1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H 3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H 4 5 #define __ARCH_USE_5LEVEL_HACK 6 #include <asm-generic/pgtable-nopmd.h> 7 8 #include <asm/book3s/32/hash.h> 9 10 /* And here we include common definitions */ 11 12 #define _PAGE_KERNEL_RO 0 13 #define _PAGE_KERNEL_ROX (_PAGE_EXEC) 14 #define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW) 15 #define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC) 16 17 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE 18 19 #ifndef __ASSEMBLY__ 20 21 static inline bool pte_user(pte_t pte) 22 { 23 return pte_val(pte) & _PAGE_USER; 24 } 25 #endif /* __ASSEMBLY__ */ 26 27 /* 28 * Location of the PFN in the PTE. Most 32-bit platforms use the same 29 * as _PAGE_SHIFT here (ie, naturally aligned). 30 * Platform who don't just pre-define the value so we don't override it here. 31 */ 32 #define PTE_RPN_SHIFT (PAGE_SHIFT) 33 34 /* 35 * The mask covered by the RPN must be a ULL on 32-bit platforms with 36 * 64-bit PTEs. 37 */ 38 #ifdef CONFIG_PTE_64BIT 39 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1)) 40 #else 41 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) 42 #endif 43 44 /* 45 * _PAGE_CHG_MASK masks of bits that are to be preserved across 46 * pgprot changes. 47 */ 48 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \ 49 _PAGE_ACCESSED | _PAGE_SPECIAL) 50 51 /* 52 * We define 2 sets of base prot bits, one for basic pages (ie, 53 * cacheable kernel and user pages) and one for non cacheable 54 * pages. We always set _PAGE_COHERENT when SMP is enabled or 55 * the processor might need it for DMA coherency. 56 */ 57 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) 58 #define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT) 59 60 /* 61 * Permission masks used to generate the __P and __S table. 62 * 63 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h 64 * 65 * Write permissions imply read permissions for now. 66 */ 67 #define PAGE_NONE __pgprot(_PAGE_BASE) 68 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 69 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 70 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 71 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 72 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 73 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 74 75 /* Permission masks used for kernel mappings */ 76 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 77 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) 78 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 79 _PAGE_NO_CACHE | _PAGE_GUARDED) 80 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 81 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 82 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 83 84 /* 85 * Protection used for kernel text. We want the debuggers to be able to 86 * set breakpoints anywhere, so don't write protect the kernel text 87 * on platforms where such control is possible. 88 */ 89 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\ 90 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) 91 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X 92 #else 93 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX 94 #endif 95 96 /* Make modules code happy. We don't set RO yet */ 97 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X 98 99 /* Advertise special mapping type for AGP */ 100 #define PAGE_AGP (PAGE_KERNEL_NC) 101 #define HAVE_PAGE_AGP 102 103 #define PTE_INDEX_SIZE PTE_SHIFT 104 #define PMD_INDEX_SIZE 0 105 #define PUD_INDEX_SIZE 0 106 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) 107 108 #define PMD_CACHE_INDEX PMD_INDEX_SIZE 109 #define PUD_CACHE_INDEX PUD_INDEX_SIZE 110 111 #ifndef __ASSEMBLY__ 112 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) 113 #define PMD_TABLE_SIZE 0 114 #define PUD_TABLE_SIZE 0 115 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) 116 #endif /* __ASSEMBLY__ */ 117 118 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 119 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 120 121 /* 122 * The normal case is that PTEs are 32-bits and we have a 1-page 123 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 124 * 125 * For any >32-bit physical address platform, we can use the following 126 * two level page table layout where the pgdir is 8KB and the MS 13 bits 127 * are an index to the second level table. The combined pgdir/pmd first 128 * level has 2048 entries and the second level has 512 64-bit PTE entries. 