1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4 
5 #include <asm-generic/pgtable-nopmd.h>
6 
7 #include <asm/book3s/32/hash.h>
8 
9 /* And here we include common definitions */
10 
11 #define _PAGE_KERNEL_RO		0
12 #define _PAGE_KERNEL_ROX	(_PAGE_EXEC)
13 #define _PAGE_KERNEL_RW		(_PAGE_DIRTY | _PAGE_RW)
14 #define _PAGE_KERNEL_RWX	(_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
15 
16 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE
17 
18 #ifndef __ASSEMBLY__
19 
20 static inline bool pte_user(pte_t pte)
21 {
22 	return pte_val(pte) & _PAGE_USER;
23 }
24 #endif /* __ASSEMBLY__ */
25 
26 /*
27  * Location of the PFN in the PTE. Most 32-bit platforms use the same
28  * as _PAGE_SHIFT here (ie, naturally aligned).
29  * Platform who don't just pre-define the value so we don't override it here.
30  */
31 #define PTE_RPN_SHIFT	(PAGE_SHIFT)
32 
33 /*
34  * The mask covered by the RPN must be a ULL on 32-bit platforms with
35  * 64-bit PTEs.
36  */
37 #ifdef CONFIG_PTE_64BIT
38 #define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
39 #else
40 #define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
41 #endif
42 
43 /*
44  * _PAGE_CHG_MASK masks of bits that are to be preserved across
45  * pgprot changes.
46  */
47 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
48 			 _PAGE_ACCESSED | _PAGE_SPECIAL)
49 
50 /*
51  * We define 2 sets of base prot bits, one for basic pages (ie,
52  * cacheable kernel and user pages) and one for non cacheable
53  * pages. We always set _PAGE_COHERENT when SMP is enabled or
54  * the processor might need it for DMA coherency.
55  */
56 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
57 #define _PAGE_BASE	(_PAGE_BASE_NC | _PAGE_COHERENT)
58 
59 /*
60  * Permission masks used to generate the __P and __S table.
61  *
62  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
63  *
64  * Write permissions imply read permissions for now.
65  */
66 #define PAGE_NONE	__pgprot(_PAGE_BASE)
67 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
68 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
69 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
70 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
71 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
72 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
73 
74 /* Permission masks used for kernel mappings */
75 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
76 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
77 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
78 				 _PAGE_NO_CACHE | _PAGE_GUARDED)
79 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
80 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
81 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
82 
83 /*
84  * Protection used for kernel text. We want the debuggers to be able to
85  * set breakpoints anywhere, so don't write protect the kernel text
86  * on platforms where such control is possible.
87  */
88 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
89 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
90 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
91 #else
92 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
93 #endif
94 
95 /* Make modules code happy. We don't set RO yet */
96 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
97 
98 /* Advertise special mapping type for AGP */
99 #define PAGE_AGP		(PAGE_KERNEL_NC)
100 #define HAVE_PAGE_AGP
101 
102 #define PTE_INDEX_SIZE	PTE_SHIFT
103 #define PMD_INDEX_SIZE	0
104 #define PUD_INDEX_SIZE	0
105 #define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
106 
107 #define PMD_CACHE_INDEX	PMD_INDEX_SIZE
108 #define PUD_CACHE_INDEX	PUD_INDEX_SIZE
109 
110 #ifndef __ASSEMBLY__
111 #define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
112 #define PMD_TABLE_SIZE	0
113 #define PUD_TABLE_SIZE	0
114 #define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
115 
116 /* Bits to mask out from a PMD to get to the PTE page */
117 #define PMD_MASKED_BITS		(PTE_TABLE_SIZE - 1)
118 #endif	/* __ASSEMBLY__ */
119 
120 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
121 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
122 
123 /*
124  * The normal case is that PTEs are 32-bits and we have a 1-page
125  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
126  *
127  * For any >32-bit physical address platform, we can use the following
128  * two level page table layout where the pgdir is 8KB and the MS 13 bits
129  * are an index to the second level table.  The combined pgdir/pmd first
130  * level has 2048 entries and the second level has 512 64-bit PTE entries.
