xref: /openbmc/linux/arch/powerpc/crypto/sha256-spe-glue.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Glue code for SHA-256 implementation for SPE instructions (PPC)
3  *
4  * Based on generic implementation. The assembler module takes care
5  * about the SPE registers so it can run from interrupt context.
6  *
7  * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  */
15 
16 #include <crypto/internal/hash.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/cryptohash.h>
21 #include <linux/types.h>
22 #include <crypto/sha.h>
23 #include <asm/byteorder.h>
24 #include <asm/switch_to.h>
25 #include <linux/hardirq.h>
26 
27 /*
28  * MAX_BYTES defines the number of bytes that are allowed to be processed
29  * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
30  * operations per 64 bytes. e500 cores can issue two arithmetic instructions
31  * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
32  * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
33  * Headroom for cache misses included. Even with the low end model clocked
34  * at 667 MHz this equals to a critical time window of less than 27us.
35  *
36  */
37 #define MAX_BYTES 1024
38 
39 extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
40 
41 static void spe_begin(void)
42 {
43 	/* We just start SPE operations and will save SPE registers later. */
44 	preempt_disable();
45 	enable_kernel_spe();
46 }
47 
48 static void spe_end(void)
49 {
50 	/* reenable preemption */
51 	preempt_enable();
52 }
53 
54 static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
55 {
56 	int count = sizeof(struct sha256_state) >> 2;
57 	u32 *ptr = (u32 *)sctx;
58 
59 	/* make sure we can clear the fast way */
60 	BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
61 	do { *ptr++ = 0; } while (--count);
62 }
63 
64 static int ppc_spe_sha256_init(struct shash_desc *desc)
65 {
66 	struct sha256_state *sctx = shash_desc_ctx(desc);
67 
68 	sctx->state[0] = SHA256_H0;
69 	sctx->state[1] = SHA256_H1;
70 	sctx->state[2] = SHA256_H2;
71 	sctx->state[3] = SHA256_H3;
72 	sctx->state[4] = SHA256_H4;
73 	sctx->state[5] = SHA256_H5;
74 	sctx->state[6] = SHA256_H6;
75 	sctx->state[7] = SHA256_H7;
76 	sctx->count = 0;
77 
78 	return 0;
79 }
80 
81 static int ppc_spe_sha224_init(struct shash_desc *desc)
82 {
83 	struct sha256_state *sctx = shash_desc_ctx(desc);
84 
85 	sctx->state[0] = SHA224_H0;
86 	sctx->state[1] = SHA224_H1;
87 	sctx->state[2] = SHA224_H2;
88 	sctx->state[3] = SHA224_H3;
89 	sctx->state[4] = SHA224_H4;
90 	sctx->state[5] = SHA224_H5;
91 	sctx->state[6] = SHA224_H6;
92 	sctx->state[7] = SHA224_H7;
93 	sctx->count = 0;
94 
95 	return 0;
96 }
97 
98 static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
99 			unsigned int len)
100 {
101 	struct sha256_state *sctx = shash_desc_ctx(desc);
102 	const unsigned int offset = sctx->count & 0x3f;
103 	const unsigned int avail = 64 - offset;
104 	unsigned int bytes;
105 	const u8 *src = data;
106 
107 	if (avail > len) {
108 		sctx->count += len;
109 		memcpy((char *)sctx->buf + offset, src, len);
110 		return 0;
111 	}
112 
113 	sctx->count += len;
114 
115 	if (offset) {
116 		memcpy((char *)sctx->buf + offset, src, avail);
117 
118 		spe_begin();
119 		ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
120 		spe_end();
121 
122 		len -= avail;
123 		src += avail;
124 	}
125 
126 	while (len > 63) {
127 		/* cut input data into smaller blocks */
128 		bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
129 		bytes = bytes & ~0x3f;
130 
131 		spe_begin();
132 		ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
133 		spe_end();
134 
135 		src += bytes;
136 		len -= bytes;
137 	};
138 
139 	memcpy((char *)sctx->buf, src, len);
140 	return 0;
141 }
142 
143 static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
