xref: /openbmc/linux/arch/parisc/net/bpf_jit.h (revision e2ad626f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Common functionality for PARISC32 and PARISC64 BPF JIT compilers
4  *
5  * Copyright (c) 2023 Helge Deller <deller@gmx.de>
6  *
7  */
8 
9 #ifndef _BPF_JIT_H
10 #define _BPF_JIT_H
11 
12 #include <linux/bpf.h>
13 #include <linux/filter.h>
14 #include <asm/cacheflush.h>
15 
16 #define HPPA_JIT_DEBUG	0
17 #define HPPA_JIT_REBOOT	0
18 #define HPPA_JIT_DUMP	0
19 
20 #define OPTIMIZE_HPPA	1	/* enable some asm optimizations */
21 // echo 1 > /proc/sys/net/core/bpf_jit_enable
22 
23 #define HPPA_R(nr)	nr	/* use HPPA register #nr */
24 
25 enum {
26 	HPPA_REG_ZERO =	0,	/* The constant value 0 */
27 	HPPA_REG_R1 =	1,	/* used for addil */
28 	HPPA_REG_RP =	2,	/* Return address */
29 
30 	HPPA_REG_ARG7 =	19,	/* ARG4-7 used in 64-bit ABI */
31 	HPPA_REG_ARG6 =	20,
32 	HPPA_REG_ARG5 =	21,
33 	HPPA_REG_ARG4 =	22,
34 
35 	HPPA_REG_ARG3 =	23,	/* ARG0-3 in 32- and 64-bit ABI */
36 	HPPA_REG_ARG2 =	24,
37 	HPPA_REG_ARG1 =	25,
38 	HPPA_REG_ARG0 =	26,
39 	HPPA_REG_GP =	27,	/* Global pointer */
40 	HPPA_REG_RET0 =	28,	/* Return value, HI in 32-bit */
41 	HPPA_REG_RET1 =	29,	/* Return value, LOW in 32-bit */
42 	HPPA_REG_SP =	30,	/* Stack pointer */
43 	HPPA_REG_R31 =	31,
44 
45 #ifdef CONFIG_64BIT
46 	HPPA_REG_TCC	     = 3,
47 	HPPA_REG_TCC_SAVED   = 4,
48 	HPPA_REG_TCC_IN_INIT = HPPA_REG_R31,
49 #else
50 	HPPA_REG_TCC	     = 18,
51 	HPPA_REG_TCC_SAVED   = 17,
52 	HPPA_REG_TCC_IN_INIT = HPPA_REG_R31,
53 #endif
54 
55 	HPPA_REG_T0 =	HPPA_REG_R1,	/* Temporaries */
56 	HPPA_REG_T1 =	HPPA_REG_R31,
57 	HPPA_REG_T2 =	HPPA_REG_ARG4,
58 #ifndef CONFIG_64BIT
59 	HPPA_REG_T3 =	HPPA_REG_ARG5,	/* not used in 64-bit */
60 	HPPA_REG_T4 =	HPPA_REG_ARG6,
61 	HPPA_REG_T5 =	HPPA_REG_ARG7,
62 #endif
63 };
64 
65 struct hppa_jit_context {
66 	struct bpf_prog *prog;
67 	u32 *insns;		/* HPPA insns */
68 	int ninsns;
69 	int reg_seen_collect;
70 	int reg_seen;
71 	int body_len;
72 	int epilogue_offset;
73 	int prologue_len;
74 	int *offset;		/* BPF to HPPA */
75 };
76 
77 #define REG_SET_SEEN(ctx, nr)	{ if (ctx->reg_seen_collect) ctx->reg_seen |= BIT(nr); }
78 #define REG_SET_SEEN_ALL(ctx)	{ if (ctx->reg_seen_collect) ctx->reg_seen = -1; }
79 #define REG_FORCE_SEEN(ctx, nr)	{ ctx->reg_seen |= BIT(nr); }
80 #define REG_WAS_SEEN(ctx, nr)	(ctx->reg_seen & BIT(nr))
81 #define REG_ALL_SEEN(ctx)	(ctx->reg_seen == -1)
82 
83 #define HPPA_INSN_SIZE		4	/* bytes per HPPA asm instruction */
84 #define REG_SIZE		REG_SZ	/* bytes per native "long" word */
85 
86 /* subtract hppa displacement on branches which is .+8 */
87 #define HPPA_BRANCH_DISPLACEMENT  2	/* instructions */
88 
89 /* asm statement indicator to execute delay slot */
90 #define EXEC_NEXT_INSTR	0
91 #define NOP_NEXT_INSTR	1
92 
93 #define im11(val)	(((u32)(val)) & 0x07ff)
94 
95 #define hppa_ldil(addr, reg) \
96 	hppa_t5_insn(0x08, reg, ((u32)(addr)) >> 11)		/* ldil im21,reg */
