1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/parisc/mm/init.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright 1999 SuSE GmbH 7 * changed by Philipp Rumpf 8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 9 * Copyright 2004 Randolph Chung (tausq@debian.org) 10 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 11 * 12 */ 13 14 15 #include <linux/module.h> 16 #include <linux/mm.h> 17 #include <linux/memblock.h> 18 #include <linux/gfp.h> 19 #include <linux/delay.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages */ 26 #include <linux/compat.h> 27 28 #include <asm/pgalloc.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 #include <asm/pdc_chassis.h> 32 #include <asm/mmzone.h> 33 #include <asm/sections.h> 34 #include <asm/msgbuf.h> 35 36 extern int data_start; 37 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */ 38 39 #if CONFIG_PGTABLE_LEVELS == 3 40 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout 41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually 42 * guarantee that global objects will be laid out in memory in the same order 43 * as the order of declaration, so put these in different sections and use 44 * the linker script to order them. */ 45 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); 46 #endif 47 48 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); 49 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); 50 51 #ifdef CONFIG_DISCONTIGMEM 52 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 53 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 54 #endif 55 56 static struct resource data_resource = { 57 .name = "Kernel data", 58 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 59 }; 60 61 static struct resource code_resource = { 62 .name = "Kernel code", 63 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 64 }; 65 66 static struct resource pdcdata_resource = { 67 .name = "PDC data (Page Zero)", 68 .start = 0, 69 .end = 0x9ff, 70 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 71 }; 72 73 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 74 75 /* The following array is initialized from the firmware specific 76 * information retrieved in kernel/inventory.c. 77 */ 78 79 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 80 int npmem_ranges __read_mostly; 81 82 /* 83 * get_memblock() allocates pages via memblock. 84 * We can't use memblock_find_in_range(0, KERNEL_INITIAL_SIZE) here since it 85 * doesn't allocate from bottom to top which is needed because we only created 86 * the initial mapping up to KERNEL_INITIAL_SIZE in the assembly bootup code. 87 */ 88 static void * __init get_memblock(unsigned long size) 89 { 90 static phys_addr_t search_addr __initdata; 91 phys_addr_t phys; 92 93 if (!search_addr) 94 search_addr = PAGE_ALIGN(__pa((unsigned long) &_end)); 95 search_addr = ALIGN(search_addr, size); 96 while (!memblock_is_region_memory(search_addr, size) || 97 memblock_is_region_reserved(search_addr, size)) { 98 search_addr += size; 99 } 100 phys = search_addr; 101 102 if (phys) 103 memblock_reserve(phys, size); 104 else 105 panic("get_memblock() failed.\n"); 106 107 memset(__va(phys), 0, size); 108 109 return __va(phys); 110 } 111 112 #ifdef CONFIG_64BIT 113 #define MAX_MEM (~0UL) 114 #else /* !CONFIG_64BIT */ 115 #define MAX_MEM (3584U*1024U*1024U) 116 #endif /* !CONFIG_64BIT */ 117 118 static unsigned long mem_limit __read_mostly = MAX_MEM; 119 120 static void __init mem_limit_func(void) 121 { 122 char *cp, *end; 123 unsigned long limit; 124 125 /* We need this before __setup() functions are called */ 126 127 limit = MAX_MEM; 128 for (cp = boot_command_line; *cp; ) { 129 if (memcmp(cp, "mem=", 4) == 0) { 130 cp += 4; 131 limit = memparse(cp, &end); 132 if (end != cp) 133 break; 134 cp = end; 135 } else { 136 while (*cp != ' ' && *cp) 137 ++cp; 138 while (*cp == ' ') 139 ++cp; 140 } 141 } 142 143 if (limit < mem_limit) 144 mem_limit = limit; 145 } 146 147 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 148 149 static void __init setup_bootmem(void) 150 { 151 unsigned long mem_max; 152 #ifndef CONFIG_DISCONTIGMEM 153 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 154 int npmem_holes; 155 #endif 156 int i, sysram_resource_count; 157 158 disable_sr_hashing(); /* Turn off space register hashing */ 159 160 /* 161 * Sort the ranges. Since the number of ranges is