1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H 3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H 4 5 #include <asm-generic/pgtable-nopmd.h> 6 7 #include <asm/book3s/32/hash.h> 8 9 /* And here we include common definitions */ 10 11 #define _PAGE_KERNEL_RO 0 12 #define _PAGE_KERNEL_ROX (_PAGE_EXEC) 13 #define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW) 14 #define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC) 15 16 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE 17 18 #ifndef __ASSEMBLY__ 19 20 static inline bool pte_user(pte_t pte) 21 { 22 return pte_val(pte) & _PAGE_USER; 23 } 24 #endif /* __ASSEMBLY__ */ 25 26 /* 27 * Location of the PFN in the PTE. Most 32-bit platforms use the same 28 * as _PAGE_SHIFT here (ie, naturally aligned). 29 * Platform who don't just pre-define the value so we don't override it here. 30 */ 31 #define PTE_RPN_SHIFT (PAGE_SHIFT) 32 33 /* 34 * The mask covered by the RPN must be a ULL on 32-bit platforms with 35 * 64-bit PTEs. 36 */ 37 #ifdef CONFIG_PTE_64BIT 38 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1)) 39 #define MAX_POSSIBLE_PHYSMEM_BITS 36 40 #else 41 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) 42 #define MAX_POSSIBLE_PHYSMEM_BITS 32 43 #endif 44 45 /* 46 * _PAGE_CHG_MASK masks of bits that are to be preserved across 47 * pgprot changes. 48 */ 49 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \ 50 _PAGE_ACCESSED | _PAGE_SPECIAL) 51 52 /* 53 * We define 2 sets of base prot bits, one for basic pages (ie, 54 * cacheable kernel and user pages) and one for non cacheable 55 * pages. We always set _PAGE_COHERENT when SMP is enabled or 56 * the processor might need it for DMA coherency. 57 */ 58 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) 59 #define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT) 60 61 /* 62 * Permission masks used to generate the __P and __S table. 63 * 64 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h 65 * 66 * Write permissions imply read permissions for now. 67 */ 68 #define PAGE_NONE __pgprot(_PAGE_BASE) 69 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 70 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 71 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 72 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 73 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 74 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 75 76 /* Permission masks used for kernel mappings */ 77 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 78 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) 79 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 80 _PAGE_NO_CACHE | _PAGE_GUARDED) 81 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 82 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 83 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 84 85 /* 86 * Protection used for kernel text. We want the debuggers to be able to 87 * set breakpoints anywhere, so don't write protect the kernel text 88 * on platforms where such control is possible. 89 */ 90 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\ 91 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) 92 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X 93 #else 94 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX 95 #endif 96 97 /* Make modules code happy. We don't set RO yet */ 98 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X 99 100 /* Advertise special mapping type for AGP */ 101 #define PAGE_AGP (PAGE_KERNEL_NC) 102 #define HAVE_PAGE_AGP 103 104 #define PTE_INDEX_SIZE PTE_SHIFT 105 #define PMD_INDEX_SIZE 0 106 #define PUD_INDEX_SIZE 0 107 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) 108 109 #define PMD_CACHE_INDEX PMD_INDEX_SIZE 110 #define PUD_CACHE_INDEX PUD_INDEX_SIZE 111 112 #ifndef __ASSEMBLY__ 113 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) 114 #define PMD_TABLE_SIZE 0 115 #define PUD_TABLE_SIZE 0 116 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) 117 118 /* Bits to mask out from a PMD to get to the PTE page */ 119 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1) 120 #endif /* __ASSEMBLY__ */ 121 122 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 123 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 124 125 /* 126 * The normal case is that PTEs are 32-bits and we have a 1-page 127 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 128 * 129 * For any >32-bit physical address platform, we can use the following 130 * two level page table layout where the pgdir is 8KB and the MS 13 bits 131 * are an index to the second level table. The combined pgdir/pmd first 132 * level has 2048 entries and the second level has 512 64-bit PTE entries. 