1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 20 #include <linux/initrd.h> 21 #include <linux/swap.h> 22 #include <linux/unistd.h> 23 #include <linux/nodemask.h> /* for node_online_map */ 24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 25 26 #include <asm/pgalloc.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 #include <asm/pdc_chassis.h> 30 #include <asm/mmzone.h> 31 #include <asm/sections.h> 32 33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 34 35 extern int data_start; 36 37 #ifdef CONFIG_DISCONTIGMEM 38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 39 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 40 #endif 41 42 static struct resource data_resource = { 43 .name = "Kernel data", 44 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 45 }; 46 47 static struct resource code_resource = { 48 .name = "Kernel code", 49 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 50 }; 51 52 static struct resource pdcdata_resource = { 53 .name = "PDC data (Page Zero)", 54 .start = 0, 55 .end = 0x9ff, 56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 57 }; 58 59 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 60 61 /* The following array is initialized from the firmware specific 62 * information retrieved in kernel/inventory.c. 63 */ 64 65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 66 int npmem_ranges __read_mostly; 67 68 #ifdef CONFIG_64BIT 69 #define MAX_MEM (~0UL) 70 #else /* !CONFIG_64BIT */ 71 #define MAX_MEM (3584U*1024U*1024U) 72 #endif /* !CONFIG_64BIT */ 73 74 static unsigned long mem_limit __read_mostly = MAX_MEM; 75 76 static void __init mem_limit_func(void) 77 { 78 char *cp, *end; 79 unsigned long limit; 80 81 /* We need this before __setup() functions are called */ 82 83 limit = MAX_MEM; 84 for (cp = boot_command_line; *cp; ) { 85 if (memcmp(cp, "mem=", 4) == 0) { 86 cp += 4; 87 limit = memparse(cp, &end); 88 if (end != cp) 89 break; 90 cp = end; 91 } else { 92 while (*cp != ' ' && *cp) 93 ++cp; 94 while (*cp == ' ') 95 ++cp; 96 } 97 } 98 99 if (limit < mem_limit) 100 mem_limit = limit; 101 } 102 103 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 104 105 static void __init setup_bootmem(void) 106 { 107 unsigned long bootmap_size; 108 unsigned long mem_max; 109 unsigned long bootmap_pages; 110 unsigned long bootmap_start_pfn; 111 unsigned long bootmap_pfn; 112 #ifndef CONFIG_DISCONTIGMEM 113 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 114 int npmem_holes; 115 #endif 116 int i, sysram_resource_count; 117 118 disable_sr_hashing(); /* Turn off space register hashing */ 119 120 /* 121 * Sort the ranges. Since the number of ranges is typically 122 * small, and performance is not an issue here, just do 123 * a simple insertion sort. 124 */ 125 126 for (i = 1; i < npmem_ranges; i++) { 127 int j; 128 129 for (j = i; j > 0; j--) { 130 unsigned long tmp; 131 132 if (pmem_ranges[j-1].start_pfn < 133 pmem_ranges[j].start_pfn) { 134 135 break; 136 } 137 tmp = pmem_ranges[j-1].start_pfn; 138 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 139 pmem_ranges[j].start_pfn = tmp; 140 tmp = pmem_ranges[j-1].pages; 141 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 142 pmem_ranges[j].pages = tmp; 143 } 144 } 145 146 #ifndef CONFIG_DISCONTIGMEM 147 /* 148 * Throw out ranges that are too far apart (controlled by 149 * MAX_GAP). 150 */ 151 152 for (i = 1; i < npmem_ranges; i++) { 153 if (pmem_ranges[i].start_pfn - 154 (pmem_ranges[i-1].start_pfn + 155 pmem_ranges[i-1].pages) > MAX_GAP) { 156 npmem_ranges = i; 157 printk("Large gap in memory detected (%ld pages). " 158 "Consider turning on CONFIG_DISCONTIGMEM\n", 159 pmem_ranges[i].start_pfn - 160 (pmem_ranges[i-1].start_pfn + 161 pmem_ranges[i-1].pages)); 162 break; 163 } 164 } 165 #endif 166 167 if (npmem_ranges > 1) { 168 169 /* Print the memory ranges */ 170 171 printk(KERN_INFO "Memory Ranges:\n"); 172 173 for (i = 0; i < npmem_ranges; i++) { 174 unsigned long start; 175 unsigned long size; 176 177 size = (pmem_ranges[i].pages << PAGE_SHIFT); 178 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 179 