xref: /openbmc/linux/arch/powerpc/include/asm/book3s/32/pgtable.h (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4 
5 #define __ARCH_USE_5LEVEL_HACK
6 #include <asm-generic/pgtable-nopmd.h>
7 
8 #include <asm/book3s/32/hash.h>
9 
10 /* And here we include common definitions */
11 #include <asm/pte-common.h>
12 
13 #define PTE_INDEX_SIZE	PTE_SHIFT
14 #define PMD_INDEX_SIZE	0
15 #define PUD_INDEX_SIZE	0
16 #define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
17 
18 #define PMD_CACHE_INDEX	PMD_INDEX_SIZE
19 #define PUD_CACHE_INDEX	PUD_INDEX_SIZE
20 
21 #ifndef __ASSEMBLY__
22 #define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
23 #define PMD_TABLE_SIZE	0
24 #define PUD_TABLE_SIZE	0
25 #define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
26 #endif	/* __ASSEMBLY__ */
27 
28 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
29 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
30 
31 /*
32  * The normal case is that PTEs are 32-bits and we have a 1-page
33  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
34  *
35  * For any >32-bit physical address platform, we can use the following
36  * two level page table layout where the pgdir is 8KB and the MS 13 bits
37  * are an index to the second level table.  The combined pgdir/pmd first
38  * level has 2048 entries and the second level has 512 64-bit PTE entries.
39  * -Matt
40  */
41 /* PGDIR_SHIFT determines what a top-level page table entry can map */
42 #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
43 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
44 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
45 
46 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
47 /*
48  * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
49  * value (for now) on others, from where we can start layout kernel
50  * virtual space that goes below PKMAP and FIXMAP
51  */
52 #ifdef CONFIG_HIGHMEM
53 #define KVIRT_TOP	PKMAP_BASE
54 #else
55 #define KVIRT_TOP	(0xfe000000UL)	/* for now, could be FIXMAP_BASE ? */
56 #endif
57 
58 /*
59  * ioremap_bot starts at that address. Early ioremaps move down from there,
60  * until mem_init() at which point this becomes the top of the vmalloc
61  * and ioremap space
62  */
63 #ifdef CONFIG_NOT_COHERENT_CACHE
64 #define IOREMAP_TOP	((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
65 #else
66 #define IOREMAP_TOP	KVIRT_TOP
67 #endif
68 
69 /*
70  * Just any arbitrary offset to the start of the vmalloc VM area: the
71  * current 16MB value just means that there will be a 64MB "hole" after the
72  * physical memory until the kernel virtual memory starts.  That means that
73  * any out-of-bounds memory accesses will hopefully be caught.
74  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
75  * area for the same reason. ;)
76  *
77  * We no longer map larger than phys RAM with the BATs so we don't have
78  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
79  * about clashes between our early calls to ioremap() that start growing down
80  * from ioremap_base being run into the VM area allocations (growing upwards
81  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
82  * we actually run into our mappings setup in the early boot with the VM
83  * system.  This really does become a problem for machines with good amounts
84  * of RAM.  -- Cort
85  */
86 #define VMALLOC_OFFSET (0x1000000) /* 16M */
87 #ifdef PPC_PIN_SIZE
88 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
89 #else
90 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
91 #endif
92 #define VMALLOC_END	ioremap_bot
93 
94 #ifndef __ASSEMBLY__
95 #include <linux/sched.h>
96 #include <linux/threads.h>
97 #include <asm/io.h>			/* For sub-arch specific PPC_PIN_SIZE */
98 
99 extern unsigned long ioremap_bot;
100 
101 /* Bits to mask out from a PGD to get to the PUD page */
102 #define PGD_MASKED_BITS		0
103 
104 #define pte_ERROR(e) \
105 	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
106 		(unsigned long long)pte_val(e))
107 #define pgd_ERROR(e) \
108 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
109 /*
110  * Bits in a linux-style PTE.  These match the bits in the
111  * (hardware-defined) PowerPC PTE as closely as possible.
