1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4 
5 #include <asm-generic/pgtable-nopmd.h>
6 
7 #include <asm/book3s/32/hash.h>
8 
9 /* And here we include common definitions */
10 
11 #define _PAGE_KERNEL_RO		0
12 #define _PAGE_KERNEL_ROX	(_PAGE_EXEC)
13 #define _PAGE_KERNEL_RW		(_PAGE_DIRTY | _PAGE_RW)
14 #define _PAGE_KERNEL_RWX	(_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
15 
16 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE
17 
18 #ifndef __ASSEMBLY__
19 
20 static inline bool pte_user(pte_t pte)
21 {
22 	return pte_val(pte) & _PAGE_USER;
23 }
24 #endif /* __ASSEMBLY__ */
25 
26 /*
27  * Location of the PFN in the PTE. Most 32-bit platforms use the same
28  * as _PAGE_SHIFT here (ie, naturally aligned).
29  * Platform who don't just pre-define the value so we don't override it here.
30  */
31 #define PTE_RPN_SHIFT	(PAGE_SHIFT)
32 
33 /*
34  * The mask covered by the RPN must be a ULL on 32-bit platforms with
35  * 64-bit PTEs.
36  */
37 #ifdef CONFIG_PTE_64BIT
38 #define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
39 #define MAX_POSSIBLE_PHYSMEM_BITS 36
40 #else
41 #define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
42 #define MAX_POSSIBLE_PHYSMEM_BITS 32
43 #endif
44 
45 /*
46  * _PAGE_CHG_MASK masks of bits that are to be preserved across
47  * pgprot changes.
48  */
49 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
50 			 _PAGE_ACCESSED | _PAGE_SPECIAL)
51 
52 /*
53  * We define 2 sets of base prot bits, one for basic pages (ie,
54  * cacheable kernel and user pages) and one for non cacheable
55  * pages. We always set _PAGE_COHERENT when SMP is enabled or
56  * the processor might need it for DMA coherency.
57  */
58 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
59 #define _PAGE_BASE	(_PAGE_BASE_NC | _PAGE_COHERENT)
60 
61 /*
62  * Permission masks used to generate the __P and __S table.
63  *
64  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
65  *
66  * Write permissions imply read permissions for now.
67  */
68 #define PAGE_NONE	__pgprot(_PAGE_BASE)
69 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
70 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
71 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
72 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
73 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
74 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
75 
76 /* Permission masks used for kernel mappings */
77 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
78 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
79 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
80 				 _PAGE_NO_CACHE | _PAGE_GUARDED)
81 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
82 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
83 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
84 
85 /*
86  * Protection used for kernel text. We want the debuggers to be able to
87  * set breakpoints anywhere, so don't write protect the kernel text
88  * on platforms where such control is possible.
89  */
90 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
91 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
92 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
93 #else
94 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
95 #endif
96 
97 /* Make modules code happy. We don't set RO yet */
98 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
99 
100 /* Advertise special mapping type for AGP */
101 #define PAGE_AGP		(PAGE_KERNEL_NC)
102 #define HAVE_PAGE_AGP
103 
104 #define PTE_INDEX_SIZE	PTE_SHIFT
105 #define PMD_INDEX_SIZE	0
106 #define PUD_INDEX_SIZE	0
107 #define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
108 
109 #define PMD_CACHE_INDEX	PMD_INDEX_SIZE
110 #define PUD_CACHE_INDEX	PUD_INDEX_SIZE
111 
112 #ifndef __ASSEMBLY__
113 #define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
114 #define PMD_TABLE_SIZE	0
115 #define PUD_TABLE_SIZE	0
116 #define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
117 
118 /* Bits to mask out from a PMD to get to the PTE page */
119 #define PMD_MASKED_BITS		(PTE_TABLE_SIZE - 1)
120 #endif	/* __ASSEMBLY__ */
121 
122 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
123 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
124 
125 /*
126  * The normal case is that PTEs are 32-bits and we have a 1-page
127  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
128  *
129  * For any >32-bit physical address platform, we can use the following
130  * two level page table layout where the pgdir is 8KB and the MS 13 bits
131  * are an index to the second level table.  The combined pgdir/pmd first
132  * level has 2048 entries and the second level has 512 64-bit PTE entries.
