1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/gfp.h> 18 #include <linux/delay.h> 19 #include <linux/init.h> 20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 26 27 #include <asm/pgalloc.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 #include <asm/pdc_chassis.h> 31 #include <asm/mmzone.h> 32 #include <asm/sections.h> 33 34 extern int data_start; 35 36 #if PT_NLEVELS == 3 37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout 38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually 39 * guarantee that global objects will be laid out in memory in the same order 40 * as the order of declaration, so put these in different sections and use 41 * the linker script to order them. */ 42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); 43 #endif 44 45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); 46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); 47 48 #ifdef CONFIG_DISCONTIGMEM 49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 50 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 51 #endif 52 53 static struct resource data_resource = { 54 .name = "Kernel data", 55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 56 }; 57 58 static struct resource code_resource = { 59 .name = "Kernel code", 60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 61 }; 62 63 static struct resource pdcdata_resource = { 64 .name = "PDC data (Page Zero)", 65 .start = 0, 66 .end = 0x9ff, 67 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 68 }; 69 70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 71 72 /* The following array is initialized from the firmware specific 73 * information retrieved in kernel/inventory.c. 74 */ 75 76 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 77 int npmem_ranges __read_mostly; 78 79 #ifdef CONFIG_64BIT 80 #define MAX_MEM (~0UL) 81 #else /* !CONFIG_64BIT */ 82 #define MAX_MEM (3584U*1024U*1024U) 83 #endif /* !CONFIG_64BIT */ 84 85 static unsigned long mem_limit __read_mostly = MAX_MEM; 86 87 static void __init mem_limit_func(void) 88 { 89 char *cp, *end; 90 unsigned long limit; 91 92 /* We need this before __setup() functions are called */ 93 94 limit = MAX_MEM; 95 for (cp = boot_command_line; *cp; ) { 96 if (memcmp(cp, "mem=", 4) == 0) { 97 cp += 4; 98 limit = memparse(cp, &end); 99 if (end != cp) 100 break; 101 cp = end; 102 } else { 103 while (*cp != ' ' && *cp) 104 ++cp; 105 while (*cp == ' ') 106 ++cp; 107 } 108 } 109 110 if (limit < mem_limit) 111 mem_limit = limit; 112 } 113 114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 115 116 static void __init setup_bootmem(void) 117 { 118 unsigned long bootmap_size; 119 unsigned long mem_max; 120 unsigned long bootmap_pages; 121 unsigned long bootmap_start_pfn; 122 unsigned long bootmap_pfn; 123 #ifndef CONFIG_DISCONTIGMEM 124 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 125 int npmem_holes; 126 #endif 127 int i, sysram_resource_count; 128 129 disable_sr_hashing(); /* Turn off space register hashing */ 130 131 /* 132 * Sort the ranges. Since the number of ranges is typically 133 * small, and performance is not an issue here, just do 134 * a simple insertion sort. 135 */ 136 137 for (i = 1; i < npmem_ranges; i++) { 138 int j; 139 140 for (j = i; j > 0; j--) { 141 unsigned long tmp; 142 143 if (pmem_ranges[j-1].start_pfn < 144 pmem_ranges[j].start_pfn) { 145 146 break; 147 } 148 tmp = pmem_ranges[j-1].start_pfn; 149 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 150 pmem_ranges[j].start_pfn = tmp; 151 tmp = pmem_ranges[j-1].pages; 152 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 153 pmem_ranges[j].pages = tmp; 154 } 155 } 156 157 #ifndef CONFIG_DISCONTIGMEM 158 /* 159 * Throw out ranges that are too far apart (controlled by 160 * MAX_GAP). 