1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Common functionality for PARISC32 and PARISC64 BPF JIT compilers
4 *
5 * Copyright (c) 2023 Helge Deller <deller@gmx.de>
6 *
7 */
8
9 #ifndef _BPF_JIT_H
10 #define _BPF_JIT_H
11
12 #include <linux/bpf.h>
13 #include <linux/filter.h>
14 #include <asm/cacheflush.h>
15
16 #define HPPA_JIT_DEBUG 0
17 #define HPPA_JIT_REBOOT 0
18 #define HPPA_JIT_DUMP 0
19
20 #define OPTIMIZE_HPPA 1 /* enable some asm optimizations */
21 // echo 1 > /proc/sys/net/core/bpf_jit_enable
22
23 #define HPPA_R(nr) nr /* use HPPA register #nr */
24
25 enum {
26 HPPA_REG_ZERO = 0, /* The constant value 0 */
27 HPPA_REG_R1 = 1, /* used for addil */
28 HPPA_REG_RP = 2, /* Return address */
29
30 HPPA_REG_ARG7 = 19, /* ARG4-7 used in 64-bit ABI */
31 HPPA_REG_ARG6 = 20,
32 HPPA_REG_ARG5 = 21,
33 HPPA_REG_ARG4 = 22,
34
35 HPPA_REG_ARG3 = 23, /* ARG0-3 in 32- and 64-bit ABI */
36 HPPA_REG_ARG2 = 24,
37 HPPA_REG_ARG1 = 25,
38 HPPA_REG_ARG0 = 26,
39 HPPA_REG_GP = 27, /* Global pointer */
40 HPPA_REG_RET0 = 28, /* Return value, HI in 32-bit */
41 HPPA_REG_RET1 = 29, /* Return value, LOW in 32-bit */
42 HPPA_REG_SP = 30, /* Stack pointer */
43 HPPA_REG_R31 = 31,
44
45 #ifdef CONFIG_64BIT
46 HPPA_REG_TCC = 3,
47 HPPA_REG_TCC_SAVED = 4,
48 HPPA_REG_TCC_IN_INIT = HPPA_REG_R31,
49 #else
50 HPPA_REG_TCC = 18,
51 HPPA_REG_TCC_SAVED = 17,
52 HPPA_REG_TCC_IN_INIT = HPPA_REG_R31,
53 #endif
54
55 HPPA_REG_T0 = HPPA_REG_R1, /* Temporaries */
56 HPPA_REG_T1 = HPPA_REG_R31,
57 HPPA_REG_T2 = HPPA_REG_ARG4,
58 #ifndef CONFIG_64BIT
59 HPPA_REG_T3 = HPPA_REG_ARG5, /* not used in 64-bit */
60 HPPA_REG_T4 = HPPA_REG_ARG6,
61 HPPA_REG_T5 = HPPA_REG_ARG7,
62 #endif
63 };
64
65 struct hppa_jit_context {
66 struct bpf_prog *prog;
67 u32 *insns; /* HPPA insns */
68 int ninsns;
69 int reg_seen_collect;
70 int reg_seen;
71 int body_len;
72 int epilogue_offset;
73 int prologue_len;
74 int *offset; /* BPF to HPPA */
75 };
76
77 #define REG_SET_SEEN(ctx, nr) { if (ctx->reg_seen_collect) ctx->reg_seen |= BIT(nr); }
78 #define REG_SET_SEEN_ALL(ctx) { if (ctx->reg_seen_collect) ctx->reg_seen = -1; }
79 #define REG_FORCE_SEEN(ctx, nr) { ctx->reg_seen |= BIT(nr); }
80 #define REG_WAS_SEEN(ctx, nr) (ctx->reg_seen & BIT(nr))
81 #define REG_ALL_SEEN(ctx) (ctx->reg_seen == -1)
82
83 #define HPPA_INSN_SIZE 4 /* bytes per HPPA asm instruction */
84 #define REG_SIZE REG_SZ /* bytes per native "long" word */
85
86 /* subtract hppa displacement on branches which is .+8 */
87 #define HPPA_BRANCH_DISPLACEMENT 2 /* instructions */
88
89 /* asm statement indicator to execute delay slot */
90 #define EXEC_NEXT_INSTR 0
91 #define NOP_NEXT_INSTR 1
92
93 #define im11(val) (((u32)(val)) & 0x07ff)
94
95 #define hppa_ldil(addr, reg) \
96 hppa_t5_insn(0x08, reg, ((u32)(addr)) >> 11) /* ldil im21,reg */
97 #define hppa_addil(addr, reg) \
98 hppa_t5_insn(0x0a, reg, ((u32)(addr)) >> 11) /* addil im21,reg -> result in gr1 */
99 #define hppa_ldo(im14, reg, target) \
100 hppa_t1_insn(0x0d, reg, target, im14) /* ldo val14(reg),target */
