1 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H 2 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H 3 4 #define __ARCH_USE_5LEVEL_HACK 5 #include <asm-generic/pgtable-nopmd.h> 6 7 #include <asm/book3s/32/hash.h> 8 9 /* And here we include common definitions */ 10 #include <asm/pte-common.h> 11 12 #define PTE_INDEX_SIZE PTE_SHIFT 13 #define PMD_INDEX_SIZE 0 14 #define PUD_INDEX_SIZE 0 15 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) 16 17 #define PMD_CACHE_INDEX PMD_INDEX_SIZE 18 19 #ifndef __ASSEMBLY__ 20 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) 21 #define PMD_TABLE_SIZE 0 22 #define PUD_TABLE_SIZE 0 23 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) 24 #endif /* __ASSEMBLY__ */ 25 26 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 27 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 28 29 /* 30 * The normal case is that PTEs are 32-bits and we have a 1-page 31 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 32 * 33 * For any >32-bit physical address platform, we can use the following 34 * two level page table layout where the pgdir is 8KB and the MS 13 bits 35 * are an index to the second level table. The combined pgdir/pmd first 36 * level has 2048 entries and the second level has 512 64-bit PTE entries. 37 * -Matt 38 */ 39 /* PGDIR_SHIFT determines what a top-level page table entry can map */ 40 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 41 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 42 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 43 44 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 45 /* 46 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary 47 * value (for now) on others, from where we can start layout kernel 48 * virtual space that goes below PKMAP and FIXMAP 49 */ 50 #ifdef CONFIG_HIGHMEM 51 #define KVIRT_TOP PKMAP_BASE 52 #else 53 #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */ 54 #endif 55 56 /* 57 * ioremap_bot starts at that address. Early ioremaps move down from there, 58 * until mem_init() at which point this becomes the top of the vmalloc 59 * and ioremap space 60 */ 61 #ifdef CONFIG_NOT_COHERENT_CACHE 62 #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK) 63 #else 64 #define IOREMAP_TOP KVIRT_TOP 65 #endif 66 67 /* 68 * Just any arbitrary offset to the start of the vmalloc VM area: the 69 * current 16MB value just means that there will be a 64MB "hole" after the 70 * physical memory until the kernel virtual memory starts. That means that 71 * any out-of-bounds memory accesses will hopefully be caught. 72 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 73 * area for the same reason. ;) 74 * 75 * We no longer map larger than phys RAM with the BATs so we don't have 76 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 77 * about clashes between our early calls to ioremap() that start growing down 78 * from ioremap_base being run into the VM area allocations (growing upwards 79 * from VMALLOC_START). For this reason we have ioremap_bot to check when 80 * we actually run into our mappings setup in the early boot with the VM 81 * system. This really does become a problem for machines with good amounts 82 * of RAM. -- Cort 83 */ 84 #define VMALLOC_OFFSET (0x1000000) /* 16M */ 85 #ifdef PPC_PIN_SIZE 86 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 87 #else 88 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 89 #endif 90 #define VMALLOC_END ioremap_bot 91 92 #ifndef __ASSEMBLY__ 93 #include <linux/sched.h> 94 #include <linux/threads.h> 95 #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */ 96 97 extern unsigned long ioremap_bot; 98 99 /* Bits to mask out from a PGD to get to the PUD page */ 100 #define PGD_MASKED_BITS 0 101 102 #define pte_ERROR(e) \ 103 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ 104 (unsigned long long)pte_val(e)) 105 #define pgd_ERROR(e) \ 106 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 107 /* 108 * Bits in a linux-style PTE. These match the bits in the 109 * (hardware-defined) PowerPC PTE as closely as possible. 110 */ 111 112 #define pte_clear(mm, addr, ptep) \ 113 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0) 114 115 #define pmd_none(pmd) (!pmd_val(pmd)) 116 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 117 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 118 static inline void pmd_clear(pmd_t *pmdp) 119 { 120 *pmdp = __pmd(0); 121 } 122 123 124 /* 125 * When flushing the tlb entry for a page, we also need to flush the hash 126 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 127 */ 128 extern int flush_hash_pages(unsigned context, unsigned long va, 129 unsigned long pmdval, int count); 130 131 /* Add an HPTE to the hash table */ 132 extern void add_hash_page(unsigned context, unsigned long va, 133 unsigned long pmdval); 134 135 /* Flush an entry from the TLB/hash table */ 136 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, 137 unsigned long address); 138 139 /* 140 * PTE updates. This function is called whenever an existing 141 * valid PTE is updated. This does -not- include set_pte_at() 142 * which nowadays only sets a new PTE. 143 * 144 * Depending on the type of MMU, we may need to use atomic updates 145 * and the PTE may be either 32 or 64 bit wide. In the later case, 146 * when using atomic updates, only the low part of the PTE is 147 * accessed atomically. 