161 */ 162 163 for (i = 1; i < npmem_ranges; i++) { 164 if (pmem_ranges[i].start_pfn - 165 (pmem_ranges[i-1].start_pfn + 166 pmem_ranges[i-1].pages) > MAX_GAP) { 167 npmem_ranges = i; 168 printk("Large gap in memory detected (%ld pages). " 169 "Consider turning on CONFIG_DISCONTIGMEM\n", 170 pmem_ranges[i].start_pfn - 171 (pmem_ranges[i-1].start_pfn + 172 pmem_ranges[i-1].pages)); 173 break; 174 } 175 } 176 #endif 177 178 if (npmem_ranges > 1) { 179 180 /* Print the memory ranges */ 181 182 printk(KERN_INFO "Memory Ranges:\n"); 183 184 for (i = 0; i < npmem_ranges; i++) { 185 unsigned long start; 186 unsigned long size; 187 188 size = (pmem_ranges[i].pages << PAGE_SHIFT); 189 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 190 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 191 i,start, start + (size - 1), size >> 20); 192 } 193 } 194 195 sysram_resource_count = npmem_ranges; 196 for (i = 0; i < sysram_resource_count; i++) { 197 struct resource *res = &sysram_resources[i]; 198 res->name = "System RAM"; 199 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 200 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 201 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 202 request_resource(&iomem_resource, res); 203 } 204 205 /* 206 * For 32 bit kernels we limit the amount of memory we can 207 * support, in order to preserve enough kernel address space 208 * for other purposes. For 64 bit kernels we don't normally 209 * limit the memory, but this mechanism can be used to 210 * artificially limit the amount of memory (and it is written 211 * to work with multiple memory ranges). 212 */ 213 214 mem_limit_func(); /* check for "mem=" argument */ 215 216 mem_max = 0; 217 num_physpages = 0; 218 for (i = 0; i < npmem_ranges; i++) { 219 unsigned long rsize; 220 221 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 222 if ((mem_max + rsize) > mem_limit) { 223 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 224 if (mem_max == mem_limit) 225 npmem_ranges = i; 226 else { 227 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 228 - (mem_max >> PAGE_SHIFT); 229 npmem_ranges = i + 1; 230 mem_max = mem_limit; 231 } 232 num_physpages += pmem_ranges[i].pages; 233 break; 234 } 235 num_physpages += pmem_ranges[i].pages; 236 mem_max += rsize; 237 } 238 239 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 240 241 #ifndef CONFIG_DISCONTIGMEM 242 /* Merge the ranges, keeping track of the holes */ 243 244 { 245 unsigned long end_pfn; 246 unsigned long hole_pages; 247 248 npmem_holes = 0; 249 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 250 for (i = 1; i < npmem_ranges; i++) { 251 252 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 253 if (hole_pages) { 254 pmem_holes[npmem_holes].start_pfn = end_pfn; 255 pmem_holes[npmem_holes++].pages = hole_pages; 256 end_pfn += hole_pages; 257 } 258 end_pfn += pmem_ranges[i].pages; 259 } 260 261 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 262 npmem_ranges = 1; 263 } 264 #endif 265 266 bootmap_pages = 0; 267 for (i = 0; i < npmem_ranges; i++) 268 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 269 270 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 271 272 #ifdef CONFIG_DISCONTIGMEM 273 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 274 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 275 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 276 } 277 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 278 279 for (i = 0; i < npmem_ranges; i++) { 280 node_set_state(i, N_NORMAL_MEMORY); 281 node_set_online(i); 282 } 283 #endif 284 285 /* 286 * Initialize and free the full range of memory in each range. 