129 * -Matt 130 */ 131 /* PGDIR_SHIFT determines what a top-level page table entry can map */ 132 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 133 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 134 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 135 136 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 137 /* 138 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary 139 * value (for now) on others, from where we can start layout kernel 140 * virtual space that goes below PKMAP and FIXMAP 141 */ 142 #ifdef CONFIG_HIGHMEM 143 #define KVIRT_TOP PKMAP_BASE 144 #else 145 #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */ 146 #endif 147 148 /* 149 * ioremap_bot starts at that address. Early ioremaps move down from there, 150 * until mem_init() at which point this becomes the top of the vmalloc 151 * and ioremap space 152 */ 153 #ifdef CONFIG_NOT_COHERENT_CACHE 154 #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK) 155 #else 156 #define IOREMAP_TOP KVIRT_TOP 157 #endif 158 159 /* 160 * Just any arbitrary offset to the start of the vmalloc VM area: the 161 * current 16MB value just means that there will be a 64MB "hole" after the 162 * physical memory until the kernel virtual memory starts. That means that 163 * any out-of-bounds memory accesses will hopefully be caught. 164 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 165 * area for the same reason. ;) 166 * 167 * We no longer map larger than phys RAM with the BATs so we don't have 168 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 169 * about clashes between our early calls to ioremap() that start growing down 170 * from ioremap_base being run into the VM area allocations (growing upwards 171 * from VMALLOC_START). For this reason we have ioremap_bot to check when 172 * we actually run into our mappings setup in the early boot with the VM 173 * system. This really does become a problem for machines with good amounts 174 * of RAM. -- Cort 175 */ 176 #define VMALLOC_OFFSET (0x1000000) /* 16M */ 177 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 178 #define VMALLOC_END ioremap_bot 179 180 #ifndef __ASSEMBLY__ 181 #include <linux/sched.h> 182 #include <linux/threads.h> 183 184 extern unsigned long ioremap_bot; 185 186 /* Bits to mask out from a PGD to get to the PUD page */ 187 #define PGD_MASKED_BITS 0 188 189 #define pte_ERROR(e) \ 190 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ 191 (unsigned long long)pte_val(e)) 192 #define pgd_ERROR(e) \ 193 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 194 /* 195 * Bits in a linux-style PTE. These match the bits in the 196 * (hardware-defined) PowerPC PTE as closely as possible. 197 */ 198 199 #define pte_clear(mm, addr, ptep) \ 200 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0) 201 202 #define pmd_none(pmd) (!pmd_val(pmd)) 203 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 204 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 205 static inline void pmd_clear(pmd_t *pmdp) 206 { 207 *pmdp = __pmd(0); 208 } 209 210 211 /* 212 * When flushing the tlb entry for a page, we also need to flush the hash 213 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 214 */ 215 extern int flush_hash_pages(unsigned context, unsigned long va, 216 unsigned long pmdval, int count); 217 218 /* Add an HPTE to the hash table */ 219 extern void add_hash_page(unsigned context, unsigned long va, 220 unsigned long pmdval); 221 222 /* Flush an entry from the TLB/hash table */ 223 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, 224 unsigned long address); 225 226 /* 227 * PTE updates. This function is called whenever an existing 228 * valid PTE is updated. This does -not- include set_pte_at() 229 * which nowadays only sets a new PTE. 230 * 231 * Depending on the type of MMU, we may need to use atomic updates 232 * and the PTE may be either 32 or 64 bit wide. In the later case, 233 * when using atomic updates, only the low part of the PTE is 234 * accessed atomically. 235 * 236 * In addition, on 44x, we also maintain a global flag indicating 237 * that an executable user mapping was modified, which is needed 238 * to properly flush the virtually tagged instruction cache of 239 * those implementations. 240 */ 241 #ifndef CONFIG_PTE_64BIT 242 static inline unsigned long pte_update(pte_t *p, 243 unsigned long clr, 244 unsigned long set) 245 { 246 unsigned long old, tmp; 247 248 __asm__ __volatile__("\ 249 1: lwarx %0,0,%3\n\ 250 andc %1,%0,%4\n\ 251 or %1,%1,%5\n" 252 " stwcx. %1,0,%3\n\ 253 bne- 1b" 254 : "=&r" (old), "=&r" (tmp), "=m" (*p) 255 : "r" (p), "r" (clr), "r" (set), "m" (*p) 256 : "cc" ); 257 258 return old; 259 } 260 #else /* CONFIG_PTE_64BIT */ 261 static inline unsigned long long pte_update(pte_t *p, 262 unsigned long clr, 263 unsigned long set) 264 { 265 unsigned long long old; 266 unsigned long tmp; 267 268 __asm__ __volatile__("\ 269 1: lwarx %L0,0,%4\n\ 270 lwzx %0,0,%3\n\ 271 andc %1,%L0,%5\n\ 272 or %1,%1,%6\n" 273 " stwcx. %1,0,%4\n\ 274 bne- 1b" 275 : "=&r" (old), "=&r" (tmp), "=m" (*p) 276 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) 277 : "cc" ); 278 279 return old; 280 } 281 #endif /* CONFIG_PTE_64BIT */ 282 283 /* 284 * 2.6 calls this without flushing the TLB entry; this is wrong 285 * for our hash-based implementation, we fix that up here. 286 */ 287 