131  * -Matt
132  */
133 /* PGDIR_SHIFT determines what a top-level page table entry can map */
134 #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
135 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
136 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
137 
138 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
139 
140 #ifndef __ASSEMBLY__
141 
142 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
143 
144 #endif /* !__ASSEMBLY__ */
145 
146 /*
147  * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
148  * value (for now) on others, from where we can start layout kernel
149  * virtual space that goes below PKMAP and FIXMAP
150  */
151 #include <asm/fixmap.h>
152 
153 /*
154  * ioremap_bot starts at that address. Early ioremaps move down from there,
155  * until mem_init() at which point this becomes the top of the vmalloc
156  * and ioremap space
157  */
158 #ifdef CONFIG_HIGHMEM
159 #define IOREMAP_TOP	PKMAP_BASE
160 #else
161 #define IOREMAP_TOP	FIXADDR_START
162 #endif
163 
164 /* PPC32 shares vmalloc area with ioremap */
165 #define IOREMAP_START	VMALLOC_START
166 #define IOREMAP_END	VMALLOC_END
167 
168 /*
169  * Just any arbitrary offset to the start of the vmalloc VM area: the
170  * current 16MB value just means that there will be a 64MB "hole" after the
171  * physical memory until the kernel virtual memory starts.  That means that
172  * any out-of-bounds memory accesses will hopefully be caught.
173  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
174  * area for the same reason. ;)
175  *
176  * We no longer map larger than phys RAM with the BATs so we don't have
177  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
178  * about clashes between our early calls to ioremap() that start growing down
179  * from ioremap_base being run into the VM area allocations (growing upwards
180  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
181  * we actually run into our mappings setup in the early boot with the VM
182  * system.  This really does become a problem for machines with good amounts
183  * of RAM.  -- Cort
184  */
185 #define VMALLOC_OFFSET (0x1000000) /* 16M */
186 
187 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
188 
189 #ifdef CONFIG_KASAN_VMALLOC
190 #define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
191 #else
192 #define VMALLOC_END	ioremap_bot
193 #endif
194 
195 #ifdef CONFIG_STRICT_KERNEL_RWX
196 #define MODULES_END	ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
197 #define MODULES_VADDR	(MODULES_END - SZ_256M)
198 #endif
199 
200 #ifndef __ASSEMBLY__
201 #include <linux/sched.h>
202 #include <linux/threads.h>
203 
204 /* Bits to mask out from a PGD to get to the PUD page */
205 #define PGD_MASKED_BITS		0
206 
207 #define pte_ERROR(e) \
208 	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
209 		(unsigned long long)pte_val(e))
210 #define pgd_ERROR(e) \
211 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
212 /*
213  * Bits in a linux-style PTE.  These match the bits in the
214  * (hardware-defined) PowerPC PTE as closely as possible.
215  */
216 
217 #define pte_clear(mm, addr, ptep) \
218 	do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
219 
220 #define pmd_none(pmd)		(!pmd_val(pmd))
221 #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
222 #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
223 static inline void pmd_clear(pmd_t *pmdp)
224 {
225 	*pmdp = __pmd(0);
226 }
227 
228 
229 /*
230  * When flushing the tlb entry for a page, we also need to flush the hash
231  * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
232  */
233 extern int flush_hash_pages(unsigned context, unsigned long va,
234 			    unsigned long pmdval, int count);
235 
236 /* Add an HPTE to the hash table */
237 extern void add_hash_page(unsigned context, unsigned long va,
238 			  unsigned long pmdval);
239 
240 /* Flush an entry from the TLB/hash table */
241 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
242 			     unsigned long address);
243 
244 /*
245  * PTE updates. This function is called whenever an existing
246  * valid PTE is updated. This does -not- include set_pte_at()
247  * which nowadays only sets a new PTE.
248  *
249  * Depending on the type of MMU, we may need to use atomic updates
250  * and the PTE may be either 32 or 64 bit wide. In the later case,
251  * when using atomic updates, only the low part of the PTE is
252  * accessed atomically.
253  */
254 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
255 				     unsigned long clr, unsigned long set, int huge)
256 {
257 	pte_basic_t old;
258 	unsigned long tmp;
259 
260 	__asm__ __volatile__(
261 #ifndef CONFIG_PTE_64BIT
262 "1:	lwarx	%0, 0, %3\n"
263 "	andc	%1, %0, %4\n"
264 #else
265 "1:	lwarx	%L0, 0, %3\n"
266 "	lwz	%0, -4(%3)\n"
267 "	andc	%1, %L0, %4\n"
268 #endif
269 "	or	%1, %1, %5\n"
270 "	stwcx.	%1, 0, %3\n"
271 "	bne-	1b"
272 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
273 #ifndef CONFIG_PTE_64BIT
274 	: "r" (p),
275 #else
276 	: "b" ((unsigned long)(p) + 4),
277 #endif
278 	  "r" (clr), "r" (set), "m" (*p)
279 	: "cc" );
280 
281 	return old;
282 }
283 
284 /*
285  * 2.6 calls this without flushing the TLB entry; this is wrong
286  * for our hash-based implementation, we fix that up here.