287 * Note that the only writing these routines do are to the bootmap, 288 * and we've made sure to locate the bootmap properly so that they 289 * won't be writing over anything important. 290 */ 291 292 bootmap_pfn = bootmap_start_pfn; 293 max_pfn = 0; 294 for (i = 0; i < npmem_ranges; i++) { 295 unsigned long start_pfn; 296 unsigned long npages; 297 298 start_pfn = pmem_ranges[i].start_pfn; 299 npages = pmem_ranges[i].pages; 300 301 bootmap_size = init_bootmem_node(NODE_DATA(i), 302 bootmap_pfn, 303 start_pfn, 304 (start_pfn + npages) ); 305 free_bootmem_node(NODE_DATA(i), 306 (start_pfn << PAGE_SHIFT), 307 (npages << PAGE_SHIFT) ); 308 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 309 if ((start_pfn + npages) > max_pfn) 310 max_pfn = start_pfn + npages; 311 } 312 313 /* IOMMU is always used to access "high mem" on those boxes 314 * that can support enough mem that a PCI device couldn't 315 * directly DMA to any physical addresses. 316 * ISA DMA support will need to revisit this. 317 */ 318 max_low_pfn = max_pfn; 319 320 /* bootmap sizing messed up? */ 321 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 322 323 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 324 325 #define PDC_CONSOLE_IO_IODC_SIZE 32768 326 327 reserve_bootmem_node(NODE_DATA(0), 0UL, 328 (unsigned long)(PAGE0->mem_free + 329 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 330 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 331 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 332 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 333 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 334 BOOTMEM_DEFAULT); 335 336 #ifndef CONFIG_DISCONTIGMEM 337 338 /* reserve the holes */ 339 340 for (i = 0; i < npmem_holes; i++) { 341 reserve_bootmem_node(NODE_DATA(0), 342 (pmem_holes[i].start_pfn << PAGE_SHIFT), 343 (pmem_holes[i].pages << PAGE_SHIFT), 344 BOOTMEM_DEFAULT); 345 } 346 #endif 347 348 #ifdef CONFIG_BLK_DEV_INITRD 349 if (initrd_start) { 350 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 351 if (__pa(initrd_start) < mem_max) { 352 unsigned long initrd_reserve; 353 354 if (__pa(initrd_end) > mem_max) { 355 initrd_reserve = mem_max - __pa(initrd_start); 356 } else { 357 initrd_reserve = initrd_end - initrd_start; 358 } 359 initrd_below_start_ok = 1; 360 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 361 362 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 363 initrd_reserve, BOOTMEM_DEFAULT); 364 } 365 } 366 #endif 367 368 data_resource.start = virt_to_phys(&data_start); 369 data_resource.end = virt_to_phys(_end) - 1; 370 code_resource.start = virt_to_phys(_text); 371 code_resource.end = virt_to_phys(&data_start)-1; 372 373 /* We don't know which region the kernel will be in, so try 374 * all of them. 375 */ 376 for (i = 0; i < sysram_resource_count; i++) { 377 struct resource *res = &sysram_resources[i]; 378 request_resource(res, &code_resource); 379 request_resource(res, &data_resource); 380 } 381 request_resource(&sysram_resources[0], &pdcdata_resource); 382 } 383 384 static void __init map_pages(unsigned long start_vaddr, 385 unsigned long start_paddr, unsigned long size, 386 pgprot_t pgprot, int force) 387 { 388 pgd_t *pg_dir; 389 pmd_t *pmd; 390 pte_t *pg_table; 391 unsigned long end_paddr; 392 unsigned long start_pmd; 393 unsigned long start_pte; 394 unsigned long tmp1; 395 unsigned long tmp2; 396 unsigned long address; 397 unsigned long vaddr; 398 unsigned long ro_start; 399 unsigned long ro_end; 400 unsigned long fv_addr; 401 unsigned long gw_addr; 402 extern const unsigned long fault_vector_20; 403 extern void * const linux_gateway_page; 404 405 ro_start = __pa((unsigned long)_text); 406 ro_end = __pa((unsigned long)&data_start); 407 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 408 