101 #define hppa_ldi(im14, reg) \
102 hppa_ldo(im14, HPPA_REG_ZERO, reg) /* ldi val14,reg */
103 #define hppa_or(reg1, reg2, target) \
104 hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x09, target) /* or reg1,reg2,target */
105 #define hppa_or_cond(reg1, reg2, cond, f, target) \
106 hppa_t6_insn(0x02, reg2, reg1, cond, f, 0x09, target)
107 #define hppa_and(reg1, reg2, target) \
108 hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x08, target) /* and reg1,reg2,target */
109 #define hppa_and_cond(reg1, reg2, cond, f, target) \
110 hppa_t6_insn(0x02, reg2, reg1, cond, f, 0x08, target)
111 #define hppa_xor(reg1, reg2, target) \
112 hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x0a, target) /* xor reg1,reg2,target */
113 #define hppa_add(reg1, reg2, target) \
114 hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x18, target) /* add reg1,reg2,target */
115 #define hppa_addc(reg1, reg2, target) \
116 hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x1c, target) /* add,c reg1,reg2,target */
117 #define hppa_sub(reg1, reg2, target) \
118 hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x10, target) /* sub reg1,reg2,target */
119 #define hppa_subb(reg1, reg2, target) \
120 hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x14, target) /* sub,b reg1,reg2,target */
121 #define hppa_nop() \
122 hppa_or(0,0,0) /* nop: or 0,0,0 */
123 #define hppa_addi(val11, reg, target) \
124 hppa_t7_insn(0x2d, reg, target, val11) /* addi im11,reg,target */
125 #define hppa_subi(val11, reg, target) \
126 hppa_t7_insn(0x25, reg, target, val11) /* subi im11,reg,target */
127 #define hppa_copy(reg, target) \
128 hppa_or(reg, HPPA_REG_ZERO, target) /* copy reg,target */
129 #define hppa_ldw(val14, reg, target) \
130 hppa_t1_insn(0x12, reg, target, val14) /* ldw im14(reg),target */
131 #define hppa_ldb(val14, reg, target) \
132 hppa_t1_insn(0x10, reg, target, val14) /* ldb im14(reg),target */
133 #define hppa_ldh(val14, reg, target) \
134 hppa_t1_insn(0x11, reg, target, val14) /* ldh im14(reg),target */
135 #define hppa_stw(reg, val14, base) \
136 hppa_t1_insn(0x1a, base, reg, val14) /* stw reg,im14(base) */
137 #define hppa_stb(reg, val14, base) \
138 hppa_t1_insn(0x18, base, reg, val14) /* stb reg,im14(base) */
139 #define hppa_sth(reg, val14, base) \
140 hppa_t1_insn(0x19, base, reg, val14) /* sth reg,im14(base) */
141 #define hppa_stwma(reg, val14, base) \
142 hppa_t1_insn(0x1b, base, reg, val14) /* stw,ma reg,im14(base) */
143 #define hppa_bv(reg, base, nop) \
144 hppa_t11_insn(0x3a, base, reg, 0x06, 0, nop) /* bv(,n) reg(base) */
145 #define hppa_be(offset, base) \
146 hppa_t12_insn(0x38, base, offset, 0x00, 1) /* be,n offset(0,base) */
147 #define hppa_be_l(offset, base, nop) \
148 hppa_t12_insn(0x39, base, offset, 0x00, nop) /* ble(,nop) offset(0,base) */
149 #define hppa_mtctl(reg, cr) \
150 hppa_t21_insn(0x00, cr, reg, 0xc2, 0) /* mtctl reg,cr */
151 #define hppa_mtsar(reg) \
152 hppa_mtctl(reg, 11) /* mtsar reg */
153 #define hppa_zdep(r, p, len, target) \