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 180 i,start, start + (size - 1), size >> 20); 181 } 182 } 183 184 sysram_resource_count = npmem_ranges; 185 for (i = 0; i < sysram_resource_count; i++) { 186 struct resource *res = &sysram_resources[i]; 187 res->name = "System RAM"; 188 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 189 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 190 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 191 request_resource(&iomem_resource, res); 192 } 193 194 /* 195 * For 32 bit kernels we limit the amount of memory we can 196 * support, in order to preserve enough kernel address space 197 * for other purposes. For 64 bit kernels we don't normally 198 * limit the memory, but this mechanism can be used to 199 * artificially limit the amount of memory (and it is written 200 * to work with multiple memory ranges). 201 */ 202 203 mem_limit_func(); /* check for "mem=" argument */ 204 205 mem_max = 0; 206 num_physpages = 0; 207 for (i = 0; i < npmem_ranges; i++) { 208 unsigned long rsize; 209 210 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 211 if ((mem_max + rsize) > mem_limit) { 212 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 213 if (mem_max == mem_limit) 214 npmem_ranges = i; 215 else { 216 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 217 - (mem_max >> PAGE_SHIFT); 218 npmem_ranges = i + 1; 219 mem_max = mem_limit; 220 } 221 num_physpages += pmem_ranges[i].pages; 222 break; 223 } 224 num_physpages += pmem_ranges[i].pages; 225 mem_max += rsize; 226 } 227 228 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 229 230 #ifndef CONFIG_DISCONTIGMEM 231 /* Merge the ranges, keeping track of the holes */ 232 233 { 234 unsigned long end_pfn; 235 unsigned long hole_pages; 236 237 npmem_holes = 0; 238 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 239 for (i = 1; i < npmem_ranges; i++) { 240 241 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 242 if (hole_pages) { 243 pmem_holes[npmem_holes].start_pfn = end_pfn; 244 pmem_holes[npmem_holes++].pages = hole_pages; 245 end_pfn += hole_pages; 246 } 247 end_pfn += pmem_ranges[i].pages; 248 } 249 250 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 251 npmem_ranges = 1; 252 } 253 #endif 254 255 bootmap_pages = 0; 256 for (i = 0; i < npmem_ranges; i++) 257 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 258 259 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 260 261 #ifdef CONFIG_DISCONTIGMEM 262 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 263 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 264 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 265 } 266 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 267 268 for (i = 0; i < npmem_ranges; i++) 269 node_set_online(i); 270 #endif 271 272 /* 273 * Initialize and free the full range of memory in each range. 274 * Note that the only writing these routines do are to the bootmap, 275 * and we've made sure to locate the bootmap properly so that they 276 * won't be writing over anything important. 277 */ 278 279 bootmap_pfn = bootmap_start_pfn; 280 max_pfn = 0; 281 for (i = 0; i < npmem_ranges; i++) { 282 unsigned long start_pfn; 283 unsigned long npages; 284 285 start_pfn = pmem_ranges[i].start_pfn; 286 npages = pmem_ranges[i].pages; 287 288 bootmap_size = init_bootmem_node(NODE_DATA(i), 289 bootmap_pfn, 290 start_pfn, 291 (start_pfn + npages) ); 292 free_bootmem_node(NODE_DATA(i), 293 (start_pfn << PAGE_SHIFT), 294 (npages << PAGE_SHIFT) ); 295 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 296 if ((start_pfn + npages) > max_pfn) 297 max_pfn = start_pfn + npages; 298 } 299 300 /* IOMMU is always used to access "high mem" on those boxes 301 * that can support enough mem that a PCI device couldn't 302 * directly DMA to any physical addresses. 