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 409 410 end_paddr = start_paddr + size; 411 412 pg_dir = pgd_offset_k(start_vaddr); 413 414 #if PTRS_PER_PMD == 1 415 start_pmd = 0; 416 #else 417 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 418 #endif 419 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 420 421 address = start_paddr; 422 vaddr = start_vaddr; 423 while (address < end_paddr) { 424 #if PTRS_PER_PMD == 1 425 pmd = (pmd_t *)__pa(pg_dir); 426 #else 427 pmd = (pmd_t *)pgd_address(*pg_dir); 428 429 /* 430 * pmd is physical at this point 431 */ 432 433 if (!pmd) { 434 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER); 435 pmd = (pmd_t *) __pa(pmd); 436 } 437 438 pgd_populate(NULL, pg_dir, __va(pmd)); 439 #endif 440 pg_dir++; 441 442 /* now change pmd to kernel virtual addresses */ 443 444 pmd = (pmd_t *)__va(pmd) + start_pmd; 445 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 446 447 /* 448 * pg_table is physical at this point 449 */ 450 451 pg_table = (pte_t *)pmd_address(*pmd); 452 if (!pg_table) { 453 pg_table = (pte_t *) 454 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE); 455 pg_table = (pte_t *) __pa(pg_table); 456 } 457 458 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 459 460 /* now change pg_table to kernel virtual addresses */ 461 462 pg_table = (pte_t *) __va(pg_table) + start_pte; 463 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 464 pte_t pte; 465 466 /* 467 * Map the fault vector writable so we can 468 * write the HPMC checksum. 469 */ 470 if (force) 471 pte = __mk_pte(address, pgprot); 472 else if (core_kernel_text(vaddr) && 473 address != fv_addr) 474 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 475 else 476 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 477 if (address >= ro_start && address < ro_end 478 && address != fv_addr 479 && address != gw_addr) 480 pte = __mk_pte(address, PAGE_KERNEL_RO); 481 else 482 #endif 483 pte = __mk_pte(address, pgprot); 484 485 if (address >= end_paddr) { 486 if (force) 487 break; 488 else 489 pte_val(pte) = 0; 490 } 491 492 set_pte(pg_table, pte); 493 494 address += PAGE_SIZE; 495 vaddr += PAGE_SIZE; 496 } 497 start_pte = 0; 498 499 if (address >= end_paddr) 500 break; 501 } 502 start_pmd = 0; 503 } 504 } 505 506 void free_initmem(void) 507 { 508 unsigned long init_begin = (unsigned long)__init_begin; 509 unsigned long init_end = (unsigned long)__init_end; 510 511 /* The init text pages are marked R-X. We have to 512 * flush the icache and mark them RW- 513 * 514 * This is tricky, because map_pages is in the init section. 515 * Do a dummy remap of the data section first (the data 516 * section is already PAGE_KERNEL) to pull in the TLB entries 517 * for map_kernel */ 518 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 519 PAGE_KERNEL_RWX, 1); 520 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 521 * map_pages */ 522 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 523 PAGE_KERNEL, 1); 524 525 /* force the kernel to see the new TLB entries */ 526 __flush_tlb_range(0, init_begin, init_end); 527 /* Attempt to catch anyone trying to execute code here 528 * by filling the page with BRK insns. 529 */ 530 memset((void *)init_begin, 0x00, init_end - init_begin); 531 /* finally dump all the instructions which were cached, since the 532 * pages are no-longer executable */ 533 flush_icache_range(init_begin, init_end); 534 535 num_physpages += free_initmem_default(0); 536 537 /* set up a new led state on systems shipped LED State panel */ 538 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 539 } 540 541 542 #ifdef CONFIG_DEBUG_RODATA 543 void mark_rodata_ro(void) 544 { 545 /* rodata memory was already mapped with KERNEL_RO access rights by 546 pagetable_init() and map_pages(). No need to do additional stuff here */ 547 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 548 (unsigned long)(__end_rodata - __start_rodata) >> 10); 549 } 550 #endif 551 552 553 /* 554 * Just an arbitrary offset to serve as a "hole" between mapping areas 555 * (between top of physical memory and a potential pcxl dma mapping 556 * area, and below the vmalloc mapping area). 