154 hppa_t10_insn(0x35, target, r, 0, 2, p, len) /* zdep r,a,b,t */
155 #define hppa_shl(r, len, target) \
156 hppa_zdep(r, len, len, lo(rd))
157 #define hppa_depwz(r, p, len, target) \
158 hppa_t10_insn(0x35, target, r, 0, 3, 31-(p), 32-(len)) /* depw,z r,p,len,ret1 */
159 #define hppa_depwz_sar(reg, target) \
160 hppa_t1_insn(0x35, target, reg, 0) /* depw,z reg,sar,32,target */
161 #define hppa_shrpw_sar(reg, target) \
162 hppa_t10_insn(0x34, reg, 0, 0, 0, 0, target) /* shrpw r0,reg,sar,target */
163 #define hppa_shrpw(r1, r2, p, target) \
164 hppa_t10_insn(0x34, r2, r1, 0, 2, 31-(p), target) /* shrpw r1,r2,p,target */
165 #define hppa_shd(r1, r2, p, target) \
166 hppa_t10_insn(0x34, r2, r1, 0, 2, 31-(p), target) /* shrpw r1,r2,p,tarfer */
167 #define hppa_extrws_sar(reg, target) \
168 hppa_t10_insn(0x34, reg, target, 0, 5, 0, 0) /* extrw,s reg,sar,32,ret0 */
169 #define hppa_extrws(reg, p, len, target) \
170 hppa_t10_insn(0x34, reg, target, 0, 7, p, len) /* extrw,s reg,p,len,target */
171 #define hppa_extru(r, p, len, target) \
172 hppa_t10_insn(0x34, r, target, 0, 6, p, 32-(len))
173 #define hppa_shr(r, len, target) \
174 hppa_extru(r, 31-(len), 32-(len), target)
175 #define hppa_bl(imm17, rp) \
176 hppa_t12_insn(0x3a, rp, imm17, 0x00, 1) /* bl,n target_addr,rp */
177 #define hppa_sh2add(r1, r2, target) \
178 hppa_t6_insn(0x02, r2, r1, 0, 0, 0x1a, target) /* sh2add r1,r2,target */
179
180 #define hppa_combt(r1, r2, target_addr, condition, nop) \
181 hppa_t11_insn(IS_ENABLED(CONFIG_64BIT) ? 0x27 : 0x20, \
182 r2, r1, condition, target_addr, nop) /* combt,cond,n r1,r2,addr */
183 #define hppa_beq(r1, r2, target_addr) \
184 hppa_combt(r1, r2, target_addr, 1, NOP_NEXT_INSTR)
185 #define hppa_blt(r1, r2, target_addr) \
186 hppa_combt(r1, r2, target_addr, 2, NOP_NEXT_INSTR)
187 #define hppa_ble(r1, r2, target_addr) \
188 hppa_combt(r1, r2, target_addr, 3, NOP_NEXT_INSTR)
189 #define hppa_bltu(r1, r2, target_addr) \
190 hppa_combt(r1, r2, target_addr, 4, NOP_NEXT_INSTR)
191 #define hppa_bleu(r1, r2, target_addr) \
192 hppa_combt(r1, r2, target_addr, 5, NOP_NEXT_INSTR)
193
194 #define hppa_combf(r1, r2, target_addr, condition, nop) \
195 hppa_t11_insn(IS_ENABLED(CONFIG_64BIT) ? 0x2f : 0x22, \
196 r2, r1, condition, target_addr, nop) /* combf,cond,n r1,r2,addr */
197 #define hppa_bne(r1, r2, target_addr) \
198 hppa_combf(r1, r2, target_addr, 1, NOP_NEXT_INSTR)
199 #define hppa_bge(r1, r2, target_addr) \
200 hppa_combf(r1, r2, target_addr, 2, NOP_NEXT_INSTR)
201 #define hppa_bgt(r1, r2, target_addr) \
202 hppa_combf(r1, r2, target_addr, 3, NOP_NEXT_INSTR)
203 #define hppa_bgeu(r1, r2, target_addr) \
204 hppa_combf(r1, r2, target_addr, 4, NOP_NEXT_INSTR)
205 #define hppa_bgtu(r1, r2, target_addr) \
206 hppa_combf(r1, r2, target_addr, 5, NOP_NEXT_INSTR)
207
208 /* 64-bit instructions */
209 #ifdef CONFIG_64BIT
210 #define hppa64_ldd_reg(reg, b, target) \
211 hppa_t10_insn(0x03, b, reg, 0, 0, 3<<1, target)
212 #define hppa64_ldd_im5(im5, b, target) \
213 hppa_t10_insn(0x03, b, low_sign_unext(im5,5), 0, 1<<2, 3<<1, target)