303 * ISA DMA support will need to revisit this. 304 */ 305 max_low_pfn = max_pfn; 306 307 /* bootmap sizing messed up? */ 308 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 309 310 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 311 312 #define PDC_CONSOLE_IO_IODC_SIZE 32768 313 314 reserve_bootmem_node(NODE_DATA(0), 0UL, 315 (unsigned long)(PAGE0->mem_free + 316 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 317 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 318 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 319 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 320 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 321 BOOTMEM_DEFAULT); 322 323 #ifndef CONFIG_DISCONTIGMEM 324 325 /* reserve the holes */ 326 327 for (i = 0; i < npmem_holes; i++) { 328 reserve_bootmem_node(NODE_DATA(0), 329 (pmem_holes[i].start_pfn << PAGE_SHIFT), 330 (pmem_holes[i].pages << PAGE_SHIFT), 331 BOOTMEM_DEFAULT); 332 } 333 #endif 334 335 #ifdef CONFIG_BLK_DEV_INITRD 336 if (initrd_start) { 337 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 338 if (__pa(initrd_start) < mem_max) { 339 unsigned long initrd_reserve; 340 341 if (__pa(initrd_end) > mem_max) { 342 initrd_reserve = mem_max - __pa(initrd_start); 343 } else { 344 initrd_reserve = initrd_end - initrd_start; 345 } 346 initrd_below_start_ok = 1; 347 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 348 349 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 350 initrd_reserve, BOOTMEM_DEFAULT); 351 } 352 } 353 #endif 354 355 data_resource.start = virt_to_phys(&data_start); 356 data_resource.end = virt_to_phys(_end) - 1; 357 code_resource.start = virt_to_phys(_text); 358 code_resource.end = virt_to_phys(&data_start)-1; 359 360 /* We don't know which region the kernel will be in, so try 361 * all of them. 362 */ 363 for (i = 0; i < sysram_resource_count; i++) { 364 struct resource *res = &sysram_resources[i]; 365 request_resource(res, &code_resource); 366 request_resource(res, &data_resource); 367 } 368 request_resource(&sysram_resources[0], &pdcdata_resource); 369 } 370 371 void free_initmem(void) 372 { 373 unsigned long addr; 374 unsigned long init_begin = (unsigned long)__init_begin; 375 unsigned long init_end = (unsigned long)__init_end; 376 377 #ifdef CONFIG_DEBUG_KERNEL 378 /* Attempt to catch anyone trying to execute code here 379 * by filling the page with BRK insns. 380 */ 381 memset((void *)init_begin, 0x00, init_end - init_begin); 382 flush_icache_range(init_begin, init_end); 383 #endif 384 385 /* align __init_begin and __init_end to page size, 386 ignoring linker script where we might have tried to save RAM */ 387 init_begin = PAGE_ALIGN(init_begin); 388 init_end = PAGE_ALIGN(init_end); 389 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 390 ClearPageReserved(virt_to_page(addr)); 391 init_page_count(virt_to_page(addr)); 392 free_page(addr); 393 num_physpages++; 394 totalram_pages++; 395 } 396 397 /* set up a new led state on systems shipped LED State panel */ 398 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 399 400 printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n", 401 (init_end - init_begin) >> 10); 402 } 403 404 405 #ifdef CONFIG_DEBUG_RODATA 406 void mark_rodata_ro(void) 407 { 408 /* rodata memory was already mapped with KERNEL_RO access rights by 409 pagetable_init() and map_pages(). No need to do additional stuff here */ 410 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 411 (unsigned long)(__end_rodata - __start_rodata) >> 10); 412 } 413 #endif 414 415 416 /* 417 * Just an arbitrary offset to serve as a "hole" between mapping areas 418 * (between top of physical memory and a potential pcxl dma mapping 419 * area, and below the vmalloc mapping area). 420 * 421 * The current 32K value just means that there will be a 32K "hole" 422 * between mapping areas. That means that any out-of-bounds memory 423 * accesses will hopefully be caught. The vmalloc() routines leaves 424 * a hole of 4kB between each vmalloced area for the same reason. 