDEX_SIZE)) 177 #else 178 #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE) 179 #endif 180 #ifdef CONFIG_HUGETLB_PAGE 181 #define H_PUD_TABLE_SIZE ((sizeof(pud_t) << PUD_INDEX_SIZE) + \ 182 (sizeof(unsigned long) << PUD_INDEX_SIZE)) 183 #else 184 #define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE) 185 #endif 186 #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) 187 188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 189 static inline char *get_hpte_slot_array(pmd_t *pmdp) 190 { 191 /* 192 * The hpte hindex is stored in the pgtable whose address is in the 193 * second half of the PMD 194 * 195 * Order this load with the test for pmd_trans_huge in the caller 196 */ 197 smp_rmb(); 198 return *(char **)(pmdp + PTRS_PER_PMD); 199 200 201 } 202 /* 203 * The linux hugepage PMD now include the pmd entries followed by the address 204 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits. 205 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per 206 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and 207 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t. 208 * 209 * The top three bits are intentionally left as zero. This memory location 210 * are also used as normal page PTE pointers. So if we have any pointers 211 * left around while we collapse a hugepage, we need to make sure 212 * _PAGE_PRESENT bit of that is zero when we look at them 213 */ 214 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) 215 { 216 return hpte_slot_array[index] & 0x1; 217 } 218 219 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, 220 int index) 221 { 222 return hpte_slot_array[index] >> 1; 223 } 224 225 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, 226 unsigned int index, unsigned int hidx) 227 { 228 hpte_slot_array[index] = (hidx << 1) | 0x1; 229 } 230 231 /* 232 * 233 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs 234 * page. The hugetlbfs page table walking and mangling paths are totally 235 * separated form the core VM paths and they're differentiated by 236 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run. 237 * 238 * pmd_trans_huge() is defined as false at build time if 239 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build 240 * time in such case. 241 * 242 * For ppc64 we need to differntiate from explicit hugepages from THP, because 243 * for THP we also track the subpage details at the pmd level. We don't do 244 * that for explicit huge pages. 245 * 246 */ 247 static inline int hash__pmd_trans_huge(pmd_t pmd) 248 { 249 return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)) == 250 (_PAGE_PTE | H_PAGE_THP_HUGE)); 251 } 252 253 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b) 254 { 255 return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0); 256 } 257 258 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd) 259 { 260 return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE)); 261 } 262 263 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, 264 unsigned long addr, pmd_t *pmdp, 265 unsigned long clr, unsigned long set); 266 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, 267 unsigned long address, pmd_t *pmdp); 268 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 269 pgtable_t pgtable); 270 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 271 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm, 272 unsigned long addr, pmd_t *pmdp); 273 extern int hash__has_transparent_hugepage(void); 274 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 275 276 static inline pmd_t hash__pmd_mkdevmap(pmd_t pmd) 277 { 278 return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)); 279 } 280 281 #endif /* __ASSEMBLY__ */ 282 283 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */ 284