148 * 149 * In addition, on 44x, we also maintain a global flag indicating 150 * that an executable user mapping was modified, which is needed 151 * to properly flush the virtually tagged instruction cache of 152 * those implementations. 153 */ 154 #ifndef CONFIG_PTE_64BIT 155 static inline unsigned long pte_update(pte_t *p, 156 unsigned long clr, 157 unsigned long set) 158 { 159 unsigned long old, tmp; 160 161 __asm__ __volatile__("\ 162 1: lwarx %0,0,%3\n\ 163 andc %1,%0,%4\n\ 164 or %1,%1,%5\n" 165 PPC405_ERR77(0,%3) 166 " stwcx. %1,0,%3\n\ 167 bne- 1b" 168 : "=&r" (old), "=&r" (tmp), "=m" (*p) 169 : "r" (p), "r" (clr), "r" (set), "m" (*p) 170 : "cc" ); 171 172 return old; 173 } 174 #else /* CONFIG_PTE_64BIT */ 175 static inline unsigned long long pte_update(pte_t *p, 176 unsigned long clr, 177 unsigned long set) 178 { 179 unsigned long long old; 180 unsigned long tmp; 181 182 __asm__ __volatile__("\ 183 1: lwarx %L0,0,%4\n\ 184 lwzx %0,0,%3\n\ 185 andc %1,%L0,%5\n\ 186 or %1,%1,%6\n" 187 PPC405_ERR77(0,%3) 188 " stwcx. %1,0,%4\n\ 189 bne- 1b" 190 : "=&r" (old), "=&r" (tmp), "=m" (*p) 191 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) 192 : "cc" ); 193 194 return old; 195 } 196 #endif /* CONFIG_PTE_64BIT */ 197 198 /* 199 * 2.6 calls this without flushing the TLB entry; this is wrong 200 * for our hash-based implementation, we fix that up here. 201 */ 202 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 203 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) 204 { 205 unsigned long old; 206 old = pte_update(ptep, _PAGE_ACCESSED, 0); 207 if (old & _PAGE_HASHPTE) { 208 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 209 flush_hash_pages(context, addr, ptephys, 1); 210 } 211 return (old & _PAGE_ACCESSED) != 0; 212 } 213 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 214 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) 215 216 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 217 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 218 pte_t *ptep) 219 { 220 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 221 } 222 223 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 224 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 225 pte_t *ptep) 226 { 227 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO); 228 } 229 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 230 unsigned long addr, pte_t *ptep) 231 { 232 ptep_set_wrprotect(mm, addr, ptep); 233 } 234 235 236 static inline void __ptep_set_access_flags(struct mm_struct *mm, 237 pte_t *ptep, pte_t entry, 238 unsigned long address) 239 { 240 unsigned long set = pte_val(entry) & 241 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 242 unsigned long clr = ~pte_val(entry) & _PAGE_RO; 243 244 pte_update(ptep, clr, set); 245 } 246 247 #define __HAVE_ARCH_PTE_SAME 248 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 249 250 /* 251 * Note that on Book E processors, the pmd contains the kernel virtual 252 * (lowmem) address of the pte page. The physical address is less useful 253 * because everything runs with translation enabled (even the TLB miss 254 * handler). On everything else the pmd contains the physical address 255 * of the pte page. -- paulus 256 */ 257 #ifndef CONFIG_BOOKE 258 #define pmd_page_vaddr(pmd) \ 259 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 260 #define pmd_page(pmd) \ 261 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 262 #else 263 #define pmd_page_vaddr(pmd) \ 264 ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 265 #define pmd_page(pmd) \ 266 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 267 #endif 268 269 /* to find an entry in a kernel page-table-directory */ 270 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 271 272 /* to find an entry in a page-table-directory */ 273 #define pgd_index(address) ((address) >> PGDIR_SHIFT) 274 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 275 276 /* Find an entry in the third-level page table.. */ 277 #define pte_index(address) \ 278 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 279 #define pte_offset_kernel(dir, addr) \ 280 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) 281 #define pte_offset_map(dir, addr) \ 282 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) 283 #define pte_unmap(pte) kunmap_atomic(pte) 284 285 /* 286 * Encode and decode a swap entry. 287 * Note that the bits we use in a PTE for representing a swap entry 288 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used). 289 * -- paulus 290 */ 291 #define __swp_type(entry) ((entry).val & 0x1f) 292 #define __swp_offset(entry) ((entry).val >> 5) 293 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) 294 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 295 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 296 297 extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, 298 pmd_t **pmdp); 299 300 /* Generic accessors to PTE bits */ 301 static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);} 302 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } 303 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } 304 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } 305 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 306 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } 307 308 static inline int pte_present(pte_t