133  * -Matt
134  */
135 /* PGDIR_SHIFT determines what a top-level page table entry can map */
136 #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
137 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
138 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
139 
140 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
141 
142 #ifndef __ASSEMBLY__
143 
144 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
145 
146 #endif /* !__ASSEMBLY__ */
147 
148 /*
149  * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
150  * value (for now) on others, from where we can start layout kernel
151  * virtual space that goes below PKMAP and FIXMAP
152  */
153 #include <asm/fixmap.h>
154 
155 /*
156  * ioremap_bot starts at that address. Early ioremaps move down from there,
157  * until mem_init() at which point this becomes the top of the vmalloc
158  * and ioremap space
159  */
160 #ifdef CONFIG_HIGHMEM
161 #define IOREMAP_TOP	PKMAP_BASE
162 #else
163 #define IOREMAP_TOP	FIXADDR_START
164 #endif
165 
166 /* PPC32 shares vmalloc area with ioremap */
167 #define IOREMAP_START	VMALLOC_START
168 #define IOREMAP_END	VMALLOC_END
169 
170 /*
171  * Just any arbitrary offset to the start of the vmalloc VM area: the
172  * current 16MB value just means that there will be a 64MB "hole" after the
173  * physical memory until the kernel virtual memory starts.  That means that
174  * any out-of-bounds memory accesses will hopefully be caught.
175  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
176  * area for the same reason. ;)
177  *
178  * We no longer map larger than phys RAM with the BATs so we don't have
179  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
180  * about clashes between our early calls to ioremap() that start growing down
181  * from ioremap_base being run into the VM area allocations (growing upwards
182  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
183  * we actually run into our mappings setup in the early boot with the VM
184  * system.  This really does become a problem for machines with good amounts
185  * of RAM.  -- Cort
186  */
187 #define VMALLOC_OFFSET (0x1000000) /* 16M */
188 
189 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
190 
191 #ifdef CONFIG_KASAN_VMALLOC
192 #define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
193 #else
194 #define VMALLOC_END	ioremap_bot
195 #endif
196 
197 #ifdef CONFIG_STRICT_KERNEL_RWX
198 #define MODULES_END	ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
199 #define MODULES_VADDR	(MODULES_END - SZ_256M)
200 #endif
201 
202 #ifndef __ASSEMBLY__
203 #include <linux/sched.h>
204 #include <linux/threads.h>
205 
206 /* Bits to mask out from a PGD to get to the PUD page */
207 #define PGD_MASKED_BITS		0
208 
209 #define pte_ERROR(e) \
210 	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
211 		(unsigned long long)pte_val(e))
212 #define pgd_ERROR(e) \
213 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
214 /*
215  * Bits in a linux-style PTE.  These match the bits in the
216  * (hardware-defined) PowerPC PTE as closely as possible.
217  */
218 
219 #define pte_clear(mm, addr, ptep) \
220 	do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
221 
222 #define pmd_none(pmd)		(!pmd_val(pmd))
223 #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
224 #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
225 static inline void pmd_clear(pmd_t *pmdp)
226 {
227 	*pmdp = __pmd(0);
228 }
229 
230 
231 /*
232  * When flushing the tlb entry for a page, we also need to flush the hash
233  * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
234  */
235 extern int flush_hash_pages(unsigned context, unsigned long va,
236 			    unsigned long pmdval, int count);
237 
238 /* Add an HPTE to the hash table */
239 extern void add_hash_page(unsigned context, unsigned long va,
240 			  unsigned long pmdval);
241 
242 /* Flush an entry from the TLB/hash table */
243 static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr)
244 {
245 	if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
246 		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
247 
248 		flush_hash_pages(mm->context.id, addr, ptephys, 1);
249 	}
250 }
251 
252 /*
253  * PTE updates. This function is called whenever an existing
254  * valid PTE is updated. This does -not- include set_pte_at()
255  * which nowadays only sets a new PTE.
256  *
257  * Depending on the type of MMU, we may need to use atomic updates
258  * and the PTE may be either 32 or 64 bit wide. In the later case,
259  * when using atomic updates, only the low part of the PTE is
260  * accessed atomically.