133 * -Matt 134 */ 135 /* PGDIR_SHIFT determines what a top-level page table entry can map */ 136 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 137 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 138 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 139 140 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 141 142 #ifndef __ASSEMBLY__ 143 144 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); 145 146 #endif /* !__ASSEMBLY__ */ 147 148 /* 149 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary 150 * value (for now) on others, from where we can start layout kernel 151 * virtual space that goes below PKMAP and FIXMAP 152 */ 153 #include <asm/fixmap.h> 154 155 /* 156 * ioremap_bot starts at that address. Early ioremaps move down from there, 157 * until mem_init() at which point this becomes the top of the vmalloc 158 * and ioremap space 159 */ 160 #ifdef CONFIG_HIGHMEM 161 #define IOREMAP_TOP PKMAP_BASE 162 #else 163 #define IOREMAP_TOP FIXADDR_START 164 #endif 165 166 /* PPC32 shares vmalloc area with ioremap */ 167 #define IOREMAP_START VMALLOC_START 168 #define IOREMAP_END VMALLOC_END 169 170 /* 171 * Just any arbitrary offset to the start of the vmalloc VM area: the 172 * current 16MB value just means that there will be a 64MB "hole" after the 173 * physical memory until the kernel virtual memory starts. That means that 174 * any out-of-bounds memory accesses will hopefully be caught. 175 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 176 * area for the same reason. ;) 177 * 178 * We no longer map larger than phys RAM with the BATs so we don't have 179 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 180 * about clashes between our early calls to ioremap() that start growing down 181 * from ioremap_base being run into the VM area allocations (growing upwards 182 * from VMALLOC_START). For this reason we have ioremap_bot to check when 183 * we actually run into our mappings setup in the early boot with the VM 184 * system. This really does become a problem for machines with good amounts 185 * of RAM. -- Cort 186 */ 187 #define VMALLOC_OFFSET (0x1000000) /* 16M */ 188 189 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 190 191 #ifdef CONFIG_KASAN_VMALLOC 192 #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT) 193 #else 194 #define VMALLOC_END ioremap_bot 195 #endif 196 197 #ifdef CONFIG_STRICT_KERNEL_RWX 198 #define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M) 199 #define MODULES_VADDR (MODULES_END - SZ_256M) 200 #endif 201 202 #ifndef __ASSEMBLY__ 203 #include <linux/sched.h> 204 #include <linux/threads.h> 205 206 /* Bits to mask out from a PGD to get to the PUD page */ 207 #define PGD_MASKED_BITS 0 208 209 #define pte_ERROR(e) \ 210 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ 211 (unsigned long long)pte_val(e)) 212 #define pgd_ERROR(e) \ 213 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 214 /* 215 * Bits in a linux-style PTE. These match the bits in the 216 * (hardware-defined) PowerPC PTE as closely as possible. 217 */ 218 219 #define pte_clear(mm, addr, ptep) \ 220 do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0) 221 222 #define pmd_none(pmd) (!pmd_val(pmd)) 223 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 224 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 225 static inline void pmd_clear(pmd_t *pmdp) 226 { 227 *pmdp = __pmd(0); 228 } 229 230 231 /* 232 * When flushing the tlb entry for a page, we also need to flush the hash 233 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 234 */ 235 extern int flush_hash_pages(unsigned context, unsigned long va, 236 unsigned long pmdval, int count); 237 238 /* Add an HPTE to the hash table */ 239 extern void add_hash_page(unsigned context, unsigned long va, 240 unsigned long pmdval); 241 242 /* Flush an entry from the TLB/hash table */ 243 static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr) 244 { 245 if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) { 246 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 247 248 flush_hash_pages(mm->context.id, addr, ptephys, 1); 249 } 250 } 251 252 /* 253 * PTE updates. This function is called whenever an existing 254 * valid PTE is updated. This does -not- include set_pte_at() 255 * which nowadays only sets a new PTE. 256 * 257 * Depending on the type of MMU, we may need to use atomic updates 258 * and the PTE may be either 32 or 64 bit wide. In the later case, 259 * when using atomic updates, only the low part of the PTE is 260 * accessed atomically. 