557 * 558 * The current 32K value just means that there will be a 32K "hole" 559 * between mapping areas. That means that any out-of-bounds memory 560 * accesses will hopefully be caught. The vmalloc() routines leaves 561 * a hole of 4kB between each vmalloced area for the same reason. 562 */ 563 564 /* Leave room for gateway page expansion */ 565 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 566 #error KERNEL_MAP_START is in gateway reserved region 567 #endif 568 #define MAP_START (KERNEL_MAP_START) 569 570 #define VM_MAP_OFFSET (32*1024) 571 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 572 & ~(VM_MAP_OFFSET-1))) 573 574 void *parisc_vmalloc_start __read_mostly; 575 EXPORT_SYMBOL(parisc_vmalloc_start); 576 577 #ifdef CONFIG_PA11 578 unsigned long pcxl_dma_start __read_mostly; 579 #endif 580 581 void __init mem_init(void) 582 { 583 int codesize, reservedpages, datasize, initsize; 584 585 /* Do sanity checks on page table constants */ 586 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 587 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 588 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 589 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 590 > BITS_PER_LONG); 591 592 high_memory = __va((max_pfn << PAGE_SHIFT)); 593 594 #ifndef CONFIG_DISCONTIGMEM 595 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 596 totalram_pages += free_all_bootmem(); 597 #else 598 { 599 int i; 600 601 for (i = 0; i < npmem_ranges; i++) 602 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 603 } 604 #endif 605 606 codesize = (unsigned long)_etext - (unsigned long)_text; 607 datasize = (unsigned long)_edata - (unsigned long)_etext; 608 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 609 610 reservedpages = 0; 611 { 612 unsigned long pfn; 613 #ifdef CONFIG_DISCONTIGMEM 614 int i; 615 616 for (i = 0; i < npmem_ranges; i++) { 617 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 618 if (PageReserved(pfn_to_page(pfn))) 619 reservedpages++; 620 } 621 } 622 #else /* !CONFIG_DISCONTIGMEM */ 623 for (pfn = 0; pfn < max_pfn; pfn++) { 624 /* 625 * Only count reserved RAM pages 626 */ 627 if (PageReserved(pfn_to_page(pfn))) 628 reservedpages++; 629 } 630 #endif 631 } 632 633 #ifdef CONFIG_PA11 634 if (hppa_dma_ops == &pcxl_dma_ops) { 635 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 636 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 637 + PCXL_DMA_MAP_SIZE); 638 } else { 639 pcxl_dma_start = 0; 640 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 641 } 642 #else 643 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 644 #endif 645 646 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 647 nr_free_pages() << (PAGE_SHIFT-10), 648 num_physpages << (PAGE_SHIFT-10), 649 codesize >> 10, 650 reservedpages << (PAGE_SHIFT-10), 651 datasize >> 10, 652 initsize >> 10 653 ); 654 655 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 656 printk("virtual kernel memory layout:\n" 657 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 658 " memory : 0x%p - 0x%p (%4ld MB)\n" 659 " .init : 0x%p - 0x%p (%4ld kB)\n" 660 " .data : 0x%p - 0x%p (%4ld kB)\n" 661 " .text : 0x%p - 0x%p (%4ld kB)\n", 662 663 (void*)VMALLOC_START, (void*)VMALLOC_END, 664 (VMALLOC_END - VMALLOC_START) >> 20, 665 666 __va(0), high_memory, 667 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 