pte) 309 { 310 return pte_val(pte) & _PAGE_PRESENT; 311 } 312 313 /* Conversion functions: convert a page and protection to a page entry, 314 * and a page entry and page directory to the page they refer to. 315 * 316 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 317 * long for now. 318 */ 319 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 320 { 321 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 322 pgprot_val(pgprot)); 323 } 324 325 static inline unsigned long pte_pfn(pte_t pte) 326 { 327 return pte_val(pte) >> PTE_RPN_SHIFT; 328 } 329 330 /* Generic modifiers for PTE bits */ 331 static inline pte_t pte_wrprotect(pte_t pte) 332 { 333 return __pte(pte_val(pte) & ~_PAGE_RW); 334 } 335 336 static inline pte_t pte_mkclean(pte_t pte) 337 { 338 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 339 } 340 341 static inline pte_t pte_mkold(pte_t pte) 342 { 343 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 344 } 345 346 static inline pte_t pte_mkwrite(pte_t pte) 347 { 348 return __pte(pte_val(pte) | _PAGE_RW); 349 } 350 351 static inline pte_t pte_mkdirty(pte_t pte) 352 { 353 return __pte(pte_val(pte) | _PAGE_DIRTY); 354 } 355 356 static inline pte_t pte_mkyoung(pte_t pte) 357 { 358 return __pte(pte_val(pte) | _PAGE_ACCESSED); 359 } 360 361 static inline pte_t pte_mkspecial(pte_t pte) 362 { 363 return __pte(pte_val(pte) | _PAGE_SPECIAL); 364 } 365 366 static inline pte_t pte_mkhuge(pte_t pte) 367 { 368 return pte; 369 } 370 371 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 372 { 373 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 374 } 375 376 377 378 /* This low level function performs the actual PTE insertion 379 * Setting the PTE depends on the MMU type and other factors. It's 380 * an horrible mess that I'm not going to try to clean up now but 381 * I'm keeping it in one place rather than spread around 382 */ 383 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 384 pte_t *ptep, pte_t pte, int percpu) 385 { 386 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 387 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 388 * helper pte_update() which does an atomic update. We need to do that 389 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 390 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 391 * the hash bits instead (ie, same as the non-SMP case) 392 */ 393 if (percpu) 394 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 395 | (pte_val(pte) & ~_PAGE_HASHPTE)); 396 else 397 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); 398 399 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) 400 /* Second case is 32-bit with 64-bit PTE. In this case, we 401 * can just store as long as we do the two halves in the right order 402 * with a barrier in between. This is possible because we take care, 403 * in the hash code, to pre-invalidate if the PTE was already hashed, 404 * which synchronizes us with any concurrent invalidation. 405 * In the percpu case, we also fallback to the simple update preserving 406 * the hash bits 407 */ 408 if (percpu) { 409 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 410 | (pte_val(pte) & ~_PAGE_HASHPTE)); 411 return; 412 } 413 if (pte_val(*ptep) & _PAGE_HASHPTE) 414 flush_hash_entry(mm, ptep, addr); 415 __asm__ __volatile__("\ 416 stw%U0%X0 %2,%0\n\ 417 eieio\n\ 418 stw%U0%X0 %L2,%1" 419 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 420 : "r" (pte) : "memory"); 421 422 #elif defined(CONFIG_PPC_STD_MMU_32) 423 /* Third case is 32-bit hash table in UP mode, we need to preserve 424 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 425 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 426 * and see we need to keep track that this PTE needs invalidating 427 */ 428 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 429 | (pte_val(pte) & ~_PAGE_HASHPTE)); 430 431 #else 432 #error "Not supported " 433 #endif 434 } 435 436 /* 437 * Macro to mark a page protection value as "uncacheable". 438 */ 439 440 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 441 _PAGE_WRITETHRU) 442 443 #define pgprot_noncached pgprot_noncached 444 static inline pgprot_t pgprot_noncached(pgprot_t prot) 445 { 446 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 447 _PAGE_NO_CACHE | _PAGE_GUARDED); 448 } 449 450 #define pgprot_noncached_wc pgprot_noncached_wc 451 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 452 { 453 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 454 _PAGE_NO_CACHE); 455 } 456 457 #define pgprot_cached pgprot_cached 458 static inline pgprot_t pgprot_cached(pgprot_t prot) 459 { 460 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 461 _PAGE_COHERENT); 462 } 463 464 #define pgprot_cached_wthru pgprot_cached_wthru 465 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) 466 { 467 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 468 _PAGE_COHERENT | _PAGE_WRITETHRU); 469 } 470 471 #define pgprot_cached_noncoherent pgprot_cached_noncoherent 472 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) 473 { 474 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); 475 } 476 477 #define pgprot_writecombine pgprot_writecombine 478 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 479 { 480 return pgprot_noncached_wc(prot); 481 } 482 483 #endif /* !__ASSEMBLY__ */ 484 485 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */ 486