97 #define hppa_addil(addr, reg) \
98 	hppa_t5_insn(0x0a, reg, ((u32)(addr)) >> 11)		/* addil im21,reg -> result in gr1 */
99 #define hppa_ldo(im14, reg, target) \
100 	hppa_t1_insn(0x0d, reg, target, im14)			/* ldo val14(reg),target */
101 #define hppa_ldi(im14, reg) \
102 	hppa_ldo(im14, HPPA_REG_ZERO, reg)			/* ldi val14,reg */
103 #define hppa_or(reg1, reg2, target) \
104 	hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x09, target)	/* or reg1,reg2,target */
105 #define hppa_or_cond(reg1, reg2, cond, f, target) \
106 	hppa_t6_insn(0x02, reg2, reg1, cond, f, 0x09, target)
107 #define hppa_and(reg1, reg2, target) \
108 	hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x08, target)	/* and reg1,reg2,target */
109 #define hppa_and_cond(reg1, reg2, cond, f, target) \
110 	hppa_t6_insn(0x02, reg2, reg1, cond, f, 0x08, target)
111 #define hppa_xor(reg1, reg2, target) \
112 	hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x0a, target)	/* xor reg1,reg2,target */
113 #define hppa_add(reg1, reg2, target) \
114 	hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x18, target)	/* add reg1,reg2,target */
115 #define hppa_addc(reg1, reg2, target) \
116 	hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x1c, target)	/* add,c reg1,reg2,target */
117 #define hppa_sub(reg1, reg2, target) \
118 	hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x10, target)	/* sub reg1,reg2,target */
119 #define hppa_subb(reg1, reg2, target) \
120 	hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x14, target)	/* sub,b reg1,reg2,target */
121 #define hppa_nop() \
122 	hppa_or(0,0,0)						/* nop: or 0,0,0 */
123 #define hppa_addi(val11, reg, target) \
124 	hppa_t7_insn(0x2d, reg, target, val11)			/* addi im11,reg,target */
125 #define hppa_subi(val11, reg, target) \
126 	hppa_t7_insn(0x25, reg, target, val11)			/* subi im11,reg,target */
127 #define hppa_copy(reg, target) \
128 	hppa_or(reg, HPPA_REG_ZERO, target)			/* copy reg,target */
129 #define hppa_ldw(val14, reg, target) \
130 	hppa_t1_insn(0x12, reg, target, val14)			/* ldw im14(reg),target */
131 #define hppa_ldb(val14, reg, target) \
132 	hppa_t1_insn(0x10, reg, target, val14)			/* ldb im14(reg),target */
133 #define hppa_ldh(val14, reg, target) \
134 	hppa_t1_insn(0x11, reg, target, val14)			/* ldh im14(reg),target */
135 #define hppa_stw(reg, val14, base) \
136 	hppa_t1_insn(0x1a, base, reg, val14)			/* stw reg,im14(base) */
137 #define hppa_stb(reg, val14, base) \
138 	hppa_t1_insn(0x18, base, reg, val14)			/* stb reg,im14(base) */
139 #define hppa_sth(reg, val14, base) \
140 	hppa_t1_insn(0x19, base, reg, val14)			/* sth reg,im14(base) */
141 #define hppa_stwma(reg, val14, base) \
142 	hppa_t1_insn(0x1b, base, reg, val14)			/* stw,ma reg,im14(base) */
143 #define hppa_bv(reg, base, nop) \
144 	hppa_t11_insn(0x3a, base, reg, 0x06, 0, nop)		/* bv(,n) reg(base) */
145 #define hppa_be(offset, base) \