668 669 __init_begin, __init_end, 670 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 671 672 _etext, _edata, 673 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 674 675 _text, _etext, 676 ((unsigned long)_etext - (unsigned long)_text) >> 10); 677 #endif 678 } 679 680 unsigned long *empty_zero_page __read_mostly; 681 EXPORT_SYMBOL(empty_zero_page); 682 683 void show_mem(unsigned int filter) 684 { 685 int i,free = 0,total = 0,reserved = 0; 686 int shared = 0, cached = 0; 687 688 printk(KERN_INFO "Mem-info:\n"); 689 show_free_areas(filter); 690 if (filter & SHOW_MEM_FILTER_PAGE_COUNT) 691 return; 692 #ifndef CONFIG_DISCONTIGMEM 693 i = max_mapnr; 694 while (i-- > 0) { 695 total++; 696 if (PageReserved(mem_map+i)) 697 reserved++; 698 else if (PageSwapCache(mem_map+i)) 699 cached++; 700 else if (!page_count(&mem_map[i])) 701 free++; 702 else 703 shared += page_count(&mem_map[i]) - 1; 704 } 705 #else 706 for (i = 0; i < npmem_ranges; i++) { 707 int j; 708 709 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 710 struct page *p; 711 unsigned long flags; 712 713 pgdat_resize_lock(NODE_DATA(i), &flags); 714 p = nid_page_nr(i, j) - node_start_pfn(i); 715 716 total++; 717 if (PageReserved(p)) 718 reserved++; 719 else if (PageSwapCache(p)) 720 cached++; 721 else if (!page_count(p)) 722 free++; 723 else 724 shared += page_count(p) - 1; 725 pgdat_resize_unlock(NODE_DATA(i), &flags); 726 } 727 } 728 #endif 729 printk(KERN_INFO "%d pages of RAM\n", total); 730 printk(KERN_INFO "%d reserved pages\n", reserved); 731 printk(KERN_INFO "%d pages shared\n", shared); 732 printk(KERN_INFO "%d pages swap cached\n", cached); 733 734 735 #ifdef CONFIG_DISCONTIGMEM 736 { 737 struct zonelist *zl; 738 int i, j; 739 740 for (i = 0; i < npmem_ranges; i++) { 741 zl = node_zonelist(i, 0); 742 for (j = 0; j < MAX_NR_ZONES; j++) { 743 struct zoneref *z; 744 struct zone *zone; 745 746 printk("Zone list for zone %d on node %d: ", j, i); 747 for_each_zone_zonelist(zone, z, zl, j) 748 printk("[%d/%s] ", zone_to_nid(zone), 749 zone->name); 750 printk("\n"); 751 } 752 } 753 } 754 #endif 755 } 756 757 /* 758 * pagetable_init() sets up the page tables 759 * 760 * Note that gateway_init() places the Linux gateway page at page 0. 761 * Since gateway pages cannot be dereferenced this has the desirable 762 * side effect of trapping those pesky NULL-reference errors in the 763 * kernel. 764 */ 765 static void __init pagetable_init(void) 766 { 767 int range; 768 769 /* Map each physical memory range to its kernel vaddr */ 770 771 for (range = 0; range < npmem_ranges; range++) { 772 unsigned long start_paddr; 773 unsigned long end_paddr; 774 unsigned long size; 775 776 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 777 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 778 size = pmem_ranges[range].pages << PAGE_SHIFT; 779 780 map_pages((unsigned long)__va(start_paddr), start_paddr, 781 size, PAGE_KERNEL, 0); 782 } 783 784 #ifdef CONFIG_BLK_DEV_INITRD 785 if (initrd_end && initrd_end > mem_limit) { 786 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 787 map_pages(initrd_start, __pa(initrd_start), 788 initrd_end - initrd_start, PAGE_KERNEL, 0); 789 } 790 #endif 791 792 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 793 memset(empty_zero_page, 0, PAGE_SIZE); 794 } 795 796 static void __init gateway_init(void) 797 { 798 unsigned long linux_gateway_page_addr; 799 /* FIXME: This is 'const' in order to trick the compiler 800 into not treating it as DP-relative data. */ 801 extern void * const linux_gateway_page; 802 803 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 804 805 /* 806 * Setup Linux Gateway page. 807 * 808 * The Linux gateway page will reside in kernel space (on virtual 809 * page 0), so it doesn't need to be aliased into user space. 