1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Calculate a crc32c with vpmsum acceleration
4 *
5 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7	.section	.rodata
8.balign 16
9
10.byteswap_constant:
11	/* byte reverse permute constant */
12	.octa 0x0F0E0D0C0B0A09080706050403020100
13
14.constants:
15
16	/* Reduce 262144 kbits to 1024 bits */
17	/* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
18	.octa 0x00000000b6ca9e20000000009c37c408
19
20	/* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
21	.octa 0x00000000350249a800000001b51df26c
22
23	/* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
24	.octa 0x00000001862dac54000000000724b9d0
25
26	/* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
27	.octa 0x00000001d87fb48c00000001c00532fe
28
29	/* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
30	.octa 0x00000001f39b699e00000000f05a9362
31
32	/* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
33	.octa 0x0000000101da11b400000001e1007970
34
35	/* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
36	.octa 0x00000001cab571e000000000a57366ee
37
38	/* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
39	.octa 0x00000000c7020cfe0000000192011284
40
41	/* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
42	.octa 0x00000000cdaed1ae0000000162716d9a
43
44	/* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
45	.octa 0x00000001e804effc00000000cd97ecde
46
47	/* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
48	.octa 0x0000000077c3ea3a0000000058812bc0
49
50	/* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
51	.octa 0x0000000068df31b40000000088b8c12e
52
53	/* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
54	.octa 0x00000000b059b6c200000001230b234c
55
56	/* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
57	.octa 0x0000000145fb8ed800000001120b416e
58
59	/* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
60	.octa 0x00000000cbc0916800000001974aecb0
61
62	/* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
63	.octa 0x000000005ceeedc2000000008ee3f226
64
65	/* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
66	.octa 0x0000000047d74e8600000001089aba9a
67
68	/* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
69	.octa 0x00000001407e9e220000000065113872
70
71	/* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
72	.octa 0x00000001da967bda000000005c07ec10
73
74	/* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
75	.octa 0x000000006c8983680000000187590924
76
77	/* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
78	.octa 0x00000000f2d14c9800000000e35da7c6
79
80	/* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
81	.octa 0x00000001993c6ad4000000000415855a
82
83	/* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
84	.octa 0x000000014683d1ac0000000073617758
85
86	/* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
87	.octa 0x00000001a7c93e6c0000000176021d28
88
89	/* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
90	.octa 0x000000010211e90a00000001c358fd0a
91
92	/* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
93	.octa 0x000000001119403e00000001ff7a2c18
94
95	/* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
96	.octa 0x000000001c3261aa00000000f2d9f7e4
97
98	/* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
99	.octa 0x000000014e37a634000000016cf1f9c8
100
101	/* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
102	.octa 0x0000000073786c0c000000010af9279a
103
104	/* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
105	.octa 0x000000011dc037f80000000004f101e8
106
107	/* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
108	.octa 0x0000000031433dfc0000000070bcf184
109
110	/* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
111	.octa 0x000000009cde8348000000000a8de642
112
113	/* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
114	.octa 0x0000000038d3c2a60000000062ea130c
115
116	/* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
117	.octa 0x000000011b25f26000000001eb31cbb2
118
119	/* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
120	.octa 0x000000001629e6f00000000170783448
121
122	/* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
123	.octa 0x0000000160838b4c00000001a684b4c6
124
125	/* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
126	.octa 0x000000007a44011c00000000253ca5b4
127
128	/* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
129	.octa 0x00000000226f417a0000000057b4b1e2
130
131	/* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
132	.octa 0x0000000045eb2eb400000000b6bd084c
133
134	/* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
135	.octa 0x000000014459d70c0000000123c2d592
136
137	/* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
138	.octa 0x00000001d406ed8200000000159dafce
139
140	/* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
141	.octa 0x0000000160c8e1a80000000127e1a64e
142
143	/* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
144	.octa 0x0000000027ba80980000000056860754
145
146	/* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