146 	hppa_t12_insn(0x38, base, offset, 0x00, 1)		/* be,n offset(0,base) */
147 #define hppa_be_l(offset, base, nop) \
148 	hppa_t12_insn(0x39, base, offset, 0x00, nop)		/* ble(,nop) offset(0,base) */
149 #define hppa_mtctl(reg, cr) \
150 	hppa_t21_insn(0x00, cr, reg, 0xc2, 0)			/* mtctl reg,cr */
151 #define hppa_mtsar(reg) \
152 	hppa_mtctl(reg, 11)					/* mtsar reg */
153 #define hppa_zdep(r, p, len, target) \
154 	hppa_t10_insn(0x35, target, r, 0, 2, p, len)		/* zdep r,a,b,t */
155 #define hppa_shl(r, len, target) \
156 	hppa_zdep(r, len, len, lo(rd))
157 #define hppa_depwz(r, p, len, target) \
158 	hppa_t10_insn(0x35, target, r, 0, 3, 31-(p), 32-(len))	/* depw,z r,p,len,ret1 */
159 #define hppa_depwz_sar(reg, target) \
160 	hppa_t1_insn(0x35, target, reg, 0)			/* depw,z reg,sar,32,target */
161 #define hppa_shrpw_sar(reg, target) \
162 	hppa_t10_insn(0x34, reg, 0, 0, 0, 0, target)		/* shrpw r0,reg,sar,target */
163 #define hppa_shrpw(r1, r2, p, target) \
164 	hppa_t10_insn(0x34, r2, r1, 0, 2, 31-(p), target)	/* shrpw r1,r2,p,target */
165 #define hppa_shd(r1, r2, p, target) \
166 	hppa_t10_insn(0x34, r2, r1, 0, 2, 31-(p), target)	/* shrpw r1,r2,p,tarfer */
167 #define hppa_extrws_sar(reg, target) \
168 	hppa_t10_insn(0x34, reg, target, 0, 5, 0, 0)		/* extrw,s reg,sar,32,ret0 */
169 #define hppa_extrws(reg, p, len, target) \
170 	hppa_t10_insn(0x34, reg, target, 0, 7, p, len)		/* extrw,s reg,p,len,target */
171 #define hppa_extru(r, p, len, target) \
172 	hppa_t10_insn(0x34, r, target, 0, 6, p, 32-(len))
173 #define hppa_shr(r, len, target) \
174 	hppa_extru(r, 31-(len), 32-(len), target)
175 #define hppa_bl(imm17, rp) \
176 	hppa_t12_insn(0x3a, rp, imm17, 0x00, 1)			/* bl,n target_addr,rp */
177 #define hppa_sh2add(r1, r2, target) \
178 	hppa_t6_insn(0x02, r2, r1, 0, 0, 0x1a, target)		/* sh2add r1,r2,target */
179 
180 #define hppa_combt(r1, r2, target_addr, condition, nop) \
181 	hppa_t11_insn(IS_ENABLED(CONFIG_64BIT) ? 0x27 : 0x20, \
182 		r2, r1, condition, target_addr, nop)		/* combt,cond,n r1,r2,addr */
183 #define hppa_beq(r1, r2, target_addr) \
184 	hppa_combt(r1, r2, target_addr, 1, NOP_NEXT_INSTR)
185 #define hppa_blt(r1, r2, target_addr) \
186 	hppa_combt(r1, r2, target_addr, 2, NOP_NEXT_INSTR)
187 #define hppa_ble(r1, r2, target_addr) \
188 	hppa_combt(r1, r2, target_addr, 3, NOP_NEXT_INSTR)
189 #define hppa_bltu(r1, r2, target_addr) \
190 	hppa_combt(r1, r2, target_addr, 4, NOP_NEXT_INSTR)
191 #define hppa_bleu(r1, r2, target_addr) \
192 	hppa_combt(r1, r2, target_addr, 5, NOP_NEXT_INSTR)
193 
194 #define hppa_combf(r1, r2, target_addr, condition, nop) \
195 	hppa_t11_insn(IS_ENABLED(CONFIG_64BIT) ? 0x2f : 0x22, \
196 		r2, r1, condition, target_addr, nop)		/* combf,cond,n r1,r2,addr */
197 #define hppa_bne(r1, r2, target_addr) \
198 	hppa_combf(r1, r2, target_addr, 1, NOP_NEXT_INSTR)
199 #define hppa_bge(r1, r2, target_addr) \
200 	hppa_combf(r1, r2, target_addr, 2, NOP_NEXT_INSTR)
201 #define hppa_bgt(r1, r2, target_addr) \