typically 162 * small, and performance is not an issue here, just do 163 * a simple insertion sort. 164 */ 165 166 for (i = 1; i < npmem_ranges; i++) { 167 int j; 168 169 for (j = i; j > 0; j--) { 170 unsigned long tmp; 171 172 if (pmem_ranges[j-1].start_pfn < 173 pmem_ranges[j].start_pfn) { 174 175 break; 176 } 177 tmp = pmem_ranges[j-1].start_pfn; 178 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 179 pmem_ranges[j].start_pfn = tmp; 180 tmp = pmem_ranges[j-1].pages; 181 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 182 pmem_ranges[j].pages = tmp; 183 } 184 } 185 186 #ifndef CONFIG_DISCONTIGMEM 187 /* 188 * Throw out ranges that are too far apart (controlled by 189 * MAX_GAP). 190 */ 191 192 for (i = 1; i < npmem_ranges; i++) { 193 if (pmem_ranges[i].start_pfn - 194 (pmem_ranges[i-1].start_pfn + 195 pmem_ranges[i-1].pages) > MAX_GAP) { 196 npmem_ranges = i; 197 printk("Large gap in memory detected (%ld pages). " 198 "Consider turning on CONFIG_DISCONTIGMEM\n", 199 pmem_ranges[i].start_pfn - 200 (pmem_ranges[i-1].start_pfn + 201 pmem_ranges[i-1].pages)); 202 break; 203 } 204 } 205 #endif 206 207 /* Print the memory ranges */ 208 pr_info("Memory Ranges:\n"); 209 210 for (i = 0; i < npmem_ranges; i++) { 211 struct resource *res = &sysram_resources[i]; 212 unsigned long start; 213 unsigned long size; 214 215 size = (pmem_ranges[i].pages << PAGE_SHIFT); 216 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 217 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 218 i, start, start + (size - 1), size >> 20); 219 220 /* request memory resource */ 221 res->name = "System RAM"; 222 res->start = start; 223 res->end = start + size - 1; 224 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 225 request_resource(&iomem_resource, res); 226 } 227 228 sysram_resource_count = npmem_ranges; 229 230 /* 231 * For 32 bit kernels we limit the amount of memory we can 232 * support, in order to preserve enough kernel address space 233 * for other purposes. For 64 bit kernels we don't normally 234 * limit the memory, but this mechanism can be used to 235 * artificially limit the amount of memory (and it is written 236 * to work with multiple memory ranges). 237 */ 238 239 mem_limit_func(); /* check for "mem=" argument */ 240 241 mem_max = 0; 242 for (i = 0; i < npmem_ranges; i++) { 243 unsigned long rsize; 244 245 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 246 if ((mem_max + rsize) > mem_limit) { 247 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 248 if (mem_max == mem_limit) 249 npmem_ranges = i; 250 else { 251 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 252 - (mem_max >> PAGE_SHIFT); 253 npmem_ranges = i + 1; 254 mem_max = mem_limit; 255 } 256 break; 257 } 258 mem_max += rsize; 259 } 260 261 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 262 263 #ifndef CONFIG_DISCONTIGMEM 264 /* Merge the ranges, keeping track of the holes */ 265 266 { 267 unsigned long end_pfn; 268 unsigned long hole_pages; 269 270 npmem_holes = 0; 271 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 272 for (i = 1; i < npmem_ranges; i++) { 273 274 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 275 if (hole_pages) { 276 pmem_holes[npmem_holes].start_pfn = end_pfn; 277 pmem_holes[npmem_holes++].pages = hole_pages; 278 end_pfn += hole_pages; 279 } 280 end_pfn += pmem_ranges[i].pages; 281 } 282 283 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 284 npmem_ranges = 1; 285 } 286 #endif 287 288 #ifdef CONFIG_DISCONTIGMEM 289 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 290 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 291 } 292 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 293 294 for (i = 0; i < npmem_ranges; i++) { 295 node_set_state(i, N_NORMAL_MEMORY); 296 node_set_online(i); 297 } 298 #endif 299 300 /* 301 * Initialize and free the full range of memory in each range. 302 */ 303 304 max_pfn = 0; 305 for (i = 0; i < npmem_ranges; i++) { 306 unsigned long start_pfn; 307 unsigned long npages; 308 unsigned long start; 309 unsigned long size; 310 311 start_pfn = pmem_ranges[i].start_pfn; 312 npages = pmem_ranges[i].pages; 313 314 start = start_pfn << PAGE_SHIFT; 315 size = npages << PAGE_SHIFT; 316 317 /* add system RAM memblock */ 318 memblock_add(start, size); 319 320 if ((start_pfn + npages) > max_pfn) 321 max_pfn = start_pfn + npages; 322 } 323 324 /* IOMMU is always used to access "high mem" on those boxes 325 * that can support enough mem that a PCI device couldn't 326 * directly DMA to any physical addresses. 