425 */ 426 427 /* Leave room for gateway page expansion */ 428 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 429 #error KERNEL_MAP_START is in gateway reserved region 430 #endif 431 #define MAP_START (KERNEL_MAP_START) 432 433 #define VM_MAP_OFFSET (32*1024) 434 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 435 & ~(VM_MAP_OFFSET-1))) 436 437 void *vmalloc_start __read_mostly; 438 EXPORT_SYMBOL(vmalloc_start); 439 440 #ifdef CONFIG_PA11 441 unsigned long pcxl_dma_start __read_mostly; 442 #endif 443 444 void __init mem_init(void) 445 { 446 int codesize, reservedpages, datasize, initsize; 447 448 /* Do sanity checks on page table constants */ 449 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 450 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 451 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 452 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 453 > BITS_PER_LONG); 454 455 high_memory = __va((max_pfn << PAGE_SHIFT)); 456 457 #ifndef CONFIG_DISCONTIGMEM 458 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 459 totalram_pages += free_all_bootmem(); 460 #else 461 { 462 int i; 463 464 for (i = 0; i < npmem_ranges; i++) 465 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 466 } 467 #endif 468 469 codesize = (unsigned long)_etext - (unsigned long)_text; 470 datasize = (unsigned long)_edata - (unsigned long)_etext; 471 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 472 473 reservedpages = 0; 474 { 475 unsigned long pfn; 476 #ifdef CONFIG_DISCONTIGMEM 477 int i; 478 479 for (i = 0; i < npmem_ranges; i++) { 480 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 481 if (PageReserved(pfn_to_page(pfn))) 482 reservedpages++; 483 } 484 } 485 #else /* !CONFIG_DISCONTIGMEM */ 486 for (pfn = 0; pfn < max_pfn; pfn++) { 487 /* 488 * Only count reserved RAM pages 489 */ 490 if (PageReserved(pfn_to_page(pfn))) 491 reservedpages++; 492 } 493 #endif 494 } 495 496 #ifdef CONFIG_PA11 497 if (hppa_dma_ops == &pcxl_dma_ops) { 498 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 499 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); 500 } else { 501 pcxl_dma_start = 0; 502 vmalloc_start = SET_MAP_OFFSET(MAP_START); 503 } 504 #else 505 vmalloc_start = SET_MAP_OFFSET(MAP_START); 506 #endif 507 508 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 509 nr_free_pages() << (PAGE_SHIFT-10), 510 num_physpages << (PAGE_SHIFT-10), 511 codesize >> 10, 512 reservedpages << (PAGE_SHIFT-10), 513 datasize >> 10, 514 initsize >> 10 515 ); 516 517 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 518 printk("virtual kernel memory layout:\n" 519 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 520 " memory : 0x%p - 0x%p (%4ld MB)\n" 521 " .init : 0x%p - 0x%p (%4ld kB)\n" 522 " .data : 0x%p - 0x%p (%4ld kB)\n" 523 " .text : 0x%p - 0x%p (%4ld kB)\n", 524 525 (void*)VMALLOC_START, (void*)VMALLOC_END, 526 (VMALLOC_END - VMALLOC_START) >> 20, 527 528 __va(0), high_memory, 529 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 530 531 __init_begin, __init_end, 532 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 533 534 _etext, _edata, 535 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 536 537 _text, _etext, 538 ((unsigned long)_etext - (unsigned long)_text) >> 10); 539 #endif 540 } 541 542 unsigned long *empty_zero_page __read_mostly; 543 EXPORT_SYMBOL(empty_zero_page); 544 545 void show_mem(void) 546 { 547 int i,free = 0,total = 0,reserved = 0; 548 int shared = 0, cached = 0; 549 550 printk(KERN_INFO "Mem-info:\n"); 551 show_free_areas(); 552 #ifndef CONFIG_DISCONTIGMEM 553 i = max_mapnr; 554 while (i-- > 0) { 555 total++; 556 if (PageReserved(mem_map+i)) 557 reserved++; 558 else if (PageSwapCache(mem_map+i)) 559 cached++; 560 else if (!page_count(&mem_map[i])) 561 free++; 562 else 563 shared += page_count(&mem_map[i]) - 1; 564 } 565 #else 566 for (i = 0; i < npmem_ranges; i++) { 567 int j; 568 569 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 570 struct page *p; 571 unsigned long flags; 572 573 pgdat_resize_lock(NODE_DATA(i), &flags); 574 p = nid_page_nr(i, j) - node_start_pfn(i); 575 576 total++; 577 if (PageReserved(p)) 578 reserved++; 579 else if (PageSwapCache(p)) 580 cached++; 581 else if (!page_count(p)) 582 free++; 583 else 584 shared += page_count(p) - 1; 585 pgdat_resize_unlock(NODE_DATA(i), &flags); 586 } 587 } 588 #endif 589 printk(KERN_INFO "%d pages of RAM\n", total); 590 printk(KERN_INFO "%d reserved pages\n", reserved); 591 printk(KERN_INFO "%d pages shared\n", shared); 592 