810 */ 811 812 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 813 PAGE_SIZE, PAGE_GATEWAY, 1); 814 } 815 816 #ifdef CONFIG_HPUX 817 void 818 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 819 { 820 pgd_t *pg_dir; 821 pmd_t *pmd; 822 pte_t *pg_table; 823 unsigned long start_pmd; 824 unsigned long start_pte; 825 unsigned long address; 826 unsigned long hpux_gw_page_addr; 827 /* FIXME: This is 'const' in order to trick the compiler 828 into not treating it as DP-relative data. */ 829 extern void * const hpux_gateway_page; 830 831 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 832 833 /* 834 * Setup HP-UX Gateway page. 835 * 836 * The HP-UX gateway page resides in the user address space, 837 * so it needs to be aliased into each process. 838 */ 839 840 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 841 842 #if PTRS_PER_PMD == 1 843 start_pmd = 0; 844 #else 845 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 846 #endif 847 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 848 849 address = __pa(&hpux_gateway_page); 850 #if PTRS_PER_PMD == 1 851 pmd = (pmd_t *)__pa(pg_dir); 852 #else 853 pmd = (pmd_t *) pgd_address(*pg_dir); 854 855 /* 856 * pmd is physical at this point 857 */ 858 859 if (!pmd) { 860 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 861 pmd = (pmd_t *) __pa(pmd); 862 } 863 864 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 865 #endif 866 /* now change pmd to kernel virtual addresses */ 867 868 pmd = (pmd_t *)__va(pmd) + start_pmd; 869 870 /* 871 * pg_table is physical at this point 872 */ 873 874 pg_table = (pte_t *) pmd_address(*pmd); 875 if (!pg_table) 876 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 877 878 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 879 880 /* now change pg_table to kernel virtual addresses */ 881 882 pg_table = (pte_t *) __va(pg_table) + start_pte; 883 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 884 } 885 EXPORT_SYMBOL(map_hpux_gateway_page); 886 #endif 887 888 void __init paging_init(void) 889 { 890 int i; 891 892 setup_bootmem(); 893 pagetable_init(); 894 gateway_init(); 895 flush_cache_all_local(); /* start with known state */ 896 flush_tlb_all_local(NULL); 897 898 for (i = 0; i < npmem_ranges; i++) { 899 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 900 901 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 902 903 #ifdef CONFIG_DISCONTIGMEM 904 /* Need to initialize the pfnnid_map before we can initialize 905 the zone */ 906 { 907 int j; 908 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 909 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 910 j++) { 911 pfnnid_map[j] = i; 912 } 913 } 914 #endif 915 916 free_area_init_node(i, zones_size, 917 pmem_ranges[i].start_pfn, NULL); 918 } 919 } 920 921 #ifdef CONFIG_PA20 922 923 /* 924 * Currently, all PA20 chips have 18 bit protection IDs, which is the 925 * limiting factor (space ids are 32 bits). 926 */ 927 928 #define NR_SPACE_IDS 262144 929 930 #else 931 932 /* 933 * Currently we have a one-to-one relationship between space IDs and 934 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 935 * support 15 bit protection IDs, so that is the limiting factor. 