202 	hppa_combf(r1, r2, target_addr, 3, NOP_NEXT_INSTR)
203 #define hppa_bgeu(r1, r2, target_addr) \
204 	hppa_combf(r1, r2, target_addr, 4, NOP_NEXT_INSTR)
205 #define hppa_bgtu(r1, r2, target_addr) \
206 	hppa_combf(r1, r2, target_addr, 5, NOP_NEXT_INSTR)
207 
208 /* 64-bit instructions */
209 #ifdef CONFIG_64BIT
210 #define hppa64_ldd_reg(reg, b, target) \
211 	hppa_t10_insn(0x03, b, reg, 0, 0, 3<<1, target)
212 #define hppa64_ldd_im5(im5, b, target) \
213 	hppa_t10_insn(0x03, b, low_sign_unext(im5,5), 0, 1<<2, 3<<1, target)
214 #define hppa64_ldd_im16(im16, b, target) \
215 	hppa_t10_insn(0x14, b, target, 0, 0, 0, 0) | re_assemble_16(im16)
216 #define hppa64_std_im5(src, im5, b) \
217 	hppa_t10_insn(0x03, b, src, 0, 1<<2, 0xB<<1, low_sign_unext(im5,5))
218 #define hppa64_std_im16(src, im16, b) \
219 	hppa_t10_insn(0x1c, b, src, 0, 0, 0, 0) | re_assemble_16(im16)
220 #define hppa64_bl_long(offs22) \
221 	hppa_t12_L_insn(0x3a, offs22, 1)
222 #define hppa64_mtsarcm(reg) \
223 	hppa_t21_insn(0x00, 11, reg, 0xc6, 0)
224 #define hppa64_shrpd_sar(reg, target) \
225 	hppa_t10_insn(0x34, reg, 0, 0, 0, 1<<4, target)
226 #define hppa64_shladd(r1, sa, r2, target) \
227 	hppa_t6_insn(0x02, r2, r1, 0, 0, 1<<4|1<<3|sa, target)
228 #define hppa64_depdz_sar(reg, target) \
229 	hppa_t21_insn(0x35, target, reg, 3<<3, 0)
230 #define hppa_extrd_sar(reg, target, se) \
231 	hppa_t10_insn(0x34, reg, target, 0, 0, 0, 0) | 2<<11 | (se&1)<<10 | 1<<9 | 1<<8
232 #define hppa64_bve_l_rp(base) \
233 	(0x3a << 26) | (base << 21) | 0xf000
234 #define hppa64_permh_3210(r, target) \
235 	(0x3e << 26) | (r << 21) | (r << 16) | (target) | 0x00006900
236 #define hppa64_hshl(r, sa, target) \
237 	(0x3e << 26) | (0 << 21) | (r << 16) | (sa << 6) | (target) | 0x00008800
238 #define hppa64_hshr_u(r, sa, target) \
239 	(0x3e << 26) | (r << 21) | (0 << 16) | (sa << 6) | (target) | 0x0000c800
240 #endif
241 
242 struct hppa_jit_data {
243 	struct bpf_binary_header *header;
244 	u8 *image;
245 	struct hppa_jit_context ctx;
246 };
247 
248 static inline void bpf_fill_ill_insns(void *area, unsigned int size)
249 {
250 	memset(area, 0, size);
251 }
252 
253 static inline void bpf_flush_icache(void *start, void *end)
254 {
255 	flush_icache_range((unsigned long)start, (unsigned long)end);
256 }
257 
258 /* Emit a 4-byte HPPA instruction. */
259 static inline void emit(const u32 insn, struct hppa_jit_context *ctx)
260 {
261 	if (ctx->insns) {
262 		ctx->insns[ctx->ninsns] = insn;
263 	}
264 
265 	ctx->ninsns++;
266 }
267 
268 static inline int epilogue_offset(struct hppa_jit_context *ctx)
269 {
270 	int to = ctx->epilogue_offset, from = ctx->ninsns;
271 
272 	return (to - from);
273 }
274 
275 /* Return -1 or inverted cond. */
276 static inline int invert_bpf_cond(u8 cond)
277 {
278 	switch (cond) {
279 	case BPF_JEQ:
280 		return BPF_JNE;
281 	case BPF_JGT:
282 		return BPF_JLE;
283 	case BPF_JLT:
284 		return BPF_JGE;