printk(KERN_INFO "%d pages swap cached\n", cached); 593 594 595 #ifdef CONFIG_DISCONTIGMEM 596 { 597 struct zonelist *zl; 598 int i, j; 599 600 for (i = 0; i < npmem_ranges; i++) { 601 zl = node_zonelist(i, 0); 602 for (j = 0; j < MAX_NR_ZONES; j++) { 603 struct zoneref *z; 604 struct zone *zone; 605 606 printk("Zone list for zone %d on node %d: ", j, i); 607 for_each_zone_zonelist(zone, z, zl, j) 608 printk("[%d/%s] ", zone_to_nid(zone), 609 zone->name); 610 printk("\n"); 611 } 612 } 613 } 614 #endif 615 } 616 617 618 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 619 { 620 pgd_t *pg_dir; 621 pmd_t *pmd; 622 pte_t *pg_table; 623 unsigned long end_paddr; 624 unsigned long start_pmd; 625 unsigned long start_pte; 626 unsigned long tmp1; 627 unsigned long tmp2; 628 unsigned long address; 629 unsigned long ro_start; 630 unsigned long ro_end; 631 unsigned long fv_addr; 632 unsigned long gw_addr; 633 extern const unsigned long fault_vector_20; 634 extern void * const linux_gateway_page; 635 636 ro_start = __pa((unsigned long)_text); 637 ro_end = __pa((unsigned long)&data_start); 638 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 639 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 640 641 end_paddr = start_paddr + size; 642 643 pg_dir = pgd_offset_k(start_vaddr); 644 645 #if PTRS_PER_PMD == 1 646 start_pmd = 0; 647 #else 648 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 649 #endif 650 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 651 652 address = start_paddr; 653 while (address < end_paddr) { 654 #if PTRS_PER_PMD == 1 655 pmd = (pmd_t *)__pa(pg_dir); 656 #else 657 pmd = (pmd_t *)pgd_address(*pg_dir); 658 659 /* 660 * pmd is physical at this point 661 */ 662 663 if (!pmd) { 664 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 665 pmd = (pmd_t *) __pa(pmd); 666 } 667 668 pgd_populate(NULL, pg_dir, __va(pmd)); 669 #endif 670 pg_dir++; 671 672 /* now change pmd to kernel virtual addresses */ 673 674 pmd = (pmd_t *)__va(pmd) + start_pmd; 675 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 676 677 /* 678 * pg_table is physical at this point 679 */ 680 681 pg_table = (pte_t *)pmd_address(*pmd); 682 if (!pg_table) { 683 pg_table = (pte_t *) 684 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 685 pg_table = (pte_t *) __pa(pg_table); 686 } 687 688 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 689 690 /* now change pg_table to kernel virtual addresses */ 691 692 pg_table = (pte_t *) __va(pg_table) + start_pte; 693 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 694 pte_t pte; 695 696 /* 697 * Map the fault vector writable so we can 698 * write the HPMC checksum. 699 */ 700 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 701 if (address >= ro_start && address < ro_end 702 && address != fv_addr 703 && address != gw_addr) 704 pte = __mk_pte(address, PAGE_KERNEL_RO); 705 else 706 #endif 707 pte = __mk_pte(address, pgprot); 708 709 if (address >= end_paddr) 710 pte_val(pte) = 0; 711 712 set_pte(pg_table, pte); 713 714 address += PAGE_SIZE; 715 } 716 start_pte = 0; 717 718 if (address >= end_paddr) 719 break; 720 } 721 start_pmd = 0; 722 } 723 } 724 725 /* 726 * pagetable_init() sets up the page tables 727 * 728 * Note that gateway_init() places the Linux gateway page at page 0. 729 * Since gateway pages cannot be dereferenced this has the desirable 730 * side effect of trapping those pesky NULL-reference errors in the 731 * kernel. 732 */ 733 static void __init pagetable_init(void) 734 { 735 int range; 736 737 /* Map each physical memory range to its kernel vaddr */ 738 739 for (range = 0; range < npmem_ranges; range++) { 740 unsigned long start_paddr; 741 unsigned long end_paddr; 742 unsigned long size; 743 744 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 745 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 746 size = pmem_ranges[range].pages << PAGE_SHIFT; 747 748 map_pages((unsigned long)__va(start_paddr), start_paddr, 749 size, PAGE_KERNEL); 750 } 751 752 #ifdef CONFIG_BLK_DEV_INITRD 753 if (initrd_end && initrd_end > mem_limit) { 754 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 