147	.octa 0x000000006d92d01800000001e661aae8
148
149	/* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
150	.octa 0x000000012ed7e3f200000000f82c6166
151
152	/* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
153	.octa 0x000000002dc8778800000000c4f9c7ae
154
155	/* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
156	.octa 0x0000000018240bb80000000074203d20
157
158	/* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
159	.octa 0x000000001ad381580000000198173052
160
161	/* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
162	.octa 0x00000001396b78f200000001ce8aba54
163
164	/* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
165	.octa 0x000000011a68133400000001850d5d94
166
167	/* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
168	.octa 0x000000012104732e00000001d609239c
169
170	/* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
171	.octa 0x00000000a140d90c000000001595f048
172
173	/* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
174	.octa 0x00000001b7215eda0000000042ccee08
175
176	/* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
177	.octa 0x00000001aaf1df3c000000010a389d74
178
179	/* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
180	.octa 0x0000000029d15b8a000000012a840da6
181
182	/* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
183	.octa 0x00000000f1a96922000000001d181c0c
184
185	/* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
186	.octa 0x00000001ac80d03c0000000068b7d1f6
187
188	/* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
189	.octa 0x000000000f11d56a000000005b0f14fc
190
191	/* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
192	.octa 0x00000001f1c022a20000000179e9e730
193
194	/* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
195	.octa 0x0000000173d00ae200000001ce1368d6
196
197	/* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
198	.octa 0x00000001d4ffe4ac0000000112c3a84c
199
200	/* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
201	.octa 0x000000016edc5ae400000000de940fee
202
203	/* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
204	.octa 0x00000001f1a0214000000000fe896b7e
205
206	/* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
207	.octa 0x00000000ca0b28a000000001f797431c
208
209	/* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
210	.octa 0x00000001928e30a20000000053e989ba
211
212	/* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
213	.octa 0x0000000097b1b002000000003920cd16
214
215	/* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
216	.octa 0x00000000b15bf90600000001e6f579b8
217
218	/* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
219	.octa 0x00000000411c5d52000000007493cb0a
220
221	/* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
222	.octa 0x00000001c36f330000000001bdd376d8
223
224	/* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
225	.octa 0x00000001119227e0000000016badfee6
226
227	/* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
228	.octa 0x00000000114d47020000000071de5c58
229
230	/* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
231	.octa 0x00000000458b5b9800000000453f317c
232
233	/* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
234	.octa 0x000000012e31fb8e0000000121675cce
235
236	/* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
237	.octa 0x000000005cf619d800000001f409ee92
238
239	/* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
240	.octa 0x0000000063f4d8b200000000f36b9c88
241
242	/* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
243	.octa 0x000000004138dc8a0000000036b398f4
244
245	/* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
246	.octa 0x00000001d29ee8e000000001748f9adc
247
248	/* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
249	.octa 0x000000006a08ace800000001be94ec00
250
251	/* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
252	.octa 0x0000000127d4201000000000b74370d6
253
254	/* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
255	.octa 0x0000000019d76b6200000001174d0b98
256
257	/* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
258	.octa 0x00000001b1471f6e00000000befc06a4
259
260	/* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
261	.octa 0x00000001f64c19cc00000001ae125288
262
263	/* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
264	.octa 0x00000000003c0ea00000000095c19b34
265
266	/* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
267	.octa 0x000000014d73abf600000001a78496f2
268
269	/* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
270	.octa 0x00000001620eb84400000001ac5390a0
271
272	/* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
273	.octa 0x0000000147655048000000002a80ed6e
274
275	/* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
276	.octa 0x0000000067b5077e00000001fa9b0128
277
278	/* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
279	.octa 0x0000000010ffe20600000001ea94929e
280
281	/* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
282	.octa 0x000000000fee8f1e0000000125f4305c
283
284	/* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
285	.octa 0x00000001da26fbae00000001471e2002
286