214 #define hppa64_ldd_im16(im16, b, target) \
215 hppa_t10_insn(0x14, b, target, 0, 0, 0, 0) | re_assemble_16(im16)
216 #define hppa64_std_im5(src, im5, b) \
217 hppa_t10_insn(0x03, b, src, 0, 1<<2, 0xB<<1, low_sign_unext(im5,5))
218 #define hppa64_std_im16(src, im16, b) \
219 hppa_t10_insn(0x1c, b, src, 0, 0, 0, 0) | re_assemble_16(im16)
220 #define hppa64_bl_long(offs22) \
221 hppa_t12_L_insn(0x3a, offs22, 1)
222 #define hppa64_mtsarcm(reg) \
223 hppa_t21_insn(0x00, 11, reg, 0xc6, 0)
224 #define hppa64_shrpd_sar(reg, target) \
225 hppa_t10_insn(0x34, reg, 0, 0, 0, 1<<4, target)
226 #define hppa64_shladd(r1, sa, r2, target) \
227 hppa_t6_insn(0x02, r2, r1, 0, 0, 1<<4|1<<3|sa, target)
228 #define hppa64_depdz_sar(reg, target) \
229 hppa_t21_insn(0x35, target, reg, 3<<3, 0)
230 #define hppa_extrd_sar(reg, target, se) \
231 hppa_t10_insn(0x34, reg, target, 0, 0, 0, 0) | 2<<11 | (se&1)<<10 | 1<<9 | 1<<8
232 #define hppa64_bve_l_rp(base) \
233 (0x3a << 26) | (base << 21) | 0xf000
234 #define hppa64_permh_3210(r, target) \
235 (0x3e << 26) | (r << 21) | (r << 16) | (target) | 0x00006900
236 #define hppa64_hshl(r, sa, target) \
237 (0x3e << 26) | (0 << 21) | (r << 16) | (sa << 6) | (target) | 0x00008800
238 #define hppa64_hshr_u(r, sa, target) \
239 (0x3e << 26) | (r << 21) | (0 << 16) | (sa << 6) | (target) | 0x0000c800
240 #endif
241
242 struct hppa_jit_data {
243 struct bpf_binary_header *header;
244 u8 *image;
245 struct hppa_jit_context ctx;
246 };
247
bpf_fill_ill_insns(void * area,unsigned int size)248 static inline void bpf_fill_ill_insns(void *area, unsigned int size)
249 {
250 memset(area, 0, size);
251 }
252
bpf_flush_icache(void * start,void * end)253 static inline void bpf_flush_icache(void *start, void *end)
254 {
255 flush_icache_range((unsigned long)start, (unsigned long)end);
256 }
257
258 /* Emit a 4-byte HPPA instruction. */
emit(const u32 insn,struct hppa_jit_context * ctx)259 static inline void emit(const u32 insn, struct hppa_jit_context *ctx)
260 {
261 if (ctx->insns) {
262 ctx->insns[ctx->ninsns] = insn;
263 }
264
265 ctx->ninsns++;
266 }
267
epilogue_offset(struct hppa_jit_context * ctx)268 static inline int epilogue_offset(struct hppa_jit_context *ctx)
269 {
270 int to = ctx->epilogue_offset, from = ctx->ninsns;
271
272 return (to - from);
273 }
274
275 /* Return -1 or inverted cond. */
invert_bpf_cond(u8 cond)276 static inline int invert_bpf_cond(u8 cond)
277 {
278 switch (cond) {
279 case BPF_JEQ:
280 return BPF_JNE;
281 case BPF_JGT:
282 return BPF_JLE;
283 case BPF_JLT:
284 return BPF_JGE;
285 case BPF_JGE:
286 return BPF_JLT;
287 case BPF_JLE:
288 return BPF_JGT;
289 case BPF_JNE:
290 return BPF_JEQ;
291 case BPF_JSGT:
292 return BPF_JSLE;
293 case BPF_JSLT:
294 return BPF_JSGE;
295 case BPF_JSGE:
296 return BPF_JSLT;
297 case BPF_JSLE:
298 return BPF_JSGT;
299 }
300 return -1;
301 }
302
303
hppa_offset(int insn,int off,struct hppa_jit_context * ctx)304 static inline signed long hppa_offset(int insn, int off, struct hppa_jit_context *ctx)
305 {
306 signed long from, to;
307