261 */ 262 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, 263 unsigned long clr, unsigned long set, int huge) 264 { 265 pte_basic_t old; 266 unsigned long tmp; 267 268 __asm__ __volatile__( 269 #ifndef CONFIG_PTE_64BIT 270 "1: lwarx %0, 0, %3\n" 271 " andc %1, %0, %4\n" 272 #else 273 "1: lwarx %L0, 0, %3\n" 274 " lwz %0, -4(%3)\n" 275 " andc %1, %L0, %4\n" 276 #endif 277 " or %1, %1, %5\n" 278 " stwcx. %1, 0, %3\n" 279 " bne- 1b" 280 : "=&r" (old), "=&r" (tmp), "=m" (*p) 281 #ifndef CONFIG_PTE_64BIT 282 : "r" (p), 283 #else 284 : "b" ((unsigned long)(p) + 4), 285 #endif 286 "r" (clr), "r" (set), "m" (*p) 287 : "cc" ); 288 289 return old; 290 } 291 292 /* 293 * 2.6 calls this without flushing the TLB entry; this is wrong 294 * for our hash-based implementation, we fix that up here. 295 */ 296 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 297 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 298 unsigned long addr, pte_t *ptep) 299 { 300 unsigned long old; 301 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 302 if (old & _PAGE_HASHPTE) 303 flush_hash_entry(mm, ptep, addr); 304 305 return (old & _PAGE_ACCESSED) != 0; 306 } 307 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 308 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep) 309 310 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 311 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 312 pte_t *ptep) 313 { 314 return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0)); 315 } 316 317 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 318 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 319 pte_t *ptep) 320 { 321 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); 322 } 323 324 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 325 pte_t *ptep, pte_t entry, 326 unsigned long address, 327 int psize) 328 { 329 unsigned long set = pte_val(entry) & 330 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 331 332 pte_update(vma->vm_mm, address, ptep, 0, set, 0); 333 334 flush_tlb_page(vma, address); 335 } 336 337 #define __HAVE_ARCH_PTE_SAME 338 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 339 340 #define pmd_page(pmd) \ 341 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 342 343 /* 344 * Encode and decode a swap entry. 345 * Note that the bits we use in a PTE for representing a swap entry 346 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used). 347 * -- paulus 348 */ 349 #define __swp_type(entry) ((entry).val & 0x1f) 350 #define __swp_offset(entry) ((entry).val >> 5) 351 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) 352 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 353 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 354 355 /* Generic accessors to PTE bits */ 356 static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);} 357 static inline int pte_read(pte_t pte) { return 1; } 358 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } 359 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } 360 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } 361 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 362 static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 363 364 static inline int pte_present(pte_t pte) 365 { 366 return pte_val(pte) & _PAGE_PRESENT; 367 } 368 369 static inline bool pte_hw_valid(pte_t pte) 370 { 371 return pte_val(pte) & _PAGE_PRESENT; 372 } 373 374 static inline bool pte_hashpte(pte_t pte) 375 { 376 return !!(pte_val(pte) & _PAGE_HASHPTE); 377 } 378 379 static inline bool pte_ci(pte_t pte) 380 { 381 return !!(pte_val(pte) & _PAGE_NO_CACHE); 382 } 383 384 /* 385 * We only find page table entry in the last level 386 * Hence no need for other accessors 387 */ 388 #define pte_access_permitted pte_access_permitted 389 static inline bool pte_access_permitted(pte_t pte, bool write) 390 { 391 /* 392 * A read-only access is controlled by _PAGE_USER bit. 393 * We have _PAGE_READ set for WRITE and EXECUTE 394 */ 395 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) 396 return false; 397 398 if (write && !pte_write(pte)) 399 return false; 400 401 return true; 402 } 403 404 /* Conversion functions: convert a page and protection to a page entry, 405 * and a page entry and page directory to the page they refer to. 406 * 407 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 408 * long for now. 409 */ 410 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 411 { 412 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 413 pgprot_val(pgprot)); 414 } 415 416 static inline unsigned long pte_pfn(pte_t pte) 417 { 418 return pte_val(pte) >> PTE_RPN_SHIFT; 419 } 420 421 /* Generic modifiers for PTE bits */ 422 static inline pte_t pte_wrprotect(pte_t pte) 423 { 424 return __pte(pte_val(pte) & ~_PAGE_RW); 425 } 426 427 static inline pte_t pte_exprotect(pte_t pte) 428 { 429 return __pte(pte_val(pte) & ~_PAGE_EXEC); 430 } 431 432 static inline pte_t pte_mkclean(pte_t pte) 433 { 434 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 435 } 436 437 static inline pte_t pte_mkold(pte_t pte) 438 { 439 