1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/gfp.h> 18 #include <linux/delay.h> 19 #include <linux/init.h> 20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages */ 26 #include <linux/compat.h> 27 28 #include <asm/pgalloc.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 #include <asm/pdc_chassis.h> 32 #include <asm/mmzone.h> 33 #include <asm/sections.h> 34 #include <asm/msgbuf.h> 35 36 extern int data_start; 37 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */ 38 39 #if CONFIG_PGTABLE_LEVELS == 3 40 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout 41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually 42 * guarantee that global objects will be laid out in memory in the same order 43 * as the order of declaration, so put these in different sections and use 44 * the linker script to order them. */ 45 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); 46 #endif 47 48 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); 49 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); 50 51 #ifdef CONFIG_DISCONTIGMEM 52 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 53 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 54 #endif 55 56 static struct resource data_resource = { 57 .name = "Kernel data", 58 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 59 }; 60 61 static struct resource code_resource = { 62 .name = "Kernel code", 63 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 64 }; 65 66 static struct resource pdcdata_resource = { 67 .name = "PDC data (Page Zero)", 68 .start = 0, 69 .end = 0x9ff, 70 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 71 }; 72 73 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 74 75 /* The following array is initialized from the firmware specific 76 * information retrieved in kernel/inventory.c. 77 */ 78 79 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 80 int npmem_ranges __read_mostly; 81 82 #ifdef CONFIG_64BIT 83 #define MAX_MEM (~0UL) 84 #else /* !CONFIG_64BIT */ 85 #define MAX_MEM (3584U*1024U*1024U) 86 #endif /* !CONFIG_64BIT */ 87 88 static unsigned long mem_limit __read_mostly = MAX_MEM; 89 90 static void __init mem_limit_func(void) 91 { 92 char *cp, *end; 93 unsigned long limit; 94 95 /* We need this before __setup() functions are called */ 96 97 limit = MAX_MEM; 98 for (cp = boot_command_line; *cp; ) { 99 if (memcmp(cp, "mem=", 4) == 0) { 100 cp += 4; 101 limit = memparse(cp, &end); 102 if (end != cp) 103 break; 104 cp = end; 105 } else { 106 while (*cp != ' ' && *cp) 107 ++cp; 108 while (*cp == ' ') 109 ++cp; 110 } 111 } 112 113 if (limit < mem_limit) 114 mem_limit = limit; 115 } 116 117 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 118 119 static void __init setup_bootmem(void) 120 { 121 unsigned long bootmap_size; 122 unsigned long mem_max; 123 unsigned long bootmap_pages; 124 unsigned long bootmap_start_pfn; 125 unsigned long bootmap_pfn; 126 #ifndef CONFIG_DISCONTIGMEM 127 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 128 int npmem_holes; 129 #endif 130 int i, sysram_resource_count; 131 132 disable_sr_hashing(); /* Turn off space register hashing */ 133 134 /* 135 * Sort the ranges. Since the number of ranges is typically 136 * small, and performance is not an issue here, just do 137 * a simple insertion sort. 138 */ 139 140 for (i = 1; i < npmem_ranges; i++) { 141 int j; 142 143 for (j = i; j > 0; j--) { 144 unsigned long tmp; 145 146 if (pmem_ranges[j-1].start_pfn < 147 pmem_ranges[j].start_pfn) { 148 149 break; 150 } 151 tmp = pmem_ranges[j-1].start_pfn; 152 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 153 pmem_ranges[j].start_pfn = tmp; 154 tmp = pmem_ranges[j-1].pages; 155 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 156 pmem_ranges[j].pages = tmp; 157 } 158 } 159 160 #ifndef CONFIG_DISCONTIGMEM 161 /* 162 * Throw out ranges that are too far apart (controlled by 163 * MAX_GAP). 