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 288 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) 289 { 290 unsigned long old; 291 old = pte_update(ptep, _PAGE_ACCESSED, 0); 292 if (old & _PAGE_HASHPTE) { 293 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 294 flush_hash_pages(context, addr, ptephys, 1); 295 } 296 return (old & _PAGE_ACCESSED) != 0; 297 } 298 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 299 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) 300 301 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 302 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 303 pte_t *ptep) 304 { 305 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 306 } 307 308 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 309 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 310 pte_t *ptep) 311 { 312 pte_update(ptep, _PAGE_RW, 0); 313 } 314 315 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 316 pte_t *ptep, pte_t entry, 317 unsigned long address, 318 int psize) 319 { 320 unsigned long set = pte_val(entry) & 321 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 322 323 pte_update(ptep, 0, set); 324 325 flush_tlb_page(vma, address); 326 } 327 328 #define __HAVE_ARCH_PTE_SAME 329 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 330 331 #define pmd_page_vaddr(pmd) \ 332 ((unsigned long)__va(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1))) 333 #define pmd_page(pmd) \ 334 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 335 336 /* to find an entry in a kernel page-table-directory */ 337 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 338 339 /* to find an entry in a page-table-directory */ 340 #define pgd_index(address) ((address) >> PGDIR_SHIFT) 341 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 342 343 /* Find an entry in the third-level page table.. */ 344 #define pte_index(address) \ 345 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 346 #define pte_offset_kernel(dir, addr) \ 347 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) 348 #define pte_offset_map(dir, addr) \ 349 ((pte_t *)(kmap_atomic(pmd_page(*(dir))) + \ 350 (pmd_page_vaddr(*(dir)) & ~PAGE_MASK)) + pte_index(addr)) 351 #define pte_unmap(pte) kunmap_atomic(pte) 352 353 /* 354 * Encode and decode a swap entry. 355 * Note that the bits we use in a PTE for representing a swap entry 356 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used). 357 * -- paulus 358 */ 359 #define __swp_type(entry) ((entry).val & 0x1f) 360 #define __swp_offset(entry) ((entry).val >> 5) 361 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) 362 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 363 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 364 365 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); 366 367 /* Generic accessors to PTE bits */ 368 static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);} 369 static inline int pte_read(pte_t pte) { return 1; } 370 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } 371 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } 372 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } 373 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 374 static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 375 376 static inline int pte_present(pte_t pte) 377 { 378 return pte_val(pte) & _PAGE_PRESENT; 379 } 380 381 static inline bool pte_hw_valid(pte_t pte) 382 { 383 return pte_val(pte) & _PAGE_PRESENT; 384 } 385 386 static inline bool pte_hashpte(pte_t pte) 387 { 388 return !!(pte_val(pte) & _PAGE_HASHPTE); 389 } 390 391 static inline bool pte_ci(pte_t pte) 392 { 393 return !!(pte_val(pte) & _PAGE_NO_CACHE); 394 } 395 396 /* 397 * We only find page table entry in the last level 398 * Hence no need for other accessors 399 */ 400 #define pte_access_permitted pte_access_permitted 401 static inline bool pte_access_permitted(pte_t pte, bool write) 402 { 403 /* 404 * A read-only access is controlled by _PAGE_USER bit. 405 * We have _PAGE_READ set for WRITE and EXECUTE 406 */ 407 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) 408 return false; 409 410 if (write && !pte_write(pte)) 411 return false; 412 413 return true; 414 } 415 416 /* Conversion functions: convert a page and protection to a page entry, 417 * and a page entry and page directory to the page they refer to. 418 * 419 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 420 * long for now. 421 */ 422 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 423 { 424 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 425 pgprot_val(pgprot)); 426 } 427 428 static inline unsigned long pte_pfn(pte_t pte) 429 { 430 return pte_val(pte) >> PTE_RPN_SHIFT; 431 } 432 433 /* Generic modifiers for PTE bits */ 434 static inline pte_t pte_wrprotect(pte_t pte) 435 { 436 return __pte(pte_val(pte) & ~_PAGE_RW); 437 } 438 439 static inline pte_t pte_exprotect(pte_t pte) 440 { 441 return __pte(pte_val(pte) & ~_PAGE_EXEC); 442 } 443 444 