287	/* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
288	.octa 0x00000001b3a8bd880000000132d2253a
289
290	/* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
291	.octa 0x00000000e8f3898e00000000f26b3592
292
293	/* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
294	.octa 0x00000000b0d0d28c00000000bc8b67b0
295
296	/* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
297	.octa 0x0000000030f2a798000000013a826ef2
298
299	/* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
300	.octa 0x000000000fba10020000000081482c84
301
302	/* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
303	.octa 0x00000000bdb9bd7200000000e77307c2
304
305	/* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
306	.octa 0x0000000075d3bf5a00000000d4a07ec8
307
308	/* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
309	.octa 0x00000000ef1f98a00000000017102100
310
311	/* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
312	.octa 0x00000000689c760200000000db406486
313
314	/* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
315	.octa 0x000000016d5fa5fe0000000192db7f88
316
317	/* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
318	.octa 0x00000001d0d2b9ca000000018bf67b1e
319
320	/* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
321	.octa 0x0000000041e7b470000000007c09163e
322
323	/* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
324	.octa 0x00000001cbb6495e000000000adac060
325
326	/* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
327	.octa 0x000000010052a0b000000000bd8316ae
328
329	/* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
330	.octa 0x00000001d8effb5c000000019f09ab54
331
332	/* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
333	.octa 0x00000001d969853c0000000125155542
334
335	/* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
336	.octa 0x00000000523ccce2000000018fdb5882
337
338	/* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
339	.octa 0x000000001e2436bc00000000e794b3f4
340
341	/* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
342	.octa 0x00000000ddd1c3a2000000016f9bb022
343
344	/* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
345	.octa 0x0000000019fcfe3800000000290c9978
346
347	/* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
348	.octa 0x00000001ce95db640000000083c0f350
349
350	/* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
351	.octa 0x00000000af5828060000000173ea6628
352
353	/* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
354	.octa 0x00000001006388f600000001c8b4e00a
355
356	/* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
357	.octa 0x0000000179eca00a00000000de95d6aa
358
359	/* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
360	.octa 0x0000000122410a6a000000010b7f7248
361
362	/* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
363	.octa 0x000000004288e87c00000001326e3a06
364
365	/* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
366	.octa 0x000000016c5490da00000000bb62c2e6
367
368	/* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
369	.octa 0x00000000d1c71f6e0000000156a4b2c2
370
371	/* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
372	.octa 0x00000001b4ce08a6000000011dfe763a
373
374	/* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
375	.octa 0x00000001466ba60c000000007bcca8e2
376
377	/* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
378	.octa 0x00000001f6c488a40000000186118faa
379
380	/* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
381	.octa 0x000000013bfb06820000000111a65a88
382
383	/* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
384	.octa 0x00000000690e9e54000000003565e1c4
385
386	/* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
387	.octa 0x00000000281346b6000000012ed02a82
388
389	/* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
390	.octa 0x000000015646402400000000c486ecfc
391
392	/* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
393	.octa 0x000000016063a8dc0000000001b951b2
394
395	/* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
396	.octa 0x0000000116a663620000000048143916
397
398	/* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
399	.octa 0x000000017e8aa4d200000001dc2ae124
400
401	/* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
402	.octa 0x00000001728eb10c00000001416c58d6
403
404	/* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
405	.octa 0x00000001b08fd7fa00000000a479744a
406
407	/* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
408	.octa 0x00000001092a16e80000000096ca3a26
409
410	/* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
411	.octa 0x00000000a505637c00000000ff223d4e
412
413	/* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
414	.octa 0x00000000d94869b2000000010e84da42
415
416	/* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
417	.octa 0x00000001c8b203ae00000001b61ba3d0
418
419	/* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
420	.octa 0x000000005704aea000000000680f2de8
421
422	/* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
423	.octa 0x000000012e295fa2000000008772a9a8
424
425	/* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