327 * ISA DMA support will need to revisit this. 328 */ 329 max_low_pfn = max_pfn; 330 331 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 332 333 #define PDC_CONSOLE_IO_IODC_SIZE 32768 334 335 memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free + 336 PDC_CONSOLE_IO_IODC_SIZE)); 337 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START), 338 (unsigned long)(_end - KERNEL_BINARY_TEXT_START)); 339 340 #ifndef CONFIG_DISCONTIGMEM 341 342 /* reserve the holes */ 343 344 for (i = 0; i < npmem_holes; i++) { 345 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT), 346 (pmem_holes[i].pages << PAGE_SHIFT)); 347 } 348 #endif 349 350 #ifdef CONFIG_BLK_DEV_INITRD 351 if (initrd_start) { 352 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 353 if (__pa(initrd_start) < mem_max) { 354 unsigned long initrd_reserve; 355 356 if (__pa(initrd_end) > mem_max) { 357 initrd_reserve = mem_max - __pa(initrd_start); 358 } else { 359 initrd_reserve = initrd_end - initrd_start; 360 } 361 initrd_below_start_ok = 1; 362 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 363 364 memblock_reserve(__pa(initrd_start), initrd_reserve); 365 } 366 } 367 #endif 368 369 data_resource.start = virt_to_phys(&data_start); 370 data_resource.end = virt_to_phys(_end) - 1; 371 code_resource.start = virt_to_phys(_text); 372 code_resource.end = virt_to_phys(&data_start)-1; 373 374 /* We don't know which region the kernel will be in, so try 375 * all of them. 376 */ 377 for (i = 0; i < sysram_resource_count; i++) { 378 struct resource *res = &sysram_resources[i]; 379 request_resource(res, &code_resource); 380 request_resource(res, &data_resource); 381 } 382 request_resource(&sysram_resources[0], &pdcdata_resource); 383 384 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */ 385 pdc_pdt_init(); 386 } 387 388 static int __init parisc_text_address(unsigned long vaddr) 389 { 390 static unsigned long head_ptr __initdata; 391 392 if (!head_ptr) 393 head_ptr = PAGE_MASK & (unsigned long) 394 dereference_function_descriptor(&parisc_kernel_start); 395 396 return core_kernel_text(vaddr) || vaddr == head_ptr; 397 } 398 399 static void __init map_pages(unsigned long start_vaddr, 400 unsigned long start_paddr, unsigned long size, 401 pgprot_t pgprot, int force) 402 { 403 pgd_t *pg_dir; 404 pmd_t *pmd; 405 pte_t *pg_table; 406 unsigned long end_paddr; 407 unsigned long start_pmd; 408 unsigned long start_pte; 409 unsigned long tmp1; 410 unsigned long tmp2; 411 unsigned long address; 412 unsigned long vaddr; 413 unsigned long ro_start; 414 unsigned long ro_end; 415 unsigned long kernel_end; 416 417 ro_start = __pa((unsigned long)_text); 418 ro_end = __pa((unsigned long)&data_start); 419 kernel_end = __pa((unsigned long)&_end); 420 421 end_paddr = start_paddr + size; 422 423 pg_dir = pgd_offset_k(start_vaddr); 424 425 #if PTRS_PER_PMD == 1 426 start_pmd = 0; 427 #else 428 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 429 #endif 430 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 431 432 address = start_paddr; 433 vaddr = start_vaddr; 434 while (address < end_paddr) { 435 #if PTRS_PER_PMD == 1 436 pmd = (pmd_t *)__pa(pg_dir); 437 #else 438 pmd = (pmd_t *)pgd_address(*pg_dir); 439 440 /* 441 * pmd is physical at this point 442 */ 443 444 if (!pmd) { 445 pmd = (pmd_t *) get_memblock(PAGE_SIZE << PMD_ORDER); 446 pmd = (pmd_t *) __pa(pmd); 447 } 448 449 pgd_populate(NULL, pg_dir, __va(pmd)); 450 #endif 451 pg_dir++; 452 453 /* now change pmd to kernel virtual addresses */ 454 455 pmd = (pmd_t *)__va(pmd) + start_pmd; 456 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 457 458 /* 459 * pg_table is physical at this point 460 */ 461 462 pg_table = (pte_t *)pmd_address(*pmd); 463 if (!pg_table) { 464 pg_table = (pte_t *) get_memblock(PAGE_SIZE); 465 pg_table = (pte_t *) __pa(pg_table); 466 } 467 468 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 469 470 /* now change pg_table to kernel virtual addresses */ 471 472 pg_table = (pte_t *) __va(pg_table) + start_pte; 473 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 474 pte_t pte; 475 476 if (force) 477 pte = __mk_pte(address, pgprot); 478 else if (parisc_text_address(vaddr)) { 