164 */ 165 166 for (i = 1; i < npmem_ranges; i++) { 167 if (pmem_ranges[i].start_pfn - 168 (pmem_ranges[i-1].start_pfn + 169 pmem_ranges[i-1].pages) > MAX_GAP) { 170 npmem_ranges = i; 171 printk("Large gap in memory detected (%ld pages). " 172 "Consider turning on CONFIG_DISCONTIGMEM\n", 173 pmem_ranges[i].start_pfn - 174 (pmem_ranges[i-1].start_pfn + 175 pmem_ranges[i-1].pages)); 176 break; 177 } 178 } 179 #endif 180 181 if (npmem_ranges > 1) { 182 183 /* Print the memory ranges */ 184 185 printk(KERN_INFO "Memory Ranges:\n"); 186 187 for (i = 0; i < npmem_ranges; i++) { 188 unsigned long start; 189 unsigned long size; 190 191 size = (pmem_ranges[i].pages << PAGE_SHIFT); 192 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 193 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 194 i,start, start + (size - 1), size >> 20); 195 } 196 } 197 198 sysram_resource_count = npmem_ranges; 199 for (i = 0; i < sysram_resource_count; i++) { 200 struct resource *res = &sysram_resources[i]; 201 res->name = "System RAM"; 202 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 203 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 204 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 205 request_resource(&iomem_resource, res); 206 } 207 208 /* 209 * For 32 bit kernels we limit the amount of memory we can 210 * support, in order to preserve enough kernel address space 211 * for other purposes. For 64 bit kernels we don't normally 212 * limit the memory, but this mechanism can be used to 213 * artificially limit the amount of memory (and it is written 214 * to work with multiple memory ranges). 215 */ 216 217 mem_limit_func(); /* check for "mem=" argument */ 218 219 mem_max = 0; 220 for (i = 0; i < npmem_ranges; i++) { 221 unsigned long rsize; 222 223 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 224 if ((mem_max + rsize) > mem_limit) { 225 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 226 if (mem_max == mem_limit) 227 npmem_ranges = i; 228 else { 229 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 230 - (mem_max >> PAGE_SHIFT); 231 npmem_ranges = i + 1; 232 mem_max = mem_limit; 233 } 234 break; 235 } 236 mem_max += rsize; 237 } 238 239 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 240 241 #ifndef CONFIG_DISCONTIGMEM 242 /* Merge the ranges, keeping track of the holes */ 243 244 { 245 unsigned long end_pfn; 246 unsigned long hole_pages; 247 248 npmem_holes = 0; 249 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 250 for (i = 1; i < npmem_ranges; i++) { 251 252 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 253 if (hole_pages) { 254 pmem_holes[npmem_holes].start_pfn = end_pfn; 255 pmem_holes[npmem_holes++].pages = hole_pages; 256 end_pfn += hole_pages; 257 } 258 end_pfn += pmem_ranges[i].pages; 259 } 260 261 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 262 npmem_ranges = 1; 263 } 264 #endif 265 266 bootmap_pages = 0; 267 for (i = 0; i < npmem_ranges; i++) 268 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 269 270 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 271 272 #ifdef CONFIG_DISCONTIGMEM 273 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 274 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 275 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 276 } 277 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 278 279 for (i = 0; i < npmem_ranges; i++) { 280 node_set_state(i, N_NORMAL_MEMORY); 281 node_set_online(i); 282 } 283 #endif 284 285 /* 286 * Initialize and free the full range of memory in each range. 287 * Note that the only writing these routines do are to the bootmap, 288 * and we've made sure to locate the bootmap properly so that they 289 * won't be writing over anything important. 