426	.octa 0x000000011d0908bc0000000155f295bc
427
428	/* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
429	.octa 0x0000000193ed97ea00000000595f9282
430
431	/* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
432	.octa 0x000000013a0f1c520000000164b1c25a
433
434	/* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
435	.octa 0x000000010c2c40c000000000fbd67c50
436
437	/* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
438	.octa 0x00000000ff6fac3e0000000096076268
439
440	/* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
441	.octa 0x000000017b3609c000000001d288e4cc
442
443	/* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
444	.octa 0x0000000088c8c92200000001eaac1bdc
445
446	/* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
447	.octa 0x00000001751baae600000001f1ea39e2
448
449	/* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
450	.octa 0x000000010795297200000001eb6506fc
451
452	/* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
453	.octa 0x0000000162b00abe000000010f806ffe
454
455	/* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
456	.octa 0x000000000d7b404c000000010408481e
457
458	/* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
459	.octa 0x00000000763b13d40000000188260534
460
461	/* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
462	.octa 0x00000000f6dc22d80000000058fc73e0
463
464	/* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
465	.octa 0x000000007daae06000000000391c59b8
466
467	/* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
468	.octa 0x000000013359ab7c000000018b638400
469
470	/* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
471	.octa 0x000000008add438a000000011738f5c4
472
473	/* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
474	.octa 0x00000001edbefdea000000008cf7c6da
475
476	/* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
477	.octa 0x000000004104e0f800000001ef97fb16
478
479	/* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
480	.octa 0x00000000b48a82220000000102130e20
481
482	/* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
483	.octa 0x00000001bcb4684400000000db968898
484
485	/* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
486	.octa 0x000000013293ce0a00000000b5047b5e
487
488	/* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
489	.octa 0x00000001710d0844000000010b90fdb2
490
491	/* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
492	.octa 0x0000000117907f6e000000004834a32e
493
494	/* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
495	.octa 0x0000000087ddf93e0000000059c8f2b0
496
497	/* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
498	.octa 0x000000005970e9b00000000122cec508
499
500	/* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
501	.octa 0x0000000185b2b7d0000000000a330cda
502
503	/* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
504	.octa 0x00000001dcee0efc000000014a47148c
505
506	/* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
507	.octa 0x0000000030da27220000000042c61cb8
508
509	/* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
510	.octa 0x000000012f925a180000000012fe6960
511
512	/* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
513	.octa 0x00000000dd2e357c00000000dbda2c20
514
515	/* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
516	.octa 0x00000000071c80de000000011122410c
517
518	/* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
519	.octa 0x000000011513140a00000000977b2070
520
521	/* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
522	.octa 0x00000001df876e8e000000014050438e
523
524	/* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
525	.octa 0x000000015f81d6ce0000000147c840e8
526
527	/* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
528	.octa 0x000000019dd94dbe00000001cc7c88ce
529
530	/* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
531	.octa 0x00000001373d206e00000001476b35a4
532
533	/* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
534	.octa 0x00000000668ccade000000013d52d508
535
536	/* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
537	.octa 0x00000001b192d268000000008e4be32e
538
539	/* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
540	.octa 0x00000000e30f3a7800000000024120fe
541
542	/* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
543	.octa 0x000000010ef1f7bc00000000ddecddb4
544
545	/* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
546	.octa 0x00000001f5ac738000000000d4d403bc
547
548	/* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
549	.octa 0x000000011822ea7000000001734b89aa
550
551	/* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
552	.octa 0x00000000c3a33848000000010e7a58d6
553
554	/* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
555	.octa 0x00000001bd151c2400000001f9f04e9c
556
557	/* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
558	.octa 0x0000000056002d7600000000b692225e
559
560	/* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
561	.octa 0x000000014657c4f4000000019b8d3f3e
562
563	/* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