285 	case BPF_JGE:
286 		return BPF_JLT;
287 	case BPF_JLE:
288 		return BPF_JGT;
289 	case BPF_JNE:
290 		return BPF_JEQ;
291 	case BPF_JSGT:
292 		return BPF_JSLE;
293 	case BPF_JSLT:
294 		return BPF_JSGE;
295 	case BPF_JSGE:
296 		return BPF_JSLT;
297 	case BPF_JSLE:
298 		return BPF_JSGT;
299 	}
300 	return -1;
301 }
302 
303 
304 static inline signed long hppa_offset(int insn, int off, struct hppa_jit_context *ctx)
305 {
306 	signed long from, to;
307 
308 	off++; /* BPF branch is from PC+1 */
309 	from = (insn > 0) ? ctx->offset[insn - 1] : 0;
310 	to = (insn + off > 0) ? ctx->offset[insn + off - 1] : 0;
311 	return (to - from);
312 }
313 
314 /* does the signed value fits into a given number of bits ? */
315 static inline int check_bits_int(signed long val, int bits)
316 {
317 	return	((val >= 0) && ((val >> bits) == 0)) ||
318 		 ((val < 0) && (((~((u32)val)) >> (bits-1)) == 0));
319 }
320 
321 /* can the signed value be used in relative code ? */
322 static inline int relative_bits_ok(signed long val, int bits)
323 {
324 	return	((val >= 0) && (val < (1UL << (bits-1)))) || /* XXX */
325 		 ((val < 0) && (((~((unsigned long)val)) >> (bits-1)) == 0)
326 			    && (val & (1UL << (bits-1))));
327 }
328 
329 /* can the signed value be used in relative branches ? */
330 static inline int relative_branch_ok(signed long val, int bits)
331 {
332 	return	((val >= 0) && (val < (1UL << (bits-2)))) || /* XXX */
333 		 ((val < 0) && (((~((unsigned long)val)) < (1UL << (bits-2))))
334 			    && (val & (1UL << (bits-1))));
335 }
336 
337 
338 #define is_5b_int(val)		check_bits_int(val, 5)
339 
340 static inline unsigned sign_unext(unsigned x, unsigned len)
341 {
342 	unsigned len_ones;
343 
344 	len_ones = (1 << len) - 1;
345 	return x & len_ones;
346 }
347 
348 static inline unsigned low_sign_unext(unsigned x, unsigned len)
349 {
350 	unsigned temp;
351 	unsigned sign;
352 
353 	sign = (x >> (len-1)) & 1;
354 	temp = sign_unext (x, len-1);
355 	return (temp << 1) | sign;
356 }
357 
358 static inline unsigned re_assemble_12(unsigned as12)
359 {
360 	return ((  (as12 & 0x800) >> 11)
361 		| ((as12 & 0x400) >> (10 - 2))
362 		| ((as12 & 0x3ff) << (1 + 2)));
363 }
364 
365 static inline unsigned re_assemble_14(unsigned as14)
366 {
367 	return ((  (as14 & 0x1fff) << 1)
368 		| ((as14 & 0x2000) >> 13));
369 }
370 
371 #ifdef CONFIG_64BIT
372 static inline unsigned re_assemble_16(unsigned as16)
373 {
374 	unsigned s, t;
375 
376 	/* Unusual 16-bit encoding, for wide mode only.  */
377 	t = (as16 << 1) & 0xffff;
378 	s = (as16 & 0x8000);
379 	return (t ^ s ^ (s >> 1)) | (s >> 15);
380 }
381 #endif
382 
383 static inline unsigned re_assemble_17(unsigned as17)
384 {
385 	return ((  (as17 & 0x10000) >> 16)
386 		| ((as17 & 0x0f800) << (16 - 11))
387 		| ((as17 & 0x00400) >> (10 - 2))
388 		| ((as17 & 0x003ff) << (1 + 2)));
389 }
390 
391 static inline unsigned re_assemble_21(unsigned as21)
392 {