290 */ 291 292 bootmap_pfn = bootmap_start_pfn; 293 max_pfn = 0; 294 for (i = 0; i < npmem_ranges; i++) { 295 unsigned long start_pfn; 296 unsigned long npages; 297 298 start_pfn = pmem_ranges[i].start_pfn; 299 npages = pmem_ranges[i].pages; 300 301 bootmap_size = init_bootmem_node(NODE_DATA(i), 302 bootmap_pfn, 303 start_pfn, 304 (start_pfn + npages) ); 305 free_bootmem_node(NODE_DATA(i), 306 (start_pfn << PAGE_SHIFT), 307 (npages << PAGE_SHIFT) ); 308 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 309 if ((start_pfn + npages) > max_pfn) 310 max_pfn = start_pfn + npages; 311 } 312 313 /* IOMMU is always used to access "high mem" on those boxes 314 * that can support enough mem that a PCI device couldn't 315 * directly DMA to any physical addresses. 316 * ISA DMA support will need to revisit this. 317 */ 318 max_low_pfn = max_pfn; 319 320 /* bootmap sizing messed up? */ 321 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 322 323 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 324 325 #define PDC_CONSOLE_IO_IODC_SIZE 32768 326 327 reserve_bootmem_node(NODE_DATA(0), 0UL, 328 (unsigned long)(PAGE0->mem_free + 329 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 330 reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START), 331 (unsigned long)(_end - KERNEL_BINARY_TEXT_START), 332 BOOTMEM_DEFAULT); 333 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 334 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 335 BOOTMEM_DEFAULT); 336 337 #ifndef CONFIG_DISCONTIGMEM 338 339 /* reserve the holes */ 340 341 for (i = 0; i < npmem_holes; i++) { 342 reserve_bootmem_node(NODE_DATA(0), 343 (pmem_holes[i].start_pfn << PAGE_SHIFT), 344 (pmem_holes[i].pages << PAGE_SHIFT), 345 BOOTMEM_DEFAULT); 346 } 347 #endif 348 349 #ifdef CONFIG_BLK_DEV_INITRD 350 if (initrd_start) { 351 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 352 if (__pa(initrd_start) < mem_max) { 353 unsigned long initrd_reserve; 354 355 if (__pa(initrd_end) > mem_max) { 356 initrd_reserve = mem_max - __pa(initrd_start); 357 } else { 358 initrd_reserve = initrd_end - initrd_start; 359 } 360 initrd_below_start_ok = 1; 361 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 362 363 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 364 initrd_reserve, BOOTMEM_DEFAULT); 365 } 366 } 367 #endif 368 369 data_resource.start = virt_to_phys(&data_start); 370 data_resource.end = virt_to_phys(_end) - 1; 371 code_resource.start = virt_to_phys(_text); 372 code_resource.end = virt_to_phys(&data_start)-1; 373 374 /* We don't know which region the kernel will be in, so try 375 * all of them. 376 */ 377 for (i = 0; i < sysram_resource_count; i++) { 378 struct resource *res = &sysram_resources[i]; 379 request_resource(res, &code_resource); 380 request_resource(res, &data_resource); 381 } 382 request_resource(&sysram_resources[0], &pdcdata_resource); 383 } 384 385 static int __init parisc_text_address(unsigned long vaddr) 386 { 387 static unsigned long head_ptr __initdata; 388 389 if (!head_ptr) 390 head_ptr = PAGE_MASK & (unsigned long) 391 dereference_function_descriptor(&parisc_kernel_start); 392 393 return core_kernel_text(vaddr) || vaddr == head_ptr; 394 } 395 396 static void __init map_pages(unsigned long start_vaddr, 397 unsigned long start_paddr, unsigned long size, 398 pgprot_t pgprot, int force) 399 { 400 pgd_t *pg_dir; 401 pmd_t *pmd; 402 pte_t *pg_table; 403 unsigned long end_paddr; 404 unsigned long start_pmd; 405 unsigned long start_pte; 406 unsigned long tmp1; 407 unsigned long tmp2; 408 unsigned long address; 409 unsigned long vaddr; 410 unsigned long ro_start; 411 unsigned long ro_end; 412 unsigned long kernel_end; 413 414 ro_start = __pa((unsigned long)_text); 415 ro_end = __pa((unsigned long)&data_start); 416 kernel_end = __pa((unsigned long)&_end); 417 418 end_paddr = start_paddr + size; 419 420 pg_dir = pgd_offset_k(start_vaddr); 421 422 #if PTRS_PER_PMD == 1 423 start_pmd = 0; 424 #else 425 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 426 #endif 427 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 428 429 address = start_paddr; 430 vaddr = start_vaddr; 431 while (address < end_paddr) { 432 #if PTRS_PER_PMD == 1 433 pmd = (pmd_t *)__pa(pg_dir); 434 #else 435 pmd = (pmd_t *)pgd_address(*pg_dir); 436 437 /* 438 * pmd is physical at this point 439 */ 440 441 if (!pmd) { 442 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER); 443 pmd = (pmd_t *) __pa(pmd); 444 } 445 446 pgd_populate(NULL, pg_dir, __va(pmd)); 447 #endif 448 pg_dir++; 449 450 /* now change pmd to kernel virtual addresses */ 451 452 pmd = (pmd_t *)__va(pmd) + start_pmd; 453 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 454 455 /* 456 * pg_table is physical at this point 457 */ 458 459 pg_table = (pte_t *)pmd_address(*pmd); 460 if (!pg_table) { 461 pg_table = (pte_t *) 462 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE); 463 pg_table = (pte_t *) __pa(pg_table); 464 } 465 466 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 467 468 /* now change pg_table to kernel virtual addresses */ 469 470 pg_table = (pte_t *) __va(pg_table) + start_pte; 471 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 472 pte_t pte; 473 474 if (force) 475 pte = __mk_pte(address, pgprot); 476 else if (parisc_text_address(vaddr)) { 477 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 478 if (address >= ro_start && address < kernel_end) 479 pte = pte_mkhuge(pte); 480 } 481 else 482 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 483 if (address >= ro_start && address < ro_end) { 484 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 485 pte = pte_mkhuge(pte); 486 } else 487 #endif 488 { 489 pte = __mk_pte(address, pgprot); 490 if (address >= ro_start && address < kernel_end) 491 pte = pte_mkhuge(pte); 492 } 493 494 if (address >= end_paddr) { 495 if (force) 496 break; 497 else 498 pte_val(pte) = 0; 499 } 500 501 set_pte(pg_table, pte); 502 503 address += PAGE_SIZE; 504 vaddr += PAGE_SIZE; 505 } 506 start_pte = 0; 507 508 if (address >= end_paddr) 509 break; 510 } 511 start_pmd = 0; 512 } 513 } 514 515 void free_initmem(void) 516 { 517 unsigned long init_begin = (unsigned long)__init_begin; 518 unsigned long init_end = (unsigned long)__init_end; 519 520 /* The init text pages are marked R-X. We have to 521 * flush the icache and mark them RW- 522 * 523 * This is tricky, because map_pages is in the init section. 524 * Do a dummy remap of the data section first (the data 525 * section is already PAGE_KERNEL) to pull in the TLB entries 526 * for map_kernel */ 527 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 528 PAGE_KERNEL_RWX, 1); 529 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 530 * map_pages */ 531 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 532 PAGE_KERNEL, 1); 533 534 /* force the kernel to see the new TLB entries */ 535 __flush_tlb_range(0, init_begin, init_end); 536 537 /* finally dump all the instructions which were cached, since the 538 * pages are no-longer executable */ 539 flush_icache_range(init_begin, init_end); 540 541 free_initmem_default(POISON_FREE_INITMEM); 542 543 /* set up a new led state on systems shipped LED State panel */ 544 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 545 } 546 547 548 #ifdef CONFIG_DEBUG_RODATA 549 void mark_rodata_ro(void) 550 { 551 /* rodata memory was already mapped with KERNEL_RO access rights by 552 pagetable_init() and map_pages(). No need to do additional stuff here */ 553 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 554 (unsigned long)(__end_rodata - __start_rodata) >> 10); 555 } 556 #endif 557 558 559 /* 560 * Just an arbitrary offset to serve as a "hole" between mapping areas 561 * (between top of physical memory and a potential pcxl dma mapping 562 * area, and below the vmalloc mapping area). 