xref: /openbmc/linux/arch/powerpc/include/asm/bitops.h (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * PowerPC atomic bit operations.
3  *
4  * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5  * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6  * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard.  They
7  * originally took it from the ppc32 code.
8  *
9  * Within a word, bits are numbered LSB first.  Lot's of places make
10  * this assumption by directly testing bits with (val & (1<<nr)).
11  * This can cause confusion for large (> 1 word) bitmaps on a
12  * big-endian system because, unlike little endian, the number of each
13  * bit depends on the word size.
14  *
15  * The bitop functions are defined to work on unsigned longs, so for a
16  * ppc64 system the bits end up numbered:
17  *   |63..............0|127............64|191...........128|255...........196|
18  * and on ppc32:
19  *   |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
20  *
21  * There are a few little-endian macros used mostly for filesystem
22  * bitmaps, these work on similar bit arrays layouts, but
23  * byte-oriented:
24  *   |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
25  *
26  * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27  * number field needs to be reversed compared to the big-endian bit
28  * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
29  *
30  * This program is free software; you can redistribute it and/or
31  * modify it under the terms of the GNU General Public License
32  * as published by the Free Software Foundation; either version
33  * 2 of the License, or (at your option) any later version.
34  */
35 
36 #ifndef _ASM_POWERPC_BITOPS_H
37 #define _ASM_POWERPC_BITOPS_H
38 
39 #ifdef __KERNEL__
40 
41 #ifndef _LINUX_BITOPS_H
42 #error only <linux/bitops.h> can be included directly
43 #endif
44 
45 #include <linux/compiler.h>
46 #include <asm/asm-compat.h>
47 #include <asm/synch.h>
48 
49 /*
50  * clear_bit doesn't imply a memory barrier
51  */
52 #define smp_mb__before_clear_bit()	smp_mb()
53 #define smp_mb__after_clear_bit()	smp_mb()
54 
55 #define BITOP_MASK(nr)		(1UL << ((nr) % BITS_PER_LONG))
56 #define BITOP_WORD(nr)		((nr) / BITS_PER_LONG)
57 #define BITOP_LE_SWIZZLE	((BITS_PER_LONG-1) & ~0x7)
58 
59 /* Macro for generating the ***_bits() functions */
60 #define DEFINE_BITOP(fn, op, prefix, postfix)	\
61 static __inline__ void fn(unsigned long mask,	\
62 		volatile unsigned long *_p)	\
63 {						\
64 	unsigned long old;			\
65 	unsigned long *p = (unsigned long *)_p;	\
66 	__asm__ __volatile__ (			\
67 	prefix					\
68 "1:"	PPC_LLARX(%0,0,%3,0) "\n"		\
69 	stringify_in_c(op) "%0,%0,%2\n"		\
70 	PPC405_ERR77(0,%3)			\
71 	PPC_STLCX "%0,0,%3\n"			\
72 	"bne- 1b\n"				\
73 	postfix					\
74 	: "=&r" (old), "+m" (*p)		\
75 	: "r" (mask), "r" (p)			\
76 	: "cc", "memory");			\
77 }
78 
79 DEFINE_BITOP(set_bits, or, "", "")
80 DEFINE_BITOP(clear_bits, andc, "", "")
81 DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER, "")
82 DEFINE_BITOP(change_bits, xor, "", "")
83 
84 static __inline__ void set_bit(int nr, volatile unsigned long *addr)
85 {
86 	set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
87 }
88 
89 static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
90 {
91 	clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
92 }
93 
94 static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
95 {
96 	clear_bits_unlock(BITOP_MASK(nr), addr + BITOP_WORD(nr));
97 }
98 
99 static __inline__ void change_bit(int nr, volatile unsigned long *addr)
100 {
101 	change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
102 }
103 
104 /* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
105  * operands. */
106 #define DEFINE_TESTOP(fn, op, prefix, postfix, eh)	\
107 static __inline__ unsigned long fn(			\
108 		unsigned long mask,			\