261  */
262 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
263 				     unsigned long clr, unsigned long set, int huge)
264 {
265 	pte_basic_t old;
266 	unsigned long tmp;
267 
268 	__asm__ __volatile__(
269 #ifndef CONFIG_PTE_64BIT
270 "1:	lwarx	%0, 0, %3\n"
271 "	andc	%1, %0, %4\n"
272 #else
273 "1:	lwarx	%L0, 0, %3\n"
274 "	lwz	%0, -4(%3)\n"
275 "	andc	%1, %L0, %4\n"
276 #endif
277 "	or	%1, %1, %5\n"
278 "	stwcx.	%1, 0, %3\n"
279 "	bne-	1b"
280 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
281 #ifndef CONFIG_PTE_64BIT
282 	: "r" (p),
283 #else
284 	: "b" ((unsigned long)(p) + 4),
285 #endif
286 	  "r" (clr), "r" (set), "m" (*p)
287 	: "cc" );
288 
289 	return old;
290 }
291 
292 /*
293  * 2.6 calls this without flushing the TLB entry; this is wrong
294  * for our hash-based implementation, we fix that up here.
295  */
296 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
297 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
298 					      unsigned long addr, pte_t *ptep)
299 {
300 	unsigned long old;
301 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
302 	if (old & _PAGE_HASHPTE)
303 		flush_hash_entry(mm, ptep, addr);
304 
305 	return (old & _PAGE_ACCESSED) != 0;
306 }
307 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
308 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
309 
310 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
311 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
312 				       pte_t *ptep)
313 {
314 	return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
315 }
316 
317 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
318 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
319 				      pte_t *ptep)
320 {
321 	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
322 }
323 
324 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
325 					   pte_t *ptep, pte_t entry,
326 					   unsigned long address,
327 					   int psize)
328 {
329 	unsigned long set = pte_val(entry) &
330 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
331 
332 	pte_update(vma->vm_mm, address, ptep, 0, set, 0);
333 
334 	flush_tlb_page(vma, address);
335 }
336 
337 #define __HAVE_ARCH_PTE_SAME
338 #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
339 
340 #define pmd_page(pmd)		\
341 	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
342 
343 /*
344  * Encode and decode a swap entry.
345  * Note that the bits we use in a PTE for representing a swap entry
346  * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
347  *   -- paulus
348  */
349 #define __swp_type(entry)		((entry).val & 0x1f)
350 #define __swp_offset(entry)		((entry).val >> 5)
351 #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
352 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
353 #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
354 
355 /* Generic accessors to PTE bits */
356 static inline int pte_write(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_RW);}
357 static inline int pte_read(pte_t pte)		{ return 1; }
358 static inline int pte_dirty(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_DIRTY); }
359 static inline int pte_young(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_ACCESSED); }
360 static inline int pte_special(pte_t pte)	{ return !!(pte_val(pte) & _PAGE_SPECIAL); }
361 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
362 static inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
363 
364 static inline int pte_present(pte_t pte)
365 {
366 	return pte_val(pte) & _PAGE_PRESENT;
367 }
368 
369 static inline bool pte_hw_valid(pte_t pte)
370 {
371 	return pte_val(pte) & _PAGE_PRESENT;
372 }
373 
374 static inline bool pte_hashpte(pte_t pte)
375 {
376 	return !!(pte_val(pte) & _PAGE_HASHPTE);
377 }
378 
379 static inline bool pte_ci(pte_t pte)
380 {
381 	return !!(pte_val(pte) & _PAGE_NO_CACHE);
382 }
383 
384 /*
385  * We only find page table entry in the last level
386  * Hence no need for other accessors
387  */
388 #define pte_access_permitted pte_access_permitted
389 static inline bool pte_access_permitted(pte_t pte, bool write)
390 {
391 	/*
392 	 * A read-only access is controlled by _PAGE_USER bit.
393 	 * We have _PAGE_READ set for WRITE and EXECUTE
394 	 */
395 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
396 		return false;
397 
398 	if (write && !pte_write(pte))
399 		return false;
400 
401 	return true;
402 }
403 
404 /* Conversion functions: convert a page and protection to a page entry,
405  * and a page entry and page directory to the page they refer to.
406  *
407  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
408  * long for now.