563 * 564 * The current 32K value just means that there will be a 32K "hole" 565 * between mapping areas. That means that any out-of-bounds memory 566 * accesses will hopefully be caught. The vmalloc() routines leaves 567 * a hole of 4kB between each vmalloced area for the same reason. 568 */ 569 570 /* Leave room for gateway page expansion */ 571 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 572 #error KERNEL_MAP_START is in gateway reserved region 573 #endif 574 #define MAP_START (KERNEL_MAP_START) 575 576 #define VM_MAP_OFFSET (32*1024) 577 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 578 & ~(VM_MAP_OFFSET-1))) 579 580 void *parisc_vmalloc_start __read_mostly; 581 EXPORT_SYMBOL(parisc_vmalloc_start); 582 583 #ifdef CONFIG_PA11 584 unsigned long pcxl_dma_start __read_mostly; 585 #endif 586 587 void __init mem_init(void) 588 { 589 /* Do sanity checks on IPC (compat) structures */ 590 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48); 591 #ifndef CONFIG_64BIT 592 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80); 593 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104); 594 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104); 595 #endif 596 #ifdef CONFIG_COMPAT 597 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm)); 598 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80); 599 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104); 600 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104); 601 #endif 602 603 /* Do sanity checks on page table constants */ 604 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 605 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 606 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 607 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 608 > BITS_PER_LONG); 609 610 high_memory = __va((max_pfn << PAGE_SHIFT)); 611 set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1); 612 free_all_bootmem(); 613 614 #ifdef CONFIG_PA11 615 if (hppa_dma_ops == &pcxl_dma_ops) { 616 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 617 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 618 + PCXL_DMA_MAP_SIZE); 619 } else { 620 pcxl_dma_start = 0; 621 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 622 } 623 #else 624 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 625 #endif 626 627 mem_init_print_info(NULL); 628 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 629 printk("virtual kernel memory layout:\n" 630 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 631 " memory : 0x%p - 0x%p (%4ld MB)\n" 632 " .init : 0x%p - 0x%p (%4ld kB)\n" 633 " .data : 0x%p - 0x%p (%4ld kB)\n" 634 " .text : 0x%p - 0x%p (%4ld kB)\n", 635 636 (void*)VMALLOC_START, (void*)VMALLOC_END, 637 (VMALLOC_END - VMALLOC_START) >> 20, 638 639 __va(0), high_memory, 640 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 641 642 __init_begin, __init_end, 643 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 644 645 _etext, _edata, 646 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 647 648 _text, _etext, 649 ((unsigned long)_etext - (unsigned long)_text) >> 10); 650 #endif 651 } 652 653 unsigned long *empty_zero_page __read_mostly; 654 EXPORT_SYMBOL(empty_zero_page); 655 656 void show_mem(unsigned int filter) 657 { 658 int total = 0,reserved = 0; 659 pg_data_t *pgdat; 660 661 printk(KERN_INFO "Mem-info:\n"); 662 show_free_areas(filter); 663 664 for_each_online_pgdat(pgdat) { 665 unsigned long flags; 666 int zoneid; 667 668 pgdat_resize_lock(pgdat, &flags); 669 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 670 struct zone *zone = &pgdat->node_zones[zoneid]; 671 if (!populated_zone(zone)) 672 continue; 673 674 total += zone->present_pages; 675 reserved = zone->present_pages - zone->managed_pages; 676 } 677 pgdat_resize_unlock(pgdat, &flags); 678 } 679 680 printk(KERN_INFO "%d pages of RAM\n", total); 681 printk(KERN_INFO "%d reserved pages\n", reserved); 682 683 #ifdef CONFIG_DISCONTIGMEM 684 { 685 struct zonelist *zl; 686 int i, j; 687 688 for (i = 0; i < npmem_ranges; i++) { 689 zl = node_zonelist(i, 0); 690 for (j = 0; j < MAX_NR_ZONES; j++) { 691 struct zoneref *z; 692 struct zone *zone; 693 694 printk("Zone list for zone %d on node %d: ", j, i); 695 for_each_zone_zonelist(zone, z, zl, j) 696 printk("[%d/%s] ", zone_to_nid(zone), 697 zone->name); 698 printk("\n"); 699 } 700 } 701 } 702 #endif 703 } 704 705 /* 706 * pagetable_init() sets up the page tables 707 * 708 * Note that gateway_init() places the Linux gateway page at page 0. 709 * Since gateway pages cannot be dereferenced this has the desirable 710 * side effect of trapping those pesky NULL-reference errors in the 711 * kernel. 712 */ 713 static void __init pagetable_init(void) 714 { 715 int range; 716 717 /* Map each physical memory range to its kernel vaddr */ 718 719 for (range = 0; range < npmem_ranges; range++) { 720 unsigned long start_paddr; 721 unsigned long end_paddr; 722 unsigned long size; 723 724 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 725 size = pmem_ranges[range].pages << PAGE_SHIFT; 726 end_paddr = start_paddr + size; 727 728 map_pages((unsigned long)__va(start_paddr), start_paddr, 729 size, PAGE_KERNEL, 0); 730 } 731 732 #ifdef CONFIG_BLK_DEV_INITRD 733 if (initrd_end && initrd_end > mem_limit) { 734 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 735 map_pages(initrd_start, __pa(initrd_start), 736 initrd_end - initrd_start, PAGE_KERNEL, 0); 737 } 738 #endif 739 740 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 741 } 742 743 static void __init gateway_init(void) 744 { 745 unsigned long linux_gateway_page_addr; 746 /* FIXME: This is 'const' in order to trick the compiler 747 into not treating it as DP-relative data. */ 748 extern void * const linux_gateway_page; 749 750 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 751 752 /* 753 * Setup Linux Gateway page. 754 * 755 * The Linux gateway page will reside in kernel space (on virtual 756 * page 0), so it doesn't need to be aliased into user space. 757 */ 758 759 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 760 PAGE_SIZE, PAGE_GATEWAY, 1); 761 } 762 763 void __init paging_init(void) 764 { 765 int i; 766 767 setup_bootmem(); 768 pagetable_init(); 769 gateway_init(); 770 flush_cache_all_local(); /* start with known state */ 771 flush_tlb_all_local(NULL); 772 773 for (i = 0; i < npmem_ranges; i++) { 774 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 775 776 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 777 778 #ifdef CONFIG_DISCONTIGMEM 779 /* Need to initialize the pfnnid_map before we can initialize 780 the zone */ 781 { 782 int j; 783 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 784 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 785 j++) { 786 pfnnid_map[j] = i; 787 } 788 } 789 #endif 790 791 free_area_init_node(i, zones_size, 792 pmem_ranges[i].start_pfn, NULL); 793 } 794 } 795 796 #ifdef CONFIG_PA20 797 798 /* 799 * Currently, all PA20 chips have 18 bit protection IDs, which is the 800 * limiting factor (space ids are 32 bits). 801 */ 802 803 #define NR_SPACE_IDS 262144 804 805 #else 806 807 /* 808 * Currently we have a one-to-one relationship between space IDs and 809 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 810 * support 15 bit protection IDs, so that is the limiting factor. 