144 {
145 	struct sha256_state *sctx = shash_desc_ctx(desc);
146 	const unsigned int offset = sctx->count & 0x3f;
147 	char *p = (char *)sctx->buf + offset;
148 	int padlen;
149 	__be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
150 	__be32 *dst = (__be32 *)out;
151 
152 	padlen = 55 - offset;
153 	*p++ = 0x80;
154 
155 	spe_begin();
156 
157 	if (padlen < 0) {
158 		memset(p, 0x00, padlen + sizeof (u64));
159 		ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
160 		p = (char *)sctx->buf;
161 		padlen = 56;
162 	}
163 
164 	memset(p, 0, padlen);
165 	*pbits = cpu_to_be64(sctx->count << 3);
166 	ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
167 
168 	spe_end();
169 
170 	dst[0] = cpu_to_be32(sctx->state[0]);
171 	dst[1] = cpu_to_be32(sctx->state[1]);
172 	dst[2] = cpu_to_be32(sctx->state[2]);
173 	dst[3] = cpu_to_be32(sctx->state[3]);
174 	dst[4] = cpu_to_be32(sctx->state[4]);
175 	dst[5] = cpu_to_be32(sctx->state[5]);
176 	dst[6] = cpu_to_be32(sctx->state[6]);
177 	dst[7] = cpu_to_be32(sctx->state[7]);
178 
179 	ppc_sha256_clear_context(sctx);
180 	return 0;
181 }
182 
183 static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
184 {
185 	u32 D[SHA256_DIGEST_SIZE >> 2];
186 	__be32 *dst = (__be32 *)out;
187 
188 	ppc_spe_sha256_final(desc, (u8 *)D);
189 
190 	/* avoid bytewise memcpy */
191 	dst[0] = D[0];
192 	dst[1] = D[1];
193 	dst[2] = D[2];
194 	dst[3] = D[3];
195 	dst[4] = D[4];
196 	dst[5] = D[5];
197 	dst[6] = D[6];
198 
199 	/* clear sensitive data */
200 	memzero_explicit(D, SHA256_DIGEST_SIZE);
201 	return 0;
202 }
203 
204 static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
205 {
206 	struct sha256_state *sctx = shash_desc_ctx(desc);
207 
208 	memcpy(out, sctx, sizeof(*sctx));
209 	return 0;
210 }
211 
212 static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
213 {
214 	struct sha256_state *sctx = shash_desc_ctx(desc);
215 
216 	memcpy(sctx, in, sizeof(*sctx));
217 	return 0;
218 }
219 
220 static struct shash_alg algs[2] = { {
221 	.digestsize	=	SHA256_DIGEST_SIZE,
222 	.init		=	ppc_spe_sha256_init,
223 	.update		=	ppc_spe_sha256_update,
224 	.final		=	ppc_spe_sha256_final,
225 	.export		=	ppc_spe_sha256_export,
226 	.import		=	ppc_spe_sha256_import,
227 	.descsize	=	sizeof(struct sha256_state),
228 	.statesize	=	sizeof(struct sha256_state),
229 	.base		=	{
230 		.cra_name	=	"sha256",
231 		.cra_driver_name=	"sha256-ppc-spe",
232 		.cra_priority	=	300,
233 		.cra_flags	=	CRYPTO_ALG_TYPE_SHASH,
234 		.cra_blocksize	=	SHA256_BLOCK_SIZE,
235 		.cra_module	=	THIS_MODULE,
236 	}
237 }, {
238 	.digestsize	=	SHA224_DIGEST_SIZE,
239 	.init		=	ppc_spe_sha224_init,
240 	.update		=	ppc_spe_sha256_update,
241 	.final		=	ppc_spe_sha224_final,
242 	.export		=	ppc_spe_sha256_export,
243 	.import		=	ppc_spe_sha256_import,
244 	.descsize	=	sizeof(struct sha256_state),
245 	.statesize	=	sizeof(struct sha256_state),
246 	.base		=	{
247 		.cra_name	=	"sha224",
248 		.cra_driver_name=	"sha224-ppc-spe",
249 		.cra_priority	=	300,
250 		.cra_flags	=	CRYPTO_ALG_TYPE_SHASH,
251 		.cra_blocksize	=	SHA224_BLOCK_SIZE,
252 		.cra_module	=	THIS_MODULE,
253 	}
254 } };
255 
256 static int __init ppc_spe_sha256_mod_init(void)
257 {
258 	return crypto_register_shashes(algs, ARRAY_SIZE(algs));
259 }
260 
261 static void __exit ppc_spe_sha256_mod_fini(void)
262 {
263 	crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
264 }
265 
266 module_init(ppc_spe_sha256_mod_init);
267 module_exit(ppc_spe_sha256_mod_fini);
268 
269 MODULE_LICENSE("GPL");
270 MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
271 
272 MODULE_ALIAS_CRYPTO("sha224");
273 MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
274 MODULE_ALIAS_CRYPTO("sha256");
275 MODULE_ALIAS_CRYPTO("sha256-ppc-spe");
276