409  */
410 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
411 {
412 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
413 		     pgprot_val(pgprot));
414 }
415 
416 static inline unsigned long pte_pfn(pte_t pte)
417 {
418 	return pte_val(pte) >> PTE_RPN_SHIFT;
419 }
420 
421 /* Generic modifiers for PTE bits */
422 static inline pte_t pte_wrprotect(pte_t pte)
423 {
424 	return __pte(pte_val(pte) & ~_PAGE_RW);
425 }
426 
427 static inline pte_t pte_exprotect(pte_t pte)
428 {
429 	return __pte(pte_val(pte) & ~_PAGE_EXEC);
430 }
431 
432 static inline pte_t pte_mkclean(pte_t pte)
433 {
434 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
435 }
436 
437 static inline pte_t pte_mkold(pte_t pte)
438 {
439 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
440 }
441 
442 static inline pte_t pte_mkexec(pte_t pte)
443 {
444 	return __pte(pte_val(pte) | _PAGE_EXEC);
445 }
446 
447 static inline pte_t pte_mkpte(pte_t pte)
448 {
449 	return pte;
450 }
451 
452 static inline pte_t pte_mkwrite(pte_t pte)
453 {
454 	return __pte(pte_val(pte) | _PAGE_RW);
455 }
456 
457 static inline pte_t pte_mkdirty(pte_t pte)
458 {
459 	return __pte(pte_val(pte) | _PAGE_DIRTY);
460 }
461 
462 static inline pte_t pte_mkyoung(pte_t pte)
463 {
464 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
465 }
466 
467 static inline pte_t pte_mkspecial(pte_t pte)
468 {
469 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
470 }
471 
472 static inline pte_t pte_mkhuge(pte_t pte)
473 {
474 	return pte;
475 }
476 
477 static inline pte_t pte_mkprivileged(pte_t pte)
478 {
479 	return __pte(pte_val(pte) & ~_PAGE_USER);
480 }
481 
482 static inline pte_t pte_mkuser(pte_t pte)
483 {
484 	return __pte(pte_val(pte) | _PAGE_USER);
485 }
486 
487 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
488 {
489 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
490 }
491 
492 
493 
494 /* This low level function performs the actual PTE insertion
495  * Setting the PTE depends on the MMU type and other factors. It's
496  * an horrible mess that I'm not going to try to clean up now but
497  * I'm keeping it in one place rather than spread around
498  */
499 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
500 				pte_t *ptep, pte_t pte, int percpu)
501 {
502 #if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
503 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
504 	 * helper pte_update() which does an atomic update. We need to do that
505 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
506 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
507 	 * the hash bits instead (ie, same as the non-SMP case)
508 	 */
509 	if (percpu)
510 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
511 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
512 	else
513 		pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
514 
515 #elif defined(CONFIG_PTE_64BIT)
516 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
517 	 * can just store as long as we do the two halves in the right order
518 	 * with a barrier in between. This is possible because we take care,
519 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
520 	 * which synchronizes us with any concurrent invalidation.
521 	 * In the percpu case, we also fallback to the simple update preserving
522 	 * the hash bits
523 	 */
524 	if (percpu) {
525 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
526 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
527 		return;
528 	}
529 	if (pte_val(*ptep) & _PAGE_HASHPTE)
530 		flush_hash_entry(mm, ptep, addr);
531 	__asm__ __volatile__("\
532 		stw%X0 %2,%0\n\
533 		eieio\n\
534 		stw%X1 %L2,%1"
535 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
536 	: "r" (pte) : "memory");
537 
538 #else
539 	/* Third case is 32-bit hash table in UP mode, we need to preserve
540 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
541 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
542 	 * and see we need to keep track that this PTE needs invalidating
543 	 */
544 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
545 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
546 #endif
547 }
548 
549 /*
550  * Macro to mark a page protection value as "uncacheable".
551  */
552 
553 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
554 			 _PAGE_WRITETHRU)
555 
556 #define pgprot_noncached pgprot_noncached
557 static inline pgprot_t pgprot_noncached(pgprot_t prot)
558 {
559 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
560 			_PAGE_NO_CACHE | _PAGE_GUARDED);
561 }
562 
563 #define pgprot_noncached_wc pgprot_noncached_wc
564 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
565 {
566 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
567 			_PAGE_NO_CACHE);
568 }
569 
570 #define pgprot_cached pgprot_cached
571 static inline pgprot_t pgprot_cached(pgprot_t prot)
572 {
573 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
574 			_PAGE_COHERENT);
575 }
576 
577 #define pgprot_cached_wthru pgprot_cached_wthru
578 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
579 {
580 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
581 			_PAGE_COHERENT | _PAGE_WRITETHRU);
582 }
583 
584 #define pgprot_cached_noncoherent pgprot_cached_noncoherent
585 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
586 {
587 	return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
588 }
589 
590 #define pgprot_writecombine pgprot_writecombine
591 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
592 {
593 	return pgprot_noncached_wc(prot);
594 }
595 
596 #endif /* !__ASSEMBLY__ */
597 
598 #endif /*  _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
599