755 map_pages(initrd_start, __pa(initrd_start), 756 initrd_end - initrd_start, PAGE_KERNEL); 757 } 758 #endif 759 760 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 761 memset(empty_zero_page, 0, PAGE_SIZE); 762 } 763 764 static void __init gateway_init(void) 765 { 766 unsigned long linux_gateway_page_addr; 767 /* FIXME: This is 'const' in order to trick the compiler 768 into not treating it as DP-relative data. */ 769 extern void * const linux_gateway_page; 770 771 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 772 773 /* 774 * Setup Linux Gateway page. 775 * 776 * The Linux gateway page will reside in kernel space (on virtual 777 * page 0), so it doesn't need to be aliased into user space. 778 */ 779 780 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 781 PAGE_SIZE, PAGE_GATEWAY); 782 } 783 784 #ifdef CONFIG_HPUX 785 void 786 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 787 { 788 pgd_t *pg_dir; 789 pmd_t *pmd; 790 pte_t *pg_table; 791 unsigned long start_pmd; 792 unsigned long start_pte; 793 unsigned long address; 794 unsigned long hpux_gw_page_addr; 795 /* FIXME: This is 'const' in order to trick the compiler 796 into not treating it as DP-relative data. */ 797 extern void * const hpux_gateway_page; 798 799 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 800 801 /* 802 * Setup HP-UX Gateway page. 803 * 804 * The HP-UX gateway page resides in the user address space, 805 * so it needs to be aliased into each process. 806 */ 807 808 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 809 810 #if PTRS_PER_PMD == 1 811 start_pmd = 0; 812 #else 813 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 814 #endif 815 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 816 817 address = __pa(&hpux_gateway_page); 818 #if PTRS_PER_PMD == 1 819 pmd = (pmd_t *)__pa(pg_dir); 820 #else 821 pmd = (pmd_t *) pgd_address(*pg_dir); 822 823 /* 824 * pmd is physical at this point 825 */ 826 827 if (!pmd) { 828 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 829 pmd = (pmd_t *) __pa(pmd); 830 } 831 832 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 833 #endif 834 /* now change pmd to kernel virtual addresses */ 835 836 pmd = (pmd_t *)__va(pmd) + start_pmd; 837 838 /* 839 * pg_table is physical at this point 840 */ 841 842 pg_table = (pte_t *) pmd_address(*pmd); 843 if (!pg_table) 844 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 845 846 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 847 848 /* now change pg_table to kernel virtual addresses */ 849 850 pg_table = (pte_t *) __va(pg_table) + start_pte; 851 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 852 } 853 EXPORT_SYMBOL(map_hpux_gateway_page); 854 #endif 855 856 void __init paging_init(void) 857 { 858 int i; 859 860 setup_bootmem(); 861 pagetable_init(); 862 gateway_init(); 863 flush_cache_all_local(); /* start with known state */ 864 flush_tlb_all_local(NULL); 865 866 for (i = 0; i < npmem_ranges; i++) { 867 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 868 869 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 870 871 #ifdef CONFIG_DISCONTIGMEM 872 /* Need to initialize the pfnnid_map before we can initialize 873 the zone */ 874 { 875 int j; 876 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 877 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 878 j++) { 879 pfnnid_map[j] = i; 880 } 881 } 882 #endif 883 884 free_area_init_node(i, zones_size, 885 pmem_ranges[i].start_pfn, NULL); 886 } 887 } 888 889 #ifdef CONFIG_PA20 890 891 /* 892 * Currently, all PA20 chips have 18 bit protection IDs, which is the 893 * limiting factor (space ids are 32 bits). 894 */ 895 896 #define NR_SPACE_IDS 262144 897 898 #else 899 900 /* 901 * Currently we have a one-to-one relationship between space IDs and 902 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 903 * support 15 bit protection IDs, so that is the limiting factor. 