479 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 480 if (address >= ro_start && address < kernel_end) 481 pte = pte_mkhuge(pte); 482 } 483 else 484 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 485 if (address >= ro_start && address < ro_end) { 486 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 487 pte = pte_mkhuge(pte); 488 } else 489 #endif 490 { 491 pte = __mk_pte(address, pgprot); 492 if (address >= ro_start && address < kernel_end) 493 pte = pte_mkhuge(pte); 494 } 495 496 if (address >= end_paddr) 497 break; 498 499 set_pte(pg_table, pte); 500 501 address += PAGE_SIZE; 502 vaddr += PAGE_SIZE; 503 } 504 start_pte = 0; 505 506 if (address >= end_paddr) 507 break; 508 } 509 start_pmd = 0; 510 } 511 } 512 513 void __init set_kernel_text_rw(int enable_read_write) 514 { 515 unsigned long start = (unsigned long)__init_begin; 516 unsigned long end = (unsigned long)_etext; 517 518 map_pages(start, __pa(start), end-start, 519 PAGE_KERNEL_RWX, enable_read_write ? 1:0); 520 521 /* force the kernel to see the new page table entries */ 522 flush_cache_all(); 523 flush_tlb_all(); 524 } 525 526 void __ref free_initmem(void) 527 { 528 unsigned long init_begin = (unsigned long)__init_begin; 529 unsigned long init_end = (unsigned long)__init_end; 530 531 /* The init text pages are marked R-X. We have to 532 * flush the icache and mark them RW- 533 * 534 * This is tricky, because map_pages is in the init section. 535 * Do a dummy remap of the data section first (the data 536 * section is already PAGE_KERNEL) to pull in the TLB entries 537 * for map_kernel */ 538 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 539 PAGE_KERNEL_RWX, 1); 540 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 541 * map_pages */ 542 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 543 PAGE_KERNEL, 1); 544 545 /* force the kernel to see the new TLB entries */ 546 __flush_tlb_range(0, init_begin, init_end); 547 548 /* finally dump all the instructions which were cached, since the 549 * pages are no-longer executable */ 550 flush_icache_range(init_begin, init_end); 551 552 free_initmem_default(POISON_FREE_INITMEM); 553 554 /* set up a new led state on systems shipped LED State panel */ 555 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 556 } 557 558 559 #ifdef CONFIG_STRICT_KERNEL_RWX 560 void mark_rodata_ro(void) 561 { 562 /* rodata memory was already mapped with KERNEL_RO access rights by 563 pagetable_init() and map_pages(). No need to do additional stuff here */ 564 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 565 (unsigned long)(__end_rodata - __start_rodata) >> 10); 566 } 567 #endif 568 569 570 /* 571 * Just an arbitrary offset to serve as a "hole" between mapping areas 572 * (between top of physical memory and a potential pcxl dma mapping 573 * area, and below the vmalloc mapping area). 574 * 575 * The current 32K value just means that there will be a 32K "hole" 576 * between mapping areas. That means that any out-of-bounds memory 577 * accesses will hopefully be caught. The vmalloc() routines leaves 578 * a hole of 4kB between each vmalloced area for the same reason. 579 */ 580 581 /* Leave room for gateway page expansion */ 582 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 583 #error KERNEL_MAP_START is in gateway reserved region 584 #endif 585 #define MAP_START (KERNEL_MAP_START) 586 587 #define VM_MAP_OFFSET (32*1024) 588 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 589 & ~(VM_MAP_OFFSET-1))) 590 591 void *parisc_vmalloc_start __read_mostly; 592 EXPORT_SYMBOL(parisc_vmalloc_start); 593 594 #ifdef CONFIG_PA11 595 unsigned long pcxl_dma_start __read_mostly; 596 #endif 597 598 void __init mem_init(void) 599 { 600 /* Do sanity checks on IPC (compat) structures */ 601 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48); 602 #ifndef CONFIG_64BIT 603 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80); 604 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104); 605 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104); 606 #endif 607 #ifdef CONFIG_COMPAT 608 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm)); 609 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80); 610 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104); 611 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104); 612 #endif 613 614 /* Do sanity