static inline pte_t pte_mkclean(pte_t pte) 445 { 446 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 447 } 448 449 static inline pte_t pte_mkold(pte_t pte) 450 { 451 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 452 } 453 454 static inline pte_t pte_mkexec(pte_t pte) 455 { 456 return __pte(pte_val(pte) | _PAGE_EXEC); 457 } 458 459 static inline pte_t pte_mkpte(pte_t pte) 460 { 461 return pte; 462 } 463 464 static inline pte_t pte_mkwrite(pte_t pte) 465 { 466 return __pte(pte_val(pte) | _PAGE_RW); 467 } 468 469 static inline pte_t pte_mkdirty(pte_t pte) 470 { 471 return __pte(pte_val(pte) | _PAGE_DIRTY); 472 } 473 474 static inline pte_t pte_mkyoung(pte_t pte) 475 { 476 return __pte(pte_val(pte) | _PAGE_ACCESSED); 477 } 478 479 static inline pte_t pte_mkspecial(pte_t pte) 480 { 481 return __pte(pte_val(pte) | _PAGE_SPECIAL); 482 } 483 484 static inline pte_t pte_mkhuge(pte_t pte) 485 { 486 return pte; 487 } 488 489 static inline pte_t pte_mkprivileged(pte_t pte) 490 { 491 return __pte(pte_val(pte) & ~_PAGE_USER); 492 } 493 494 static inline pte_t pte_mkuser(pte_t pte) 495 { 496 return __pte(pte_val(pte) | _PAGE_USER); 497 } 498 499 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 500 { 501 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 502 } 503 504 505 506 /* This low level function performs the actual PTE insertion 507 * Setting the PTE depends on the MMU type and other factors. It's 508 * an horrible mess that I'm not going to try to clean up now but 509 * I'm keeping it in one place rather than spread around 510 */ 511 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 512 pte_t *ptep, pte_t pte, int percpu) 513 { 514 #if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 515 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 516 * helper pte_update() which does an atomic update. We need to do that 517 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 518 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 519 * the hash bits instead (ie, same as the non-SMP case) 520 */ 521 if (percpu) 522 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 523 | (pte_val(pte) & ~_PAGE_HASHPTE)); 524 else 525 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); 526 527 #elif defined(CONFIG_PTE_64BIT) 528 /* Second case is 32-bit with 64-bit PTE. In this case, we 529 * can just store as long as we do the two halves in the right order 530 * with a barrier in between. This is possible because we take care, 531 * in the hash code, to pre-invalidate if the PTE was already hashed, 532 * which synchronizes us with any concurrent invalidation. 533 * In the percpu case, we also fallback to the simple update preserving 534 * the hash bits 535 */ 536 if (percpu) { 537 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 538 | (pte_val(pte) & ~_PAGE_HASHPTE)); 539 return; 540 } 541 if (pte_val(*ptep) & _PAGE_HASHPTE) 542 flush_hash_entry(mm, ptep, addr); 543 __asm__ __volatile__("\ 544 stw%U0%X0 %2,%0\n\ 545 eieio\n\ 546 stw%U0%X0 %L2,%1" 547 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 548 : "r" (pte) : "memory"); 549 550 #else 551 /* Third case is 32-bit hash table in UP mode, we need to preserve 552 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 553 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 554 * and see we need to keep track that this PTE needs invalidating 555 */ 556 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 557 | (pte_val(pte) & ~_PAGE_HASHPTE)); 558 #endif 559 } 560 561 /* 562 * Macro to mark a page protection value as "uncacheable". 563 */ 564 565 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 566 _PAGE_WRITETHRU) 567 568 #define pgprot_noncached pgprot_noncached 569 static inline pgprot_t pgprot_noncached(pgprot_t prot) 570 { 571 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 572 _PAGE_NO_CACHE | _PAGE_GUARDED); 573 } 574 575 #define pgprot_noncached_wc pgprot_noncached_wc 576 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 577 { 578 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 579 _PAGE_NO_CACHE); 580 } 581 582 #define pgprot_cached pgprot_cached 583 static inline pgprot_t pgprot_cached(pgprot_t prot) 584 { 585 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 586 _PAGE_COHERENT); 587 } 588 589 #define pgprot_cached_wthru pgprot_cached_wthru 590 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) 591 { 592 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 593 _PAGE_COHERENT | _PAGE_WRITETHRU); 594 } 595 596 #define pgprot_cached_noncoherent pgprot_cached_noncoherent 597 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) 598 { 599 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); 600 } 601 602 #define pgprot_writecombine pgprot_writecombine 603 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 604 { 605 return pgprot_noncached_wc(prot); 606 } 607 608 #endif /* !__ASSEMBLY__ */ 609 610 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */ 611