109 		volatile unsigned long *_p)		\
110 {							\
111 	unsigned long old, t;				\
112 	unsigned long *p = (unsigned long *)_p;		\
113 	__asm__ __volatile__ (				\
114 	prefix						\
115 "1:"	PPC_LLARX(%0,0,%3,eh) "\n"			\
116 	stringify_in_c(op) "%1,%0,%2\n"			\
117 	PPC405_ERR77(0,%3)				\
118 	PPC_STLCX "%1,0,%3\n"				\
119 	"bne- 1b\n"					\
120 	postfix						\
121 	: "=&r" (old), "=&r" (t)			\
122 	: "r" (mask), "r" (p)				\
123 	: "cc", "memory");				\
124 	return (old & mask);				\
125 }
126 
127 DEFINE_TESTOP(test_and_set_bits, or, PPC_RELEASE_BARRIER,
128 	      PPC_ACQUIRE_BARRIER, 0)
129 DEFINE_TESTOP(test_and_set_bits_lock, or, "",
130 	      PPC_ACQUIRE_BARRIER, 1)
131 DEFINE_TESTOP(test_and_clear_bits, andc, PPC_RELEASE_BARRIER,
132 	      PPC_ACQUIRE_BARRIER, 0)
133 DEFINE_TESTOP(test_and_change_bits, xor, PPC_RELEASE_BARRIER,
134 	      PPC_ACQUIRE_BARRIER, 0)
135 
136 static __inline__ int test_and_set_bit(unsigned long nr,
137 				       volatile unsigned long *addr)
138 {
139 	return test_and_set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
140 }
141 
142 static __inline__ int test_and_set_bit_lock(unsigned long nr,
143 				       volatile unsigned long *addr)
144 {
145 	return test_and_set_bits_lock(BITOP_MASK(nr),
146 				addr + BITOP_WORD(nr)) != 0;
147 }
148 
149 static __inline__ int test_and_clear_bit(unsigned long nr,
150 					 volatile unsigned long *addr)
151 {
152 	return test_and_clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
153 }
154 
155 static __inline__ int test_and_change_bit(unsigned long nr,
156 					  volatile unsigned long *addr)
157 {
158 	return test_and_change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
159 }
160 
161 #include <asm-generic/bitops/non-atomic.h>
162 
163 static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
164 {
165 	__asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
166 	__clear_bit(nr, addr);
167 }
168 
169 /*
170  * Return the zero-based bit position (LE, not IBM bit numbering) of
171  * the most significant 1-bit in a double word.
172  */
173 static __inline__ __attribute__((const))
174 int __ilog2(unsigned long x)
175 {
176 	int lz;
177 
178 	asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
179 	return BITS_PER_LONG - 1 - lz;
180 }
181 
182 static inline __attribute__((const))
183 int __ilog2_u32(u32 n)
184 {
185 	int bit;
186 	asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
187 	return 31 - bit;
188 }
189 
190 #ifdef __powerpc64__
191 static inline __attribute__((const))
192 int __ilog2_u64(u64 n)
193 {
194 	int bit;
195 	asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
196 	return 63 - bit;
197 }
198 #endif
199 
200 /*
201  * Determines the bit position of the least significant 0 bit in the
202  * specified double word. The returned bit position will be
203  * zero-based, starting from the right side (63/31 - 0).
204  */
205 static __inline__ unsigned long ffz(unsigned long x)
206 {
207 	/* no zero exists anywhere in the 8 byte area. */
208 	if ((x = ~x) == 0)
209 		return BITS_PER_LONG;
210 
211 	/*
212 	 * Calculate the bit position of the least signficant '1' bit in x
213 	 * (since x has been changed this will actually be the least signficant
214 	 * '0' bit in * the original x).  Note: (x & -x) gives us a mask that
215 	 * is the least significant * (RIGHT-most) 1-bit of the value in x.
216 	 */
217 	return __ilog2(x & -x);
218 }
219 
220 static __inline__ int __ffs(unsigned long x)
221 {
222 	return __ilog2(x & -x);
223 }
224 
225 /*
226  * ffs: find first bit set. This is defined the same way as
227  * the libc and compiler builtin ffs routines, therefore
228  * differs in spirit from the above ffz (man ffs).
229  */
230 static __inline__ int ffs(int x)
231 {
232 	unsigned long i = (unsigned long)x;
233 	return __ilog2(i & -i) + 1;
234 }
235 
236 /*
237  * fls: find last (most-significant) bit set.