287  */
288 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
289 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
290 					      unsigned long addr, pte_t *ptep)
291 {
292 	unsigned long old;
293 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
294 	if (old & _PAGE_HASHPTE) {
295 		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
296 		flush_hash_pages(mm->context.id, addr, ptephys, 1);
297 	}
298 	return (old & _PAGE_ACCESSED) != 0;
299 }
300 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
301 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
302 
303 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
304 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
305 				       pte_t *ptep)
306 {
307 	return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
308 }
309 
310 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
311 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
312 				      pte_t *ptep)
313 {
314 	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
315 }
316 
317 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
318 					   pte_t *ptep, pte_t entry,
319 					   unsigned long address,
320 					   int psize)
321 {
322 	unsigned long set = pte_val(entry) &
323 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
324 
325 	pte_update(vma->vm_mm, address, ptep, 0, set, 0);
326 
327 	flush_tlb_page(vma, address);
328 }
329 
330 #define __HAVE_ARCH_PTE_SAME
331 #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
332 
333 #define pmd_page(pmd)		\
334 	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
335 
336 /*
337  * Encode and decode a swap entry.
338  * Note that the bits we use in a PTE for representing a swap entry
339  * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
340  *   -- paulus
341  */
342 #define __swp_type(entry)		((entry).val & 0x1f)
343 #define __swp_offset(entry)		((entry).val >> 5)
344 #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
345 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
346 #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
347 
348 /* Generic accessors to PTE bits */
349 static inline int pte_write(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_RW);}
350 static inline int pte_read(pte_t pte)		{ return 1; }
351 static inline int pte_dirty(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_DIRTY); }
352 static inline int pte_young(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_ACCESSED); }
353 static inline int pte_special(pte_t pte)	{ return !!(pte_val(pte) & _PAGE_SPECIAL); }
354 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
355 static inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
356 
357 static inline int pte_present(pte_t pte)
358 {
359 	return pte_val(pte) & _PAGE_PRESENT;
360 }
361 
362 static inline bool pte_hw_valid(pte_t pte)
363 {
364 	return pte_val(pte) & _PAGE_PRESENT;
365 }
366 
367 static inline bool pte_hashpte(pte_t pte)
368 {
369 	return !!(pte_val(pte) & _PAGE_HASHPTE);
370 }
371 
372 static inline bool pte_ci(pte_t pte)
373 {
374 	return !!(pte_val(pte) & _PAGE_NO_CACHE);
375 }
376 
377 /*
378  * We only find page table entry in the last level
379  * Hence no need for other accessors
380  */
381 #define pte_access_permitted pte_access_permitted
382 static inline bool pte_access_permitted(pte_t pte, bool write)
383 {
384 	/*
385 	 * A read-only access is controlled by _PAGE_USER bit.
386 	 * We have _PAGE_READ set for WRITE and EXECUTE
387 	 */
388 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
389 		return false;
390 
391 	if (write && !pte_write(pte))
392 		return false;
393 
394 	return true;
395 }
396 
397 /* Conversion functions: convert a page and protection to a page entry,
398  * and a page entry and page directory to the page they refer to.
399  *
400  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
401  * long for now.