811 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 812 * probably not worth the effort for a special case here. 813 */ 814 815 #define NR_SPACE_IDS 32768 816 817 #endif /* !CONFIG_PA20 */ 818 819 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 820 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 821 822 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 823 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 824 static unsigned long space_id_index; 825 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 826 static unsigned long dirty_space_ids = 0; 827 828 static DEFINE_SPINLOCK(sid_lock); 829 830 unsigned long alloc_sid(void) 831 { 832 unsigned long index; 833 834 spin_lock(&sid_lock); 835 836 if (free_space_ids == 0) { 837 if (dirty_space_ids != 0) { 838 spin_unlock(&sid_lock); 839 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 840 spin_lock(&sid_lock); 841 } 842 BUG_ON(free_space_ids == 0); 843 } 844 845 free_space_ids--; 846 847 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 848 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 849 space_id_index = index; 850 851 spin_unlock(&sid_lock); 852 853 return index << SPACEID_SHIFT; 854 } 855 856 void free_sid(unsigned long spaceid) 857 { 858 unsigned long index = spaceid >> SPACEID_SHIFT; 859 unsigned long *dirty_space_offset; 860 861 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 862 index &= (BITS_PER_LONG - 1); 863 864 spin_lock(&sid_lock); 865 866 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 867 868 *dirty_space_offset |= (1L << index); 869 dirty_space_ids++; 870 871 spin_unlock(&sid_lock); 872 } 873 874 875 #ifdef CONFIG_SMP 876 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 877 { 878 int i; 879 880 /* NOTE: sid_lock must be held upon entry */ 881 882 *ndirtyptr = dirty_space_ids; 883 if (dirty_space_ids != 0) { 884 for (i = 0; i < SID_ARRAY_SIZE; i++) { 885 dirty_array[i] = dirty_space_id[i]; 886 dirty_space_id[i] = 0; 887 } 888 dirty_space_ids = 0; 889 } 890 891 return; 892 } 893 894 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 895 { 896 int i; 897 898 /* NOTE: sid_lock must be held upon entry */ 899 900 if (ndirty != 0) { 901 for (i = 0; i < SID_ARRAY_SIZE; i++) { 902 space_id[i] ^= dirty_array[i]; 903 } 904 905 free_space_ids += ndirty; 906 space_id_index = 0; 907 } 908 } 909 910 #else /* CONFIG_SMP */ 911 912 static void recycle_sids(void) 913 { 914 int i; 915 916 /* NOTE: sid_lock must be held upon entry */ 917 918 if (dirty_space_ids != 0) { 919 for (i = 0; i < SID_ARRAY_SIZE; i++) { 920 space_id[i] ^= dirty_space_id[i]; 921 dirty_space_id[i] = 0; 922 } 923 924 free_space_ids += dirty_space_ids; 925 dirty_space_ids = 0; 926 space_id_index = 0; 927 } 928 } 929 #endif 930 931 /* 932 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 933 * purged, we can safely reuse the space ids that were released but 934 * not flushed from the tlb. 935 */ 936 937 #ifdef CONFIG_SMP 938 939 static unsigned long recycle_ndirty; 940 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 941 static unsigned int recycle_inuse; 942 943 void flush_tlb_all(void) 944 { 945 int do_recycle; 946 947 __inc_irq_stat(irq_tlb_count); 948 do_recycle = 0; 949 spin_lock(&sid_lock); 950 if (dirty_space_ids > RECYCLE_THRESHOLD) { 951 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 952 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 953 recycle_inuse++; 954 do_recycle++; 955 } 956 spin_unlock(&sid_lock); 957 on_each_cpu(flush_tlb_all_local, NULL, 1); 958 if (do_recycle) { 959 spin_lock(&sid_lock); 960 recycle_sids(recycle_ndirty,recycle_dirty_array); 961 recycle_inuse = 0; 962 spin_unlock(&sid_lock); 963 } 964 } 965 #else 966 void flush_tlb_all(void) 967 { 968 __inc_irq_stat(irq_tlb_count); 969 spin_lock(&sid_lock); 970 flush_tlb_all_local(NULL); 971 recycle_sids(); 972 spin_unlock(&sid_lock); 973 } 974 #endif 975 976 #ifdef CONFIG_BLK_DEV_INITRD 977 void free_initrd_mem(unsigned long start, unsigned long end) 978 { 979 free_reserved_area((void *)start, (void *)end, -1, "initrd"); 980 } 981 #endif 982