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 440 } 441 442 static inline pte_t pte_mkexec(pte_t pte) 443 { 444 return __pte(pte_val(pte) | _PAGE_EXEC); 445 } 446 447 static inline pte_t pte_mkpte(pte_t pte) 448 { 449 return pte; 450 } 451 452 static inline pte_t pte_mkwrite(pte_t pte) 453 { 454 return __pte(pte_val(pte) | _PAGE_RW); 455 } 456 457 static inline pte_t pte_mkdirty(pte_t pte) 458 { 459 return __pte(pte_val(pte) | _PAGE_DIRTY); 460 } 461 462 static inline pte_t pte_mkyoung(pte_t pte) 463 { 464 return __pte(pte_val(pte) | _PAGE_ACCESSED); 465 } 466 467 static inline pte_t pte_mkspecial(pte_t pte) 468 { 469 return __pte(pte_val(pte) | _PAGE_SPECIAL); 470 } 471 472 static inline pte_t pte_mkhuge(pte_t pte) 473 { 474 return pte; 475 } 476 477 static inline pte_t pte_mkprivileged(pte_t pte) 478 { 479 return __pte(pte_val(pte) & ~_PAGE_USER); 480 } 481 482 static inline pte_t pte_mkuser(pte_t pte) 483 { 484 return __pte(pte_val(pte) | _PAGE_USER); 485 } 486 487 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 488 { 489 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 490 } 491 492 493 494 /* This low level function performs the actual PTE insertion 495 * Setting the PTE depends on the MMU type and other factors. It's 496 * an horrible mess that I'm not going to try to clean up now but 497 * I'm keeping it in one place rather than spread around 498 */ 499 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 500 pte_t *ptep, pte_t pte, int percpu) 501 { 502 #if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 503 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 504 * helper pte_update() which does an atomic update. We need to do that 505 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 506 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 507 * the hash bits instead (ie, same as the non-SMP case) 508 */ 509 if (percpu) 510 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 511 | (pte_val(pte) & ~_PAGE_HASHPTE)); 512 else 513 pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0); 514 515 #elif defined(CONFIG_PTE_64BIT) 516 /* Second case is 32-bit with 64-bit PTE. In this case, we 517 * can just store as long as we do the two halves in the right order 518 * with a barrier in between. This is possible because we take care, 519 * in the hash code, to pre-invalidate if the PTE was already hashed, 520 * which synchronizes us with any concurrent invalidation. 521 * In the percpu case, we also fallback to the simple update preserving 522 * the hash bits 523 */ 524 if (percpu) { 525 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 526 | (pte_val(pte) & ~_PAGE_HASHPTE)); 527 return; 528 } 529 if (pte_val(*ptep) & _PAGE_HASHPTE) 530 flush_hash_entry(mm, ptep, addr); 531 __asm__ __volatile__("\ 532 stw%X0 %2,%0\n\ 533 eieio\n\ 534 stw%X1 %L2,%1" 535 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 536 : "r" (pte) : "memory"); 537 538 #else 539 /* Third case is 32-bit hash table in UP mode, we need to preserve 540 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 541 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 542 * and see we need to keep track that this PTE needs invalidating 543 */ 544 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 545 | (pte_val(pte) & ~_PAGE_HASHPTE)); 546 #endif 547 } 548 549 /* 550 * Macro to mark a page protection value as "uncacheable". 551 */ 552 553 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 554 _PAGE_WRITETHRU) 555 556 #define pgprot_noncached pgprot_noncached 557 static inline pgprot_t pgprot_noncached(pgprot_t prot) 558 { 559 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 560 _PAGE_NO_CACHE | _PAGE_GUARDED); 561 } 562 563 #define pgprot_noncached_wc pgprot_noncached_wc 564 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 565 { 566 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 567 _PAGE_NO_CACHE); 568 } 569 570 #define pgprot_cached pgprot_cached 571 static inline pgprot_t pgprot_cached(pgprot_t prot) 572 { 573 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 574 _PAGE_COHERENT); 575 } 576 577 #define pgprot_cached_wthru pgprot_cached_wthru 578 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) 579 { 580 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 581 _PAGE_COHERENT | _PAGE_WRITETHRU); 582 } 583 584 #define pgprot_cached_noncoherent pgprot_cached_noncoherent 585 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) 586 { 587 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); 588 } 589 590 #define pgprot_writecombine pgprot_writecombine 591 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 592 { 593 return pgprot_noncached_wc(prot); 594 } 595 596 #endif /* !__ASSEMBLY__ */ 597 598 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */ 599