936 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 937 * probably not worth the effort for a special case here. 938 */ 939 940 #define NR_SPACE_IDS 32768 941 942 #endif /* !CONFIG_PA20 */ 943 944 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 945 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 946 947 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 948 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 949 static unsigned long space_id_index; 950 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 951 static unsigned long dirty_space_ids = 0; 952 953 static DEFINE_SPINLOCK(sid_lock); 954 955 unsigned long alloc_sid(void) 956 { 957 unsigned long index; 958 959 spin_lock(&sid_lock); 960 961 if (free_space_ids == 0) { 962 if (dirty_space_ids != 0) { 963 spin_unlock(&sid_lock); 964 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 965 spin_lock(&sid_lock); 966 } 967 BUG_ON(free_space_ids == 0); 968 } 969 970 free_space_ids--; 971 972 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 973 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 974 space_id_index = index; 975 976 spin_unlock(&sid_lock); 977 978 return index << SPACEID_SHIFT; 979 } 980 981 void free_sid(unsigned long spaceid) 982 { 983 unsigned long index = spaceid >> SPACEID_SHIFT; 984 unsigned long *dirty_space_offset; 985 986 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 987 index &= (BITS_PER_LONG - 1); 988 989 spin_lock(&sid_lock); 990 991 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 992 993 *dirty_space_offset |= (1L << index); 994 dirty_space_ids++; 995 996 spin_unlock(&sid_lock); 997 } 998 999 1000 #ifdef CONFIG_SMP 1001 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 1002 { 1003 int i; 1004 1005 /* NOTE: sid_lock must be held upon entry */ 1006 1007 *ndirtyptr = dirty_space_ids; 1008 if (dirty_space_ids != 0) { 1009 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1010 dirty_array[i] = dirty_space_id[i]; 1011 dirty_space_id[i] = 0; 1012 } 1013 dirty_space_ids = 0; 1014 } 1015 1016 return; 1017 } 1018 1019 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 1020 { 1021 int i; 1022 1023 /* NOTE: sid_lock must be held upon entry */ 1024 1025 if (ndirty != 0) { 1026 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1027 space_id[i] ^= dirty_array[i]; 1028 } 1029 1030 free_space_ids += ndirty; 1031 space_id_index = 0; 1032 } 1033 } 1034 1035 #else /* CONFIG_SMP */ 1036 1037 static void recycle_sids(void) 1038 { 1039 int i; 1040 1041 /* NOTE: sid_lock must be held upon entry */ 1042 1043 if (dirty_space_ids != 0) { 1044 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1045 space_id[i] ^= dirty_space_id[i]; 1046 dirty_space_id[i] = 0; 1047 } 1048 1049 free_space_ids += dirty_space_ids; 1050 dirty_space_ids = 0; 1051 space_id_index = 0; 1052 } 1053 } 1054 #endif 1055 1056 /* 1057 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1058 * purged, we can safely reuse the space ids that were released but 1059 * not flushed from the tlb. 1060 */ 1061 1062 #ifdef CONFIG_SMP 1063 1064 static unsigned long recycle_ndirty; 1065 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1066 static unsigned int recycle_inuse; 1067 1068 void flush_tlb_all(void) 1069 { 1070 int do_recycle; 1071 1072 inc_irq_stat(irq_tlb_count); 1073 do_recycle = 0; 1074 spin_lock(&sid_lock); 1075 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1076 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1077 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1078 recycle_inuse++; 1079 do_recycle++; 1080 } 1081 spin_unlock(&sid_lock); 1082 on_each_cpu(flush_tlb_all_local, NULL, 1); 1083 if (do_recycle) { 1084 spin_lock(&sid_lock); 1085 recycle_sids(recycle_ndirty,recycle_dirty_array); 1086 recycle_inuse = 0; 1087 spin_unlock(&sid_lock); 1088 } 1089 } 1090 #else 1091 void flush_tlb_all(void) 1092 { 1093 inc_irq_stat(irq_tlb_count); 1094 spin_lock(&sid_lock); 1095 flush_tlb_all_local(NULL); 1096 recycle_sids(); 1097 spin_unlock(&sid_lock); 1098 } 1099 #endif 1100 1101 #ifdef CONFIG_BLK_DEV_INITRD 1102 void free_initrd_mem(unsigned long start, unsigned long end) 1103 { 1104 num_physpages += free_reserved_area(start, end, 0, "initrd"); 1105 } 1106 #endif 1107