112  */
113 
114 #define pte_clear(mm, addr, ptep) \
115 	do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
116 
117 #define pmd_none(pmd)		(!pmd_val(pmd))
118 #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
119 #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
120 static inline void pmd_clear(pmd_t *pmdp)
121 {
122 	*pmdp = __pmd(0);
123 }
124 
125 
126 /*
127  * When flushing the tlb entry for a page, we also need to flush the hash
128  * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
129  */
130 extern int flush_hash_pages(unsigned context, unsigned long va,
131 			    unsigned long pmdval, int count);
132 
133 /* Add an HPTE to the hash table */
134 extern void add_hash_page(unsigned context, unsigned long va,
135 			  unsigned long pmdval);
136 
137 /* Flush an entry from the TLB/hash table */
138 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
139 			     unsigned long address);
140 
141 /*
142  * PTE updates. This function is called whenever an existing
143  * valid PTE is updated. This does -not- include set_pte_at()
144  * which nowadays only sets a new PTE.
145  *
146  * Depending on the type of MMU, we may need to use atomic updates
147  * and the PTE may be either 32 or 64 bit wide. In the later case,
148  * when using atomic updates, only the low part of the PTE is
149  * accessed atomically.
150  *
151  * In addition, on 44x, we also maintain a global flag indicating
152  * that an executable user mapping was modified, which is needed
153  * to properly flush the virtually tagged instruction cache of
154  * those implementations.
155  */
156 #ifndef CONFIG_PTE_64BIT
157 static inline unsigned long pte_update(pte_t *p,
158 				       unsigned long clr,
159 				       unsigned long set)
160 {
161 	unsigned long old, tmp;
162 
163 	__asm__ __volatile__("\
164 1:	lwarx	%0,0,%3\n\
165 	andc	%1,%0,%4\n\
166 	or	%1,%1,%5\n"
167 	PPC405_ERR77(0,%3)
168 "	stwcx.	%1,0,%3\n\
169 	bne-	1b"
170 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
171 	: "r" (p), "r" (clr), "r" (set), "m" (*p)
172 	: "cc" );
173 
174 	return old;
175 }
176 #else /* CONFIG_PTE_64BIT */
177 static inline unsigned long long pte_update(pte_t *p,
178 					    unsigned long clr,
179 					    unsigned long set)
180 {
181 	unsigned long long old;
182 	unsigned long tmp;
183 
184 	__asm__ __volatile__("\
185 1:	lwarx	%L0,0,%4\n\
186 	lwzx	%0,0,%3\n\
187 	andc	%1,%L0,%5\n\
188 	or	%1,%1,%6\n"
189 	PPC405_ERR77(0,%3)
190 "	stwcx.	%1,0,%4\n\
191 	bne-	1b"
192 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
193 	: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
194 	: "cc" );
195 
196 	return old;
197 }
198 #endif /* CONFIG_PTE_64BIT */
199 
200 /*
201  * 2.6 calls this without flushing the TLB entry; this is wrong
202  * for our hash-based implementation, we fix that up here.