564	.octa 0x0000000113742d7c00000001a874f11e
565
566	/* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
567	.octa 0x000000019c5920ba000000010d5a4254
568
569	/* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
570	.octa 0x000000005216d2d600000000bbb2f5d6
571
572	/* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
573	.octa 0x0000000136f5ad8a0000000179cc0e36
574
575	/* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
576	.octa 0x000000018b07beb600000001dca1da4a
577
578	/* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
579	.octa 0x00000000db1e93b000000000feb1a192
580
581	/* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
582	.octa 0x000000000b96fa3a00000000d1eeedd6
583
584	/* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
585	.octa 0x00000001d9968af0000000008fad9bb4
586
587	/* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
588	.octa 0x000000000e4a77a200000001884938e4
589
590	/* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
591	.octa 0x00000000508c2ac800000001bc2e9bc0
592
593	/* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
594	.octa 0x0000000021572a8000000001f9658a68
595
596	/* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
597	.octa 0x00000001b859daf2000000001b9224fc
598
599	/* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
600	.octa 0x000000016f7884740000000055b2fb84
601
602	/* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
603	.octa 0x00000001b438810e000000018b090348
604
605	/* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
606	.octa 0x0000000095ddc6f2000000011ccbd5ea
607
608	/* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
609	.octa 0x00000001d977c20c0000000007ae47f8
610
611	/* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
612	.octa 0x00000000ebedb99a0000000172acbec0
613
614	/* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
615	.octa 0x00000001df9e9e9200000001c6e3ff20
616
617	/* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
618	.octa 0x00000001a4a3f95200000000e1b38744
619
620	/* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
621	.octa 0x00000000e2f5122000000000791585b2
622
623	/* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
624	.octa 0x000000004aa01f3e00000000ac53b894
625
626	/* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
627	.octa 0x00000000b3e90a5800000001ed5f2cf4
628
629	/* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
630	.octa 0x000000000c9ca2aa00000001df48b2e0
631
632	/* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
633	.octa 0x000000015168231600000000049c1c62
634
635	/* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
636	.octa 0x0000000036fce78c000000017c460c12
637
638	/* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
639	.octa 0x000000009037dc10000000015be4da7e
640
641	/* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
642	.octa 0x00000000d3298582000000010f38f668
643
644	/* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
645	.octa 0x00000001b42e8ad60000000039f40a00
646
647	/* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
648	.octa 0x00000000142a983800000000bd4c10c4
649
650	/* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
651	.octa 0x0000000109c7f1900000000042db1d98
652
653	/* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
654	.octa 0x0000000056ff931000000001c905bae6
655
656	/* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
657	.octa 0x00000001594513aa00000000069d40ea
658
659	/* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
660	.octa 0x00000001e3b5b1e8000000008e4fbad0
661
662	/* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
663	.octa 0x000000011dd5fc080000000047bedd46
664
665	/* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
666	.octa 0x00000001675f0cc20000000026396bf8
667
668	/* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
669	.octa 0x00000000d1c8dd4400000000379beb92
670
671	/* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
672	.octa 0x0000000115ebd3d8000000000abae54a
673
674	/* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
675	.octa 0x00000001ecbd0dac0000000007e6a128
676
677	/* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
678	.octa 0x00000000cdf67af2000000000ade29d2
679
680	/* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
681	.octa 0x000000004c01ff4c00000000f974c45c
682
683	/* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
684	.octa 0x00000000f2d8657e00000000e77ac60a
685
686	/* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
687	.octa 0x000000006bae74c40000000145895816
688
689	/* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
690	.octa 0x0000000152af8aa00000000038e362be
691
692	/* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
693	.octa 0x0000000004663802000000007f991a64
694
695	/* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
696	.octa 0x00000001ab2f5afc00000000fa366d3a
697
698	/* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
699	.octa 0x0000000074a4ebd400000001a2bb34f0
700
701	/* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
702	.octa 0x00000001d7ab3a4c0000000028a9981e