904 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 905 * probably not worth the effort for a special case here. 906 */ 907 908 #define NR_SPACE_IDS 32768 909 910 #endif /* !CONFIG_PA20 */ 911 912 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 913 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 914 915 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 916 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 917 static unsigned long space_id_index; 918 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 919 static unsigned long dirty_space_ids = 0; 920 921 static DEFINE_SPINLOCK(sid_lock); 922 923 unsigned long alloc_sid(void) 924 { 925 unsigned long index; 926 927 spin_lock(&sid_lock); 928 929 if (free_space_ids == 0) { 930 if (dirty_space_ids != 0) { 931 spin_unlock(&sid_lock); 932 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 933 spin_lock(&sid_lock); 934 } 935 BUG_ON(free_space_ids == 0); 936 } 937 938 free_space_ids--; 939 940 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 941 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 942 space_id_index = index; 943 944 spin_unlock(&sid_lock); 945 946 return index << SPACEID_SHIFT; 947 } 948 949 void free_sid(unsigned long spaceid) 950 { 951 unsigned long index = spaceid >> SPACEID_SHIFT; 952 unsigned long *dirty_space_offset; 953 954 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 955 index &= (BITS_PER_LONG - 1); 956 957 spin_lock(&sid_lock); 958 959 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 960 961 *dirty_space_offset |= (1L << index); 962 dirty_space_ids++; 963 964 spin_unlock(&sid_lock); 965 } 966 967 968 #ifdef CONFIG_SMP 969 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 970 { 971 int i; 972 973 /* NOTE: sid_lock must be held upon entry */ 974 975 *ndirtyptr = dirty_space_ids; 976 if (dirty_space_ids != 0) { 977 for (i = 0; i < SID_ARRAY_SIZE; i++) { 978 dirty_array[i] = dirty_space_id[i]; 979 dirty_space_id[i] = 0; 980 } 981 dirty_space_ids = 0; 982 } 983 984 return; 985 } 986 987 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 988 { 989 int i; 990 991 /* NOTE: sid_lock must be held upon entry */ 992 993 if (ndirty != 0) { 994 for (i = 0; i < SID_ARRAY_SIZE; i++) { 995 space_id[i] ^= dirty_array[i]; 996 } 997 998 free_space_ids += ndirty; 999 space_id_index = 0; 1000 } 1001 } 1002 1003 #else /* CONFIG_SMP */ 1004 1005 static void recycle_sids(void) 1006 { 1007 int i; 1008 1009 /* NOTE: sid_lock must be held upon entry */ 1010 1011 if (dirty_space_ids != 0) { 1012 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1013 space_id[i] ^= dirty_space_id[i]; 1014 dirty_space_id[i] = 0; 1015 } 1016 1017 free_space_ids += dirty_space_ids; 1018 dirty_space_ids = 0; 1019 space_id_index = 0; 1020 } 1021 } 1022 #endif 1023 1024 /* 1025 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1026 * purged, we can safely reuse the space ids that were released but 1027 * not flushed from the tlb. 1028 */ 1029 1030 #ifdef CONFIG_SMP 1031 1032 static unsigned long recycle_ndirty; 1033 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1034 static unsigned int recycle_inuse; 1035 1036 void flush_tlb_all(void) 1037 { 1038 int do_recycle; 1039 1040 do_recycle = 0; 1041 spin_lock(&sid_lock); 1042 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1043 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1044 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1045 recycle_inuse++; 1046 do_recycle++; 1047 } 1048 spin_unlock(&sid_lock); 1049 on_each_cpu(flush_tlb_all_local, NULL, 1); 1050 if (do_recycle) { 1051 spin_lock(&sid_lock); 1052 recycle_sids(recycle_ndirty,recycle_dirty_array); 1053 recycle_inuse = 0; 1054 spin_unlock(&sid_lock); 1055 } 1056 } 1057 #else 1058 void flush_tlb_all(void) 1059 { 1060 spin_lock(&sid_lock); 1061 flush_tlb_all_local(NULL); 1062 recycle_sids(); 1063 spin_unlock(&sid_lock); 1064 } 1065 #endif 1066 1067 #ifdef CONFIG_BLK_DEV_INITRD 1068 void free_initrd_mem(unsigned long start, unsigned long end) 1069 { 1070 if (start >= end) 1071 return; 1072 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1073 for (; start < end; start += PAGE_SIZE) { 1074 ClearPageReserved(virt_to_page(start)); 1075 init_page_count(virt_to_page(start)); 1076 free_page(start); 1077 num_physpages++; 1078 totalram_pages++; 1079 } 1080 } 1081 #endif 1082