checks on page table constants */ 615 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 616 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 617 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 618 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 619 > BITS_PER_LONG); 620 621 high_memory = __va((max_pfn << PAGE_SHIFT)); 622 set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1); 623 memblock_free_all(); 624 625 #ifdef CONFIG_PA11 626 if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) { 627 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 628 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 629 + PCXL_DMA_MAP_SIZE); 630 } else 631 #endif 632 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 633 634 mem_init_print_info(NULL); 635 636 #if 0 637 /* 638 * Do not expose the virtual kernel memory layout to userspace. 639 * But keep code for debugging purposes. 640 */ 641 printk("virtual kernel memory layout:\n" 642 " vmalloc : 0x%px - 0x%px (%4ld MB)\n" 643 " memory : 0x%px - 0x%px (%4ld MB)\n" 644 " .init : 0x%px - 0x%px (%4ld kB)\n" 645 " .data : 0x%px - 0x%px (%4ld kB)\n" 646 " .text : 0x%px - 0x%px (%4ld kB)\n", 647 648 (void*)VMALLOC_START, (void*)VMALLOC_END, 649 (VMALLOC_END - VMALLOC_START) >> 20, 650 651 __va(0), high_memory, 652 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 653 654 __init_begin, __init_end, 655 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 656 657 _etext, _edata, 658 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 659 660 _text, _etext, 661 ((unsigned long)_etext - (unsigned long)_text) >> 10); 662 #endif 663 } 664 665 unsigned long *empty_zero_page __read_mostly; 666 EXPORT_SYMBOL(empty_zero_page); 667 668 /* 669 * pagetable_init() sets up the page tables 670 * 671 * Note that gateway_init() places the Linux gateway page at page 0. 672 * Since gateway pages cannot be dereferenced this has the desirable 673 * side effect of trapping those pesky NULL-reference errors in the 674 * kernel. 675 */ 676 static void __init pagetable_init(void) 677 { 678 int range; 679 680 /* Map each physical memory range to its kernel vaddr */ 681 682 for (range = 0; range < npmem_ranges; range++) { 683 unsigned long start_paddr; 684 unsigned long end_paddr; 685 unsigned long size; 686 687 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 688 size = pmem_ranges[range].pages << PAGE_SHIFT; 689 end_paddr = start_paddr + size; 690 691 map_pages((unsigned long)__va(start_paddr), start_paddr, 692 size, PAGE_KERNEL, 0); 693 } 694 695 #ifdef CONFIG_BLK_DEV_INITRD 696 if (initrd_end && initrd_end > mem_limit) { 697 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 698 map_pages(initrd_start, __pa(initrd_start), 699 initrd_end - initrd_start, PAGE_KERNEL, 0); 700 } 701 #endif 702 703 empty_zero_page = get_memblock(PAGE_SIZE); 704 } 705 706 static void __init gateway_init(void) 707 { 708 unsigned long linux_gateway_page_addr; 709 /* FIXME: This is 'const' in order to trick the compiler 710 into not treating it as DP-relative data. */ 711 extern void * const linux_gateway_page; 712 713 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 714 715 /* 716 * Setup Linux Gateway page. 717 * 718 * The Linux gateway page will reside in kernel space (on virtual 719 * page 0), so it doesn't need to be aliased into user space. 720 */ 721 722 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 723 PAGE_SIZE, PAGE_GATEWAY, 1); 724 } 725 726 void __init paging_init(void) 727 { 728 int i; 729 730 setup_bootmem(); 731 pagetable_init(); 732 gateway_init(); 733 flush_cache_all_local(); /* start with known state */ 734 flush_tlb_all_local(NULL); 735 736 for (i = 0; i < npmem_ranges; i++) { 737 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 738 739 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 740 741 #ifdef CONFIG_DISCONTIGMEM 742 /* Need to initialize the pfnnid_map before we can initialize 743 the zone */ 744 { 745 int j; 746 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 747 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 748 j++) { 749 pfnnid_map[j] = i; 750 } 751 } 752 #endif 753 754 free_area_init_node(i, zones_size, 755 pmem_ranges[i].start_pfn, NULL); 756 } 757 } 758 759 #ifdef CONFIG_PA20 760 761 /* 762 * Currently, all PA20 chips have 18 bit protection IDs, which is the 763 * limiting factor (space ids are 32 bits). 