703
704	/* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
705	.octa 0x00000001a8da60c600000001dbc672be
706
707	/* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
708	.octa 0x000000013cf6382000000000b04d77f6
709
710	/* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
711	.octa 0x00000000bec12e1e0000000124400d96
712
713	/* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
714	.octa 0x00000001c6368010000000014ca4b414
715
716	/* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
717	.octa 0x00000001e6e78758000000012fe2c938
718
719	/* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
720	.octa 0x000000008d7f2b3c00000001faed01e6
721
722	/* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
723	.octa 0x000000016b4a156e000000007e80ecfe
724
725	/* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
726	.octa 0x00000001c63cfeb60000000098daee94
727
728	/* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
729	.octa 0x000000015f902670000000010a04edea
730
731	/* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
732	.octa 0x00000001cd5de11e00000001c00b4524
733
734	/* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
735	.octa 0x000000001acaec540000000170296550
736
737	/* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
738	.octa 0x000000002bd0ca780000000181afaa48
739
740	/* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
741	.octa 0x0000000032d63d5c0000000185a31ffa
742
743	/* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
744	.octa 0x000000001c6d4e4c000000002469f608
745
746	/* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
747	.octa 0x0000000106a60b92000000006980102a
748
749	/* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
750	.octa 0x00000000d3855e120000000111ea9ca8
751
752	/* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
753	.octa 0x00000000e312563600000001bd1d29ce
754
755	/* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
756	.octa 0x000000009e8f7ea400000001b34b9580
757
758	/* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
759	.octa 0x00000001c82e562c000000003076054e
760
761	/* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
762	.octa 0x00000000ca9f09ce000000012a608ea4
763
764	/* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
765	.octa 0x00000000c63764e600000000784d05fe
766
767	/* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
768	.octa 0x0000000168d2e49e000000016ef0d82a
769
770	/* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
771	.octa 0x00000000e986c1480000000075bda454
772
773	/* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
774	.octa 0x00000000cfb65894000000003dc0a1c4
775
776	/* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
777	.octa 0x0000000111cadee400000000e9a5d8be
778
779	/* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
780	.octa 0x0000000171fb63ce00000001609bc4b4
781
782.short_constants:
783
784	/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
785	/* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
786	.octa 0x7fec2963e5bf80485cf015c388e56f72
787
788	/* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
789	.octa 0x38e888d4844752a9963a18920246e2e6
790
791	/* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
792	.octa 0x42316c00730206ad419a441956993a31
793
794	/* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
795	.octa 0x543d5c543e65ddf9924752ba2b830011
796
797	/* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
798	.octa 0x78e87aaf56767c9255bd7f9518e4a304
799
800	/* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
801	.octa 0x8f68fcec1903da7f6d76739fe0553f1e
802
803	/* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
804	.octa 0x3f4840246791d588c133722b1fe0b5c3
805
806	/* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
807	.octa 0x34c96751b04de25a64b67ee0e55ef1f3
808
809	/* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
810	.octa 0x156c8e180b4a395b069db049b8fdb1e7
811
812	/* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
813	.octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
814
815	/* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
816	.octa 0x041d37768cd75659817cdc5119b29a35
817
818	/* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
819	.octa 0x3a0777818cfaa9651ce9d94b36c41f1c
820
821	/* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
822	.octa 0x0e148e8252377a554f256efcb82be955
823
824	/* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
825	.octa 0x9c25531d19e65ddeec1631edb2dea967
826
827	/* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
828	.octa 0x790606ff9957c0a65d27e147510ac59a
829
830	/* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
831	.octa 0x82f63b786ea2d55ca66805eb18b8ea18
832
833
834.barrett_constants:
835	/* 33 bit reflected Barrett constant m - (4^32)/n */
836	.octa 0x000000000000000000000000dea713f1	/* x^64 div p(x)` */
837	/* 33 bit reflected Barrett constant n */
838	.octa 0x00000000000000000000000105ec76f1
839
840#define CRC_FUNCTION_NAME __crc32c_vpmsum
841#define REFLECT
842#include "crc32-vpmsum_core.S"
843