308 off++; /* BPF branch is from PC+1 */
309 from = (insn > 0) ? ctx->offset[insn - 1] : 0;
310 to = (insn + off > 0) ? ctx->offset[insn + off - 1] : 0;
311 return (to - from);
312 }
313
314 /* does the signed value fits into a given number of bits ? */
check_bits_int(signed long val,int bits)315 static inline int check_bits_int(signed long val, int bits)
316 {
317 return ((val >= 0) && ((val >> bits) == 0)) ||
318 ((val < 0) && (((~((u32)val)) >> (bits-1)) == 0));
319 }
320
321 /* can the signed value be used in relative code ? */
relative_bits_ok(signed long val,int bits)322 static inline int relative_bits_ok(signed long val, int bits)
323 {
324 return ((val >= 0) && (val < (1UL << (bits-1)))) || /* XXX */
325 ((val < 0) && (((~((unsigned long)val)) >> (bits-1)) == 0)
326 && (val & (1UL << (bits-1))));
327 }
328
329 /* can the signed value be used in relative branches ? */
relative_branch_ok(signed long val,int bits)330 static inline int relative_branch_ok(signed long val, int bits)
331 {
332 return ((val >= 0) && (val < (1UL << (bits-2)))) || /* XXX */
333 ((val < 0) && (((~((unsigned long)val)) < (1UL << (bits-2))))
334 && (val & (1UL << (bits-1))));
335 }
336
337
338 #define is_5b_int(val) check_bits_int(val, 5)
339
sign_unext(unsigned x,unsigned len)340 static inline unsigned sign_unext(unsigned x, unsigned len)
341 {
342 unsigned len_ones;
343
344 len_ones = (1 << len) - 1;
345 return x & len_ones;
346 }
347
low_sign_unext(unsigned x,unsigned len)348 static inline unsigned low_sign_unext(unsigned x, unsigned len)
349 {
350 unsigned temp;
351 unsigned sign;
352
353 sign = (x >> (len-1)) & 1;
354 temp = sign_unext (x, len-1);
355 return (temp << 1) | sign;
356 }
357
re_assemble_12(unsigned as12)358 static inline unsigned re_assemble_12(unsigned as12)
359 {
360 return (( (as12 & 0x800) >> 11)
361 | ((as12 & 0x400) >> (10 - 2))
362 | ((as12 & 0x3ff) << (1 + 2)));
363 }
364
re_assemble_14(unsigned as14)365 static inline unsigned re_assemble_14(unsigned as14)
366 {
367 return (( (as14 & 0x1fff) << 1)
368 | ((as14 & 0x2000) >> 13));
369 }
370
371 #ifdef CONFIG_64BIT
re_assemble_16(unsigned as16)372 static inline unsigned re_assemble_16(unsigned as16)
373 {
374 unsigned s, t;
375
376 /* Unusual 16-bit encoding, for wide mode only. */
377 t = (as16 << 1) & 0xffff;
378 s = (as16 & 0x8000);
379 return (t ^ s ^ (s >> 1)) | (s >> 15);
380 }
381 #endif
382
re_assemble_17(unsigned as17)383 static inline unsigned re_assemble_17(unsigned as17)
384 {
385 return (( (as17 & 0x10000) >> 16)
386 | ((as17 & 0x0f800) << (16 - 11))
387 | ((as17 & 0x00400) >> (10 - 2))
388 | ((as17 & 0x003ff) << (1 + 2)));
389 }
390
re_assemble_21(unsigned as21)391 static inline unsigned re_assemble_21(unsigned as21)
392 {
393 return (( (as21 & 0x100000) >> 20)
394 | ((as21 & 0x0ffe00) >> 8)
395 | ((as21 & 0x000180) << 7)
396 | ((as21 & 0x00007c) << 14)
397 | ((as21 & 0x000003) << 12));
398 }
399
re_assemble_22(unsigned as22)400 static inline unsigned re_assemble_22(unsigned as22)
401 {
402 return (( (as22 & 0x200000) >> 21)