393 	return ((  (as21 & 0x100000) >> 20)
394 		| ((as21 & 0x0ffe00) >> 8)
395 		| ((as21 & 0x000180) << 7)
396 		| ((as21 & 0x00007c) << 14)
397 		| ((as21 & 0x000003) << 12));
398 }
399 
400 static inline unsigned re_assemble_22(unsigned as22)
401 {
402 	return ((  (as22 & 0x200000) >> 21)
403 		| ((as22 & 0x1f0000) << (21 - 16))
404 		| ((as22 & 0x00f800) << (16 - 11))
405 		| ((as22 & 0x000400) >> (10 - 2))
406 		| ((as22 & 0x0003ff) << (1 + 2)));
407 }
408 
409 /* Various HPPA instruction formats. */
410 /* see https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf, appendix C */
411 
412 static inline u32 hppa_t1_insn(u8 opcode, u8 b, u8 r, s16 im14)
413 {
414 	return ((opcode << 26) | (b << 21) | (r << 16) | re_assemble_14(im14));
415 }
416 
417 static inline u32 hppa_t5_insn(u8 opcode, u8 tr, u32 val21)
418 {
419 	return ((opcode << 26) | (tr << 21) | re_assemble_21(val21));
420 }
421 
422 static inline u32 hppa_t6_insn(u8 opcode, u8 r2, u8 r1, u8 c, u8 f, u8 ext6, u16 t)
423 {
424 	return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) | (f << 12) |
425 		(ext6 << 6) | t);
426 }
427 
428 /* 7. Arithmetic immediate */
429 static inline u32 hppa_t7_insn(u8 opcode, u8 r, u8 t, u32 im11)
430 {
431 	return ((opcode << 26) | (r << 21) | (t << 16) | low_sign_unext(im11, 11));
432 }
433 
434 /* 10. Shift instructions */
435 static inline u32 hppa_t10_insn(u8 opcode, u8 r2, u8 r1, u8 c, u8 ext3, u8 cp, u8 t)
436 {
437 	return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) |
438 		(ext3 << 10) | (cp << 5) | t);
439 }
440 
441 /* 11. Conditional branch instructions */
442 static inline u32 hppa_t11_insn(u8 opcode, u8 r2, u8 r1, u8 c, u32 w, u8 nop)
443 {
444 	u32 ra = re_assemble_12(w);
445 	// ra = low_sign_unext(w,11) | (w & (1<<10)
446 	return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) | (nop << 1) | ra);
447 }
448 
449 /* 12. Branch instructions */
450 static inline u32 hppa_t12_insn(u8 opcode, u8 rp, u32 w, u8 ext3, u8 nop)
451 {
452 	return ((opcode << 26) | (rp << 21) | (ext3 << 13) | (nop << 1) | re_assemble_17(w));
453 }
454 
455 static inline u32 hppa_t12_L_insn(u8 opcode, u32 w, u8 nop)
456 {
457 	return ((opcode << 26) | (0x05 << 13) | (nop << 1) | re_assemble_22(w));
458 }
459 
460 /* 21. Move to control register */
461 static inline u32 hppa_t21_insn(u8 opcode, u8 r2, u8 r1, u8 ext8, u8 t)
462 {
463 	return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (ext8 << 5) | t);
464 }
465 
466 /* Helper functions called by jit code on HPPA32 and HPPA64. */
467 
468 u64 hppa_div64(u64 div, u64 divisor);
469 u64 hppa_div64_rem(u64 div, u64 divisor);
470 
471 /* Helper functions that emit HPPA instructions when possible. */
472 
473 void bpf_jit_build_prologue(struct hppa_jit_context *ctx);
474 void bpf_jit_build_epilogue(struct hppa_jit_context *ctx);
475 
476 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx,
477 		      bool extra_pass);
478 
479 #endif /* _BPF_JIT_H */
480