203  */
204 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
205 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
206 {
207 	unsigned long old;
208 	old = pte_update(ptep, _PAGE_ACCESSED, 0);
209 	if (old & _PAGE_HASHPTE) {
210 		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
211 		flush_hash_pages(context, addr, ptephys, 1);
212 	}
213 	return (old & _PAGE_ACCESSED) != 0;
214 }
215 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
216 	__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
217 
218 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
219 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
220 				       pte_t *ptep)
221 {
222 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
223 }
224 
225 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
226 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
227 				      pte_t *ptep)
228 {
229 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
230 }
231 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
232 					   unsigned long addr, pte_t *ptep)
233 {
234 	ptep_set_wrprotect(mm, addr, ptep);
235 }
236 
237 
238 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
239 					   pte_t *ptep, pte_t entry,
240 					   unsigned long address,
241 					   int psize)
242 {
243 	unsigned long set = pte_val(entry) &
244 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
245 	unsigned long clr = ~pte_val(entry) & _PAGE_RO;
246 
247 	pte_update(ptep, clr, set);
248 
249 	flush_tlb_page(vma, address);
250 }
251 
252 #define __HAVE_ARCH_PTE_SAME
253 #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
254 
255 /*
256  * Note that on Book E processors, the pmd contains the kernel virtual
257  * (lowmem) address of the pte page.  The physical address is less useful
258  * because everything runs with translation enabled (even the TLB miss
259  * handler).  On everything else the pmd contains the physical address
260  * of the pte page.  -- paulus
261  */
262 #ifndef CONFIG_BOOKE
263 #define pmd_page_vaddr(pmd)	\
264 	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
265 #define pmd_page(pmd)		\
266 	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
267 #else
268 #define pmd_page_vaddr(pmd)	\
269 	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
270 #define pmd_page(pmd)		\
271 	pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
272 #endif
273 
274 /* to find an entry in a kernel page-table-directory */
275 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
276 
277 /* to find an entry in a page-table-directory */
278 #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
279 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
280 
281 /* Find an entry in the third-level page table.. */
282 #define pte_index(address)		\
283 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
284 #define pte_offset_kernel(dir, addr)	\
285 	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
286 #define pte_offset_map(dir, addr)		\
287 	((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
288 #define pte_unmap(pte)		kunmap_atomic(pte)
289 
290 /*
291  * Encode and decode a swap entry.
292  * Note that the bits we use in a PTE for representing a swap entry
293  * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
294  *   -- paulus
295  */
296 #define __swp_type(entry)		((entry).val & 0x1f)
297 #define __swp_offset(entry)		((entry).val >> 5)
298 #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
299 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
300 #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
301 
302 int map_kernel_page(unsigned long va, phys_addr_t pa, int flags);
303 
304 /* Generic accessors to PTE bits */
305 static inline int pte_write(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_RW);}
306 static inline int pte_read(pte_t pte)		{ return 1; }
307 static inline int pte_dirty(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_DIRTY); }
308 static inline int pte_young(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_ACCESSED); }
309 static inline int pte_special(pte_t pte)	{ return !!(pte_val(pte) & _PAGE_SPECIAL); }
310 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
311 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
312 
313 static inline int pte_present(pte_t pte)
314 {
315 	return pte_val(pte) & _PAGE_PRESENT;
316 }
317 
318 /*
319  * We only find page table entry in the last level
320  * Hence no need for other accessors
321  */
322 #define pte_access_permitted pte_access_permitted
323 static inline bool pte_access_permitted(pte_t pte, bool write)
324 {
325 	unsigned long pteval = pte_val(pte);
326 	/*
327 	 * A read-only access is controlled by _PAGE_USER bit.
328 	 * We have _PAGE_READ set for WRITE and EXECUTE
329 	 */
330 	unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_USER;
331 
332 	if (write)
333 		need_pte_bits |= _PAGE_WRITE;
334 
335 	if ((pteval & need_pte_bits) != need_pte_bits)
336 		return false;
337 
338 	return true;
339 }
340 
341 /* Conversion functions: convert a page and protection to a page entry,
342  * and a page entry and page directory to the page they refer to.
343  *
344  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
345  * long for now.