403 | ((as22 & 0x1f0000) << (21 - 16))
404 | ((as22 & 0x00f800) << (16 - 11))
405 | ((as22 & 0x000400) >> (10 - 2))
406 | ((as22 & 0x0003ff) << (1 + 2)));
407 }
408
409 /* Various HPPA instruction formats. */
410 /* see https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf, appendix C */
411
hppa_t1_insn(u8 opcode,u8 b,u8 r,s16 im14)412 static inline u32 hppa_t1_insn(u8 opcode, u8 b, u8 r, s16 im14)
413 {
414 return ((opcode << 26) | (b << 21) | (r << 16) | re_assemble_14(im14));
415 }
416
hppa_t5_insn(u8 opcode,u8 tr,u32 val21)417 static inline u32 hppa_t5_insn(u8 opcode, u8 tr, u32 val21)
418 {
419 return ((opcode << 26) | (tr << 21) | re_assemble_21(val21));
420 }
421
hppa_t6_insn(u8 opcode,u8 r2,u8 r1,u8 c,u8 f,u8 ext6,u16 t)422 static inline u32 hppa_t6_insn(u8 opcode, u8 r2, u8 r1, u8 c, u8 f, u8 ext6, u16 t)
423 {
424 return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) | (f << 12) |
425 (ext6 << 6) | t);
426 }
427
428 /* 7. Arithmetic immediate */
hppa_t7_insn(u8 opcode,u8 r,u8 t,u32 im11)429 static inline u32 hppa_t7_insn(u8 opcode, u8 r, u8 t, u32 im11)
430 {
431 return ((opcode << 26) | (r << 21) | (t << 16) | low_sign_unext(im11, 11));
432 }
433
434 /* 10. Shift instructions */
hppa_t10_insn(u8 opcode,u8 r2,u8 r1,u8 c,u8 ext3,u8 cp,u8 t)435 static inline u32 hppa_t10_insn(u8 opcode, u8 r2, u8 r1, u8 c, u8 ext3, u8 cp, u8 t)
436 {
437 return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) |
438 (ext3 << 10) | (cp << 5) | t);
439 }
440
441 /* 11. Conditional branch instructions */
hppa_t11_insn(u8 opcode,u8 r2,u8 r1,u8 c,u32 w,u8 nop)442 static inline u32 hppa_t11_insn(u8 opcode, u8 r2, u8 r1, u8 c, u32 w, u8 nop)
443 {
444 u32 ra = re_assemble_12(w);
445 // ra = low_sign_unext(w,11) | (w & (1<<10)
446 return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) | (nop << 1) | ra);
447 }
448
449 /* 12. Branch instructions */
hppa_t12_insn(u8 opcode,u8 rp,u32 w,u8 ext3,u8 nop)450 static inline u32 hppa_t12_insn(u8 opcode, u8 rp, u32 w, u8 ext3, u8 nop)
451 {
452 return ((opcode << 26) | (rp << 21) | (ext3 << 13) | (nop << 1) | re_assemble_17(w));
453 }
454
hppa_t12_L_insn(u8 opcode,u32 w,u8 nop)455 static inline u32 hppa_t12_L_insn(u8 opcode, u32 w, u8 nop)
456 {
457 return ((opcode << 26) | (0x05 << 13) | (nop << 1) | re_assemble_22(w));
458 }
459
460 /* 21. Move to control register */
hppa_t21_insn(u8 opcode,u8 r2,u8 r1,u8 ext8,u8 t)461 static inline u32 hppa_t21_insn(u8 opcode, u8 r2, u8 r1, u8 ext8, u8 t)
462 {
463 return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (ext8 << 5) | t);
464 }
465
466 /* Helper functions called by jit code on HPPA32 and HPPA64. */
467
468 u64 hppa_div64(u64 div, u64 divisor);
469 u64 hppa_div64_rem(u64 div, u64 divisor);
470
471 /* Helper functions that emit HPPA instructions when possible. */
472
473 void bpf_jit_build_prologue(struct hppa_jit_context *ctx);
474 void bpf_jit_build_epilogue(struct hppa_jit_context *ctx);
475
476 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx,
477 bool extra_pass);
478
479 #endif /* _BPF_JIT_H */
480