764 */ 765 766 #define NR_SPACE_IDS 262144 767 768 #else 769 770 /* 771 * Currently we have a one-to-one relationship between space IDs and 772 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 773 * support 15 bit protection IDs, so that is the limiting factor. 774 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 775 * probably not worth the effort for a special case here. 776 */ 777 778 #define NR_SPACE_IDS 32768 779 780 #endif /* !CONFIG_PA20 */ 781 782 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 783 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 784 785 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 786 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 787 static unsigned long space_id_index; 788 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 789 static unsigned long dirty_space_ids = 0; 790 791 static DEFINE_SPINLOCK(sid_lock); 792 793 unsigned long alloc_sid(void) 794 { 795 unsigned long index; 796 797 spin_lock(&sid_lock); 798 799 if (free_space_ids == 0) { 800 if (dirty_space_ids != 0) { 801 spin_unlock(&sid_lock); 802 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 803 spin_lock(&sid_lock); 804 } 805 BUG_ON(free_space_ids == 0); 806 } 807 808 free_space_ids--; 809 810 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 811 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 812 space_id_index = index; 813 814 spin_unlock(&sid_lock); 815 816 return index << SPACEID_SHIFT; 817 } 818 819 void free_sid(unsigned long spaceid) 820 { 821 unsigned long index = spaceid >> SPACEID_SHIFT; 822 unsigned long *dirty_space_offset; 823 824 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 825 index &= (BITS_PER_LONG - 1); 826 827 spin_lock(&sid_lock); 828 829 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 830 831 *dirty_space_offset |= (1L << index); 832 dirty_space_ids++; 833 834 spin_unlock(&sid_lock); 835 } 836 837 838 #ifdef CONFIG_SMP 839 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 840 { 841 int i; 842 843 /* NOTE: sid_lock must be held upon entry */ 844 845 *ndirtyptr = dirty_space_ids; 846 if (dirty_space_ids != 0) { 847 for (i = 0; i < SID_ARRAY_SIZE; i++) { 848 dirty_array[i] = dirty_space_id[i]; 849 dirty_space_id[i] = 0; 850 } 851 dirty_space_ids = 0; 852 } 853 854 return; 855 } 856 857 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 858 { 859 int i; 860 861 /* NOTE: sid_lock must be held upon entry */ 862 863 if (ndirty != 0) { 864 for (i = 0; i < SID_ARRAY_SIZE; i++) { 865 space_id[i] ^= dirty_array[i]; 866 } 867 868 free_space_ids += ndirty; 869 space_id_index = 0; 870 } 871 } 872 873 #else /* CONFIG_SMP */ 874 875 static void recycle_sids(void) 876 { 877 int i; 878 879 /* NOTE: sid_lock must be held upon entry */ 880 881 if (dirty_space_ids != 0) { 882 for (i = 0; i < SID_ARRAY_SIZE; i++) { 883 space_id[i] ^= dirty_space_id[i]; 884 dirty_space_id[i] = 0; 885 } 886 887 free_space_ids += dirty_space_ids; 888 dirty_space_ids = 0; 889 space_id_index = 0; 890 } 891 } 892 #endif 893 894 /* 895 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 896 * purged, we can safely reuse the space ids that were released but 897 * not flushed from the tlb. 898 */ 899 900 #ifdef CONFIG_SMP 901 902 static unsigned long recycle_ndirty; 903 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 904 static unsigned int recycle_inuse; 905 906 void flush_tlb_all(void) 907 { 908 int do_recycle; 909 910 __inc_irq_stat(irq_tlb_count); 911 do_recycle = 0; 912 spin_lock(&sid_lock); 913 if (dirty_space_ids > RECYCLE_THRESHOLD) { 914 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 915 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 916 recycle_inuse++; 917 do_recycle++; 918 } 919 spin_unlock(&sid_lock); 920 on_each_cpu(flush_tlb_all_local, NULL, 1); 921 if (do_recycle) { 922 spin_lock(&sid_lock); 923 recycle_sids(recycle_ndirty,recycle_dirty_array); 924 recycle_inuse = 0; 925 spin_unlock(&sid_lock); 926 } 927 } 928 #else 929 void flush_tlb_all(void) 930 { 931 __inc_irq_stat(irq_tlb_count); 932 spin_lock(&sid_lock); 933 flush_tlb_all_local(NULL); 934 recycle_sids(); 935 spin_unlock(&sid_lock); 936 } 937 #endif 938 939 #ifdef CONFIG_BLK_DEV_INITRD 940 void free_initrd_mem(unsigned long start, unsigned long end) 941 { 942 free_reserved_area((void *)start, (void *)end, -1, "initrd"); 943 } 944 #endif 945