238  * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
239  */
240 static __inline__ int fls(unsigned int x)
241 {
242 	int lz;
243 
244 	asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
245 	return 32 - lz;
246 }
247 
248 static __inline__ unsigned long __fls(unsigned long x)
249 {
250 	return __ilog2(x);
251 }
252 
253 /*
254  * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
255  * instruction; for 32-bit we use the generic version, which does two
256  * 32-bit fls calls.
257  */
258 #ifdef __powerpc64__
259 static __inline__ int fls64(__u64 x)
260 {
261 	int lz;
262 
263 	asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
264 	return 64 - lz;
265 }
266 #else
267 #include <asm-generic/bitops/fls64.h>
268 #endif /* __powerpc64__ */
269 
270 #ifdef CONFIG_PPC64
271 unsigned int __arch_hweight8(unsigned int w);
272 unsigned int __arch_hweight16(unsigned int w);
273 unsigned int __arch_hweight32(unsigned int w);
274 unsigned long __arch_hweight64(__u64 w);
275 #include <asm-generic/bitops/const_hweight.h>
276 #else
277 #include <asm-generic/bitops/hweight.h>
278 #endif
279 
280 #include <asm-generic/bitops/find.h>
281 
282 /* Little-endian versions */
283 
284 static __inline__ int test_le_bit(unsigned long nr,
285 				  __const__ unsigned long *addr)
286 {
287 	__const__ unsigned char	*tmp = (__const__ unsigned char *) addr;
288 	return (tmp[nr >> 3] >> (nr & 7)) & 1;
289 }
290 
291 #define __set_le_bit(nr, addr) \
292 	__set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
293 #define __clear_le_bit(nr, addr) \
294 	__clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
295 
296 #define test_and_set_le_bit(nr, addr) \
297 	test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
298 #define test_and_clear_le_bit(nr, addr) \
299 	test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
300 
301 #define __test_and_set_le_bit(nr, addr) \
302 	__test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
303 #define __test_and_clear_le_bit(nr, addr) \
304 	__test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
305 
306 #define find_first_zero_le_bit(addr, size) generic_find_next_zero_le_bit((addr), (size), 0)
307 unsigned long generic_find_next_zero_le_bit(const unsigned long *addr,
308 				    unsigned long size, unsigned long offset);
309 
310 unsigned long generic_find_next_le_bit(const unsigned long *addr,
311 				    unsigned long size, unsigned long offset);
312 /* Bitmap functions for the ext2 filesystem */
313 
314 #define ext2_set_bit(nr,addr) \
315 	__test_and_set_le_bit((nr), (unsigned long*)addr)
316 #define ext2_clear_bit(nr, addr) \
317 	__test_and_clear_le_bit((nr), (unsigned long*)addr)
318 
319 #define ext2_set_bit_atomic(lock, nr, addr) \
320 	test_and_set_le_bit((nr), (unsigned long*)addr)
321 #define ext2_clear_bit_atomic(lock, nr, addr) \
322 	test_and_clear_le_bit((nr), (unsigned long*)addr)
323 
324 #define ext2_test_bit(nr, addr)      test_le_bit((nr),(unsigned long*)addr)
325 
326 #define ext2_find_first_zero_bit(addr, size) \
327 	find_first_zero_le_bit((unsigned long*)addr, size)
328 #define ext2_find_next_zero_bit(addr, size, off) \
329 	generic_find_next_zero_le_bit((unsigned long*)addr, size, off)
330 
331 #define ext2_find_next_bit(addr, size, off) \
332 	generic_find_next_le_bit((unsigned long *)addr, size, off)
333 /* Bitmap functions for the minix filesystem.  */
334 
335 #define minix_test_and_set_bit(nr,addr) \
336 	__test_and_set_le_bit(nr, (unsigned long *)addr)
337 #define minix_set_bit(nr,addr) \
338 	__set_le_bit(nr, (unsigned long *)addr)
339 #define minix_test_and_clear_bit(nr,addr) \
340 	__test_and_clear_le_bit(nr, (unsigned long *)addr)
341 #define minix_test_bit(nr,addr) \
342 	test_le_bit(nr, (unsigned long *)addr)
343 
344 #define minix_find_first_zero_bit(addr,size) \
345 	find_first_zero_le_bit((unsigned long *)addr, size)
346 
347 #include <asm-generic/bitops/sched.h>
348 
349 #endif /* __KERNEL__ */
350 
351 #endif /* _ASM_POWERPC_BITOPS_H */
352