402  */
403 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
404 {
405 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
406 		     pgprot_val(pgprot));
407 }
408 
409 static inline unsigned long pte_pfn(pte_t pte)
410 {
411 	return pte_val(pte) >> PTE_RPN_SHIFT;
412 }
413 
414 /* Generic modifiers for PTE bits */
415 static inline pte_t pte_wrprotect(pte_t pte)
416 {
417 	return __pte(pte_val(pte) & ~_PAGE_RW);
418 }
419 
420 static inline pte_t pte_exprotect(pte_t pte)
421 {
422 	return __pte(pte_val(pte) & ~_PAGE_EXEC);
423 }
424 
425 static inline pte_t pte_mkclean(pte_t pte)
426 {
427 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
428 }
429 
430 static inline pte_t pte_mkold(pte_t pte)
431 {
432 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
433 }
434 
435 static inline pte_t pte_mkexec(pte_t pte)
436 {
437 	return __pte(pte_val(pte) | _PAGE_EXEC);
438 }
439 
440 static inline pte_t pte_mkpte(pte_t pte)
441 {
442 	return pte;
443 }
444 
445 static inline pte_t pte_mkwrite(pte_t pte)
446 {
447 	return __pte(pte_val(pte) | _PAGE_RW);
448 }
449 
450 static inline pte_t pte_mkdirty(pte_t pte)
451 {
452 	return __pte(pte_val(pte) | _PAGE_DIRTY);
453 }
454 
455 static inline pte_t pte_mkyoung(pte_t pte)
456 {
457 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
458 }
459 
460 static inline pte_t pte_mkspecial(pte_t pte)
461 {
462 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
463 }
464 
465 static inline pte_t pte_mkhuge(pte_t pte)
466 {
467 	return pte;
468 }
469 
470 static inline pte_t pte_mkprivileged(pte_t pte)
471 {
472 	return __pte(pte_val(pte) & ~_PAGE_USER);
473 }
474 
475 static inline pte_t pte_mkuser(pte_t pte)
476 {
477 	return __pte(pte_val(pte) | _PAGE_USER);
478 }
479 
480 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
481 {
482 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
483 }
484 
485 
486 
487 /* This low level function performs the actual PTE insertion
488  * Setting the PTE depends on the MMU type and other factors. It's
489  * an horrible mess that I'm not going to try to clean up now but
490  * I'm keeping it in one place rather than spread around
491  */
492 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
493 				pte_t *ptep, pte_t pte, int percpu)
494 {
495 #if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
496 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
497 	 * helper pte_update() which does an atomic update. We need to do that
498 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
499 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
500 	 * the hash bits instead (ie, same as the non-SMP case)
501 	 */
502 	if (percpu)
503 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
504 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
505 	else
506 		pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
507 
508 #elif defined(CONFIG_PTE_64BIT)
509 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
510 	 * can just store as long as we do the two halves in the right order
511 	 * with a barrier in between. This is possible because we take care,
512 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
513 	 * which synchronizes us with any concurrent invalidation.
514 	 * In the percpu case, we also fallback to the simple update preserving
515 	 * the hash bits
516 	 */
517 	if (percpu) {
518 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
519 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
520 		return;
521 	}
522 	if (pte_val(*ptep) & _PAGE_HASHPTE)
523 		flush_hash_entry(mm, ptep, addr);
524 	__asm__ __volatile__("\
525 		stw%U0%X0 %2,%0\n\
526 		eieio\n\
527 		stw%U0%X0 %L2,%1"
528 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
529 	: "r" (pte) : "memory");
530 
531 #else
532 	/* Third case is 32-bit hash table in UP mode, we need to preserve
533 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
534 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
535 	 * and see we need to keep track that this PTE needs invalidating
536 	 */
537 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
538 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
539 #endif
540 }
541 
542 /*
543  * Macro to mark a page protection value as "uncacheable".
544  */
545 
546 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
547 			 _PAGE_WRITETHRU)
548 
549 #define pgprot_noncached pgprot_noncached
550 static inline pgprot_t pgprot_noncached(pgprot_t prot)
551 {
552 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
553 			_PAGE_NO_CACHE | _PAGE_GUARDED);
554 }
555 
556 #define pgprot_noncached_wc pgprot_noncached_wc
557 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
558 {
559 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
560 			_PAGE_NO_CACHE);
561 }
562 
563 #define pgprot_cached pgprot_cached
564 static inline pgprot_t pgprot_cached(pgprot_t prot)
565 {
566 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
567 			_PAGE_COHERENT);
568 }
569 
570 #define pgprot_cached_wthru pgprot_cached_wthru
571 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
572 {
573 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
574 			_PAGE_COHERENT | _PAGE_WRITETHRU);
575 }
576 
577 #define pgprot_cached_noncoherent pgprot_cached_noncoherent
578 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
579 {
580 	return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
581 }
582 
583 #define pgprot_writecombine pgprot_writecombine
584 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
585 {
586 	return pgprot_noncached_wc(prot);
587 }
588 
589 #endif /* !__ASSEMBLY__ */
590 
591 #endif /*  _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
592