346  */
347 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
348 {
349 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
350 		     pgprot_val(pgprot));
351 }
352 
353 static inline unsigned long pte_pfn(pte_t pte)
354 {
355 	return pte_val(pte) >> PTE_RPN_SHIFT;
356 }
357 
358 /* Generic modifiers for PTE bits */
359 static inline pte_t pte_wrprotect(pte_t pte)
360 {
361 	return __pte(pte_val(pte) & ~_PAGE_RW);
362 }
363 
364 static inline pte_t pte_mkclean(pte_t pte)
365 {
366 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
367 }
368 
369 static inline pte_t pte_mkold(pte_t pte)
370 {
371 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
372 }
373 
374 static inline pte_t pte_mkwrite(pte_t pte)
375 {
376 	return __pte(pte_val(pte) | _PAGE_RW);
377 }
378 
379 static inline pte_t pte_mkdirty(pte_t pte)
380 {
381 	return __pte(pte_val(pte) | _PAGE_DIRTY);
382 }
383 
384 static inline pte_t pte_mkyoung(pte_t pte)
385 {
386 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
387 }
388 
389 static inline pte_t pte_mkspecial(pte_t pte)
390 {
391 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
392 }
393 
394 static inline pte_t pte_mkhuge(pte_t pte)
395 {
396 	return pte;
397 }
398 
399 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
400 {
401 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
402 }
403 
404 
405 
406 /* This low level function performs the actual PTE insertion
407  * Setting the PTE depends on the MMU type and other factors. It's
408  * an horrible mess that I'm not going to try to clean up now but
409  * I'm keeping it in one place rather than spread around
410  */
411 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
412 				pte_t *ptep, pte_t pte, int percpu)
413 {
414 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
415 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
416 	 * helper pte_update() which does an atomic update. We need to do that
417 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
418 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
419 	 * the hash bits instead (ie, same as the non-SMP case)
420 	 */
421 	if (percpu)
422 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
423 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
424 	else
425 		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
426 
427 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
428 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
429 	 * can just store as long as we do the two halves in the right order
430 	 * with a barrier in between. This is possible because we take care,
431 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
432 	 * which synchronizes us with any concurrent invalidation.
433 	 * In the percpu case, we also fallback to the simple update preserving
434 	 * the hash bits
435 	 */
436 	if (percpu) {
437 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
438 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
439 		return;
440 	}
441 	if (pte_val(*ptep) & _PAGE_HASHPTE)
442 		flush_hash_entry(mm, ptep, addr);
443 	__asm__ __volatile__("\
444 		stw%U0%X0 %2,%0\n\
445 		eieio\n\
446 		stw%U0%X0 %L2,%1"
447 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
448 	: "r" (pte) : "memory");
449 
450 #elif defined(CONFIG_PPC_STD_MMU_32)
451 	/* Third case is 32-bit hash table in UP mode, we need to preserve
452 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
453 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
454 	 * and see we need to keep track that this PTE needs invalidating
455 	 */
456 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
457 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
458 
459 #else
460 #error "Not supported "
461 #endif
462 }
463 
464 /*
465  * Macro to mark a page protection value as "uncacheable".
466  */
467 
468 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
469 			 _PAGE_WRITETHRU)
470 
471 #define pgprot_noncached pgprot_noncached
472 static inline pgprot_t pgprot_noncached(pgprot_t prot)
473 {
474 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
475 			_PAGE_NO_CACHE | _PAGE_GUARDED);
476 }
477 
478 #define pgprot_noncached_wc pgprot_noncached_wc
479 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
480 {
481 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
482 			_PAGE_NO_CACHE);
483 }
484 
485 #define pgprot_cached pgprot_cached
486 static inline pgprot_t pgprot_cached(pgprot_t prot)
487 {
488 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
489 			_PAGE_COHERENT);
490 }
491 
492 #define pgprot_cached_wthru pgprot_cached_wthru
493 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
494 {
495 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
496 			_PAGE_COHERENT | _PAGE_WRITETHRU);
497 }
498 
499 #define pgprot_cached_noncoherent pgprot_cached_noncoherent
500 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
501 {
502 	return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
503 }
504 
505 #define pgprot_writecombine pgprot_writecombine
506 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
507 {
508 	return pgprot_noncached_wc(prot);
509 }
510 
